

CONEERV IT 1.0-

STUDENTMANUAL

A TRAINING SYSTEM FOR AQUATIC CONSERVATION MANAGERS

ABSTRACT

CONEERV IT is part of a family of coursework a bout the conservation of a quatic living resources. The foc us of the training system is on the computation a nd utilization of bio-diversity metrics at different biological scales; the aim of the course is the training and a ssisting of ma na gers in rea listic conservation projects. The system includes many different training and lea ming tools, such as online media and Excel workbooks. This student manual can be used asthe master document, provided all subject files are downloaded into the same directory. The individual files are otherwise selfexplanatory and can be consulted independently. The companion theoretical texts are also a vailable from the author to link to this system.

J orge Santos

Norwegian College of Fishery Science.
University of Tromsø

CONEERV IT 1.0 - STUDENTMANUAL

Santos, J. 2015. CON2ERV IT 1.0 - Student Manual: A Tra ining System for Aquatic Conservation Managers. Septentrio Educ ational 2015(2).

DOI: http://dx.doi.org/10.7557/se.2015.2

(c) EY

This work is licensed under a Creative Commons Attribution 4.0 International License.

CONEERV IT 1.0 - STUDENTMANUAL

PREFACE

What part of nature do we want to keep around us in a close to wild state? In 2015, there are about seven billion people and a smany a nswersto that question. Curiously, the specialists in the matter who state the problem in terms of conservation of biological diversity also see the issue from many different perspectives and scales. There are, therefore, many definitions of bio-diversity, diagnostics and prescriptions for conservation. Nevertheless, there are at least two a spects which these specia lists generally agree upon that may be unfa miliar to the common layman. For biologists, the most important purpose of conservation may not lie in keeping living records of the pastand present, but in the maintenance of evolutionary potential for the future; or, in other words, by keeping the potential for change from previous states. Secondly, in order to ensure replicability and objectivity, ecologists and conservation biologists often use mathematics to formulate and support their statements.

Managers are people who make important decisions in society. However, they often miss insight into the complex disciplines involved in the solution of specific problems in, for instance, conservation. One partic ular idea that many people, including managers, often embrace is the concept of species ric hness, bec ause this is a simple and understandable metric of diversity. Unfortunately, "species" is seldom a good or objective goal of conservation. However, it is not unusual that managers have mathematical anxiety or lack the graphical or spatial capabilities to understand the properties of bio-diversity at other scales. Could it be that introducing different concepts of diversity at scales ranging from genes to oceanic ecosystems and in the form of simple exercises and management gamescan cure these fears and blockages?

Whilst my old professor of population genetic s and dynamics, Campos Rosado, made great attempts to introduce the theoretic al matter, it was not until I read a little book by Wilson \& Bossert that I understood the simplicity of it. Other teachers in other subjects, like PerGrotnes and J ohn Pope, kindly introduced me to the idea of leaming serious matters with simple exercises, simulations and games. Along with the present text, I cite other important sources of inspiration in the course of the chapters' progression.

CONEERV IT 1.0 - STUDENTMANUAL

Table of Contents
Chapter 1 - Introduction 4
Chapter 2 - Test yourself 7
Chapter 3 - Excel basics 10
Chapter 4 - Evolutionary forces at work in fish populations. 12
Chapter 5 - Population viability 18
Chapter 6 - Population Sub-Struc ture and Management 20
Chapter 7 - Diversity: measurement and valuation 22
Chapter 8 - Conservation planning 24
9 - Bibliography 26
10 - Sources of images 27

CONEERV IT 1.0 - STUDENTMANUAL

Chapter 1-Introduction

I developed much of the material in this training system between 1998 and 2005 in order to train students with diverse backgrounds (natural and social sciences) who attended a multi-disciplinary program on Intemational Fishery Management. Conservation science was then a minor segment of an intemediary course on Fishery Ecology. Given the wide background of the students and the purpose of the program, this training course is eminently practical in nature. The course is issue-based and a problem-solving approach is normally followed.

Simulations and problem-solution often require intensive use of mathematics or computational tools. That is why this training system is predominantly based on qua ntita tive worksheets a nd software. With time I lea med that while some students were over-confident about their quantitative skills, many or most lacked those skills or were simply hesitant, and a few suffered from mathematical anxiety. To get an early assessment of the situation, I would expose the fresh studentsto a short pre-test (Cha pter 2) and a basic course in Excel (Chapter 3). Spreadsheets have their limitations, but are low-threshold quantitative tools that are nearly free and available everywhere. These were definitively strong points with our batch of students that came from all over the world.

This master doc ument introduces the different topics in different chapters (chapters 48). Each chapter provides a hyperlink to one or several workbooks that are selfexplanatory. The master document also provides linksto intemet sites that have relevant theoretical information for the topic or to the lecture notes compiled by the author. In CON 2 ERV IT 1.0 these lecture notes are supplementary material available separately from the author. The only practical requirement in order for the master document to link properly to the dependent workbooks is that they are installed in the same directory. Workbooks can otherwise be utilized independently from the master document.

This document and the dependent workbooks were inspired by works from many other people. I will attempt to give a full reference list of the literature as well as of the photographic material, at the end of this master document. On the next page is shown a list of logotypes: these logotypesmake it easierto identify the source ortype of leaming material used along the tra ining system.

CONEERV IT 1.0 - STUDENTMANUAL

LOGOTYPES

Software

Online information

You
Tube

Youtube.com

|

CONLERV IT: CHAPTERS, SOFTWARE AND BIOLOGICALSCALES

CONEERV IT 1.0 - STUDENTMANUAL

Chapter 2 - Test yourself

QUESTIONSASKED

- Am I aware of the basics of scientific writing required to write an informative report?
- Do I remember the basic s of mathematics?
- How do I use statistics to plan and analyze my field or experimental data?

BACKG ROUND INFORMATION

- YouTube, by maverickjang: Leam how to write scientific papers in under 4 minutes
- YouTube, by thinkwell: Calculusl in 20 minutes
- YouTube, by G CFLea mFree: Excel 2010: Charts

INSPIRATION

This is just a self-a wareness exam that takes less than 10 minutes to answer. In its simplest and shortest form, which is the one presented here, it is a pen-and-paper test. The idea came during a discussion with my colleague Raul Primic ério. We felt that some students were over-confident about theirbasic knowledge and skillsbefore they started the introductory courses. This made our teaching task more diffic ult. Hopefully, this test will encourage students to review past knowledge at secondary school or college levels.

CONEERV IT 1.0 - STUDENTMANUAL

THE ASSIGNMENT

Profic iency test

This test is optional and a nonymous. The purpose of the exercise is to assess the background of the whole group of students. This will help us sha pe the contents of the introductory courses. Therefore, we need honest answers, and it is acceptable to write "I don't know".

Question 1. Background.
Write shortly a bout your professional and academic background, including major subjects and years of study at University level.

Question 2. Computers and information technology. (Subject dealt with in Bio-3551.)
Rate your knowledge as none (N), basic (B) or advanced (A) in the following areas. Foreach area state also which software and tasks you are most fa miliar with.

Word processing -
Spreadsheet (computation, graphics) -
Programming language -
E-mail -
Intemet browsing -
Reference or literature databases-

Question 3. Scientific writing. (Subjects dealt with in Bio-3552, Bio-3551 and other introductory courses.)
a) Have you everwritten a thesis or scientific paper? State how many.
b) When writing a species name, which of the following options seem to be in the proper format: HOMO SAPIENS, Homo sapiens, homo sapiens, homo s., or homo-sa piens? How would you type it?
c) In 2001, Mary Smith, Liu Scott and Karim Wilson wrote an a ricle with title "Growth of fishing nations" which waspublished in pages 40-50 of the first volume of the scientific joumal "Development Policy". If you are writing a scientific paper, how would you nomally cite this work in a) the body text and b) in the reference list?
d) Imagine that you have performed an observational study in a subject of your preference, and that you are now going to write a 50-page thesis. What would be the major sections (chapters) of that work, and what content would fit better in each of these sections? (For instance, a short description of the major findings would be made in the Abstract or Summary section.) Maximum 100 words.

CONEERV IT 1.0 - STUDENTMANUAL

Question 4. Mathematic s and statistics. (Subjects dealt with in Bio-3551, Bio-3553, Bio-3555 and other courses.)
a) Given the following four number series [2, 4, 6, 28] determine its a rithmetic mean (a verage) a swell as the median.
b) Represent the series of numbers of the previous question in a pie-chart.
c) What is the solution of the following expression $y=a . e^{b}$, given that $a=5$ and $b=0$?
d) You made an experiment with a group of 100 fast snails, and observed that on average they had covered 5 m after one hour, 10 m after two hours, 15 m after three hours,...., and 50 m after ten hours. How would you express relationship between the expected distance covered (d) and time (t) for a single snail in a short mathematical notation? What are the units of the derivative of this function?
e) During your field work you mea sured the Productivity (\$/worker) of three types of enterprises, small, medium and large. You noticed that there were large variations in productivity within each of these groups. Which statistical a nalysis would you use to compare the group means? What would your nullhypothesis $\left(\mathrm{H}_{0}\right)$ be? What would be the sa mpling design of your next survey?

CONEERV IT 1.0 - STUDENTMANUAL

Chapter 3 - Excel basics

QUESTIONSASKED

- How to lose the fear of using a spreadsheet?
- How to do basic repetitive calculations?
- How to present figures and reports in scientific style?
- How to effic iently select and summa nize sub-groups of data?

BACKGROUND INFORMATION

- Wikipedia: Microsoft Excel
- YouTube, by Motion Training: Excel Tutorial for Beginners

COVERAGE

- Filling and moving cells
- Excelascalculator
- In-built functions
- Charts
- Simple formulas a nd referencing cells
- Database (filter) operations

INSPIRATION AND SOFTWARE

Although most students claim to be familiar Excel, it is often the case that they are not acquainted with many of its useful capabilities (and limitations) for reporting and research work. It was in this spint that this short lab was developed. HectorAndrade, who was often the TA, helped. Many good books and intemet sites have been written about Exc el fordifferent professional environments, i.a. research. The interested student will easily find them.

- Ch3 Excel basics)dS.xlsx

CONEERV IT 1.0 - STUDENTMANUAL

SNAPSHOTS

Country	Total fish catch (MT)	Population (thousands)	Area km2	$\%$ of total catch	Catch pr capita	Catch pr $\mathrm{km} 2$	
Bangladesh	1047170	125000	144000				Absolute reference used
Cameroon	80000	15000	475000				
China	25721740	1222000	9600000				
Colombia	146407	37000	1140000				
Eritrea	3826	3600	121000				Relative references
Ghana	371227	18000	238000				
India	4324235	967000	3300000				
Namibia	285980	1700	825000				
Niqeria	255499	107000	924000				

No outer border
A bar chart: the importance of fisheries

COUNTRY ft arial 9

Visit: Figure Guidelines for Authors - Afric an J oumal of Marine Science

CONEERV IT 1.0 - STUDENTMANUAL

Chapter 4 - Evolutionary forces at work in fish populations

QUESTIONSASKED

- How do esc apees from aquaculture affect genetic ally salmon populations in rivers?
- What are the time-scales of change in the gene pool of fish?
- Can we eradic ate undesirable traits from fish stocks?
- Are small populations more or less affected by immigration?
- What genetic diversity can we expect from large stocks in the sea?
- How much, and how to avoid inbreeding in broodstocksused in fish farming?

BACKG ROUND INFORMATION

- Compendium: Santos (2015a)
- Wikipedia: Population genetics
- YouTube, by Kurz Gezagt: How evolution works

COVERAGE

- Mutation (one-way)
- Migration (from ma inland to lake)
- Fitness a nd selection
- Population bottlenecks
- Genetic drift

CONEERV IT 1.0 - STUDENTMANUAL

INSPIRATIO N AND SOFTWARE
Origina lly, part of this class was performed using the software p14 a nd p14b developed by J arle Mork, at NTNU in Trondheim, in the early 1990s. It is diffic ult to run that software in today's operative systems. I a da pted those versions to Excel. One of the programmes includes deterministic models and the other is stoc hastic, to account for the effec ts of stock size and drift. The last software comes, thus, available as macro version of an Excel workbook. It nomally requires special enabling by the user.

- Ch4a Population genetics migration selection deterministic لdS.xlsx - Ch4b Population genetic sdrift stochastic macroJdS.xlsm

CONEERV IT 1.0 - STUDENTMANUAL

SNAPSHOTS

Selection, immigration and genetic drift

The Inputs are
-(mean) population size; (all individual reproduce; panmixy) -variability of the mean population size, expressed as the SD (individuals) of the mean. It is used to simulate bottlenecks. -gene frequency qF of the original population (and of immigrating individuals, if required).
-Number of immigrants per generation, if required
-Relative fitness of the three genotypes
-number of iterations is fixed
-a ll selection forces are optional, but can also be used together.
The output are line graphs showing the change in the mean fitness and gene frequencies with generations of the lake population.

There was once a small landlocked population of (diploid !!) salmon...

1- In a small, landlocked (isolated) population of salmon (100 fish) ten of the salmon tum out to have one mutated allele at the S locus, which was previously fixed (only SS fish). But this new mutation (F) does not seem to reduce their capacity to survive and reproduce. How many salmon are expected to have acquired the mutated gene after 100 generations, excluding the effects of genetic drift?
(Note: 100 fish $\times 2$ alleles $=200$ a lleles; of these 10 are mutations, a nd this gives q mut $=q_{F}=10 / 200=0.05$)
2- The same, but now with genetic drift. What do you conclude?
3- The same as 2), but now consider that this population varies considerably in size from generation to generation, with an estimated standard deviation corresponding to 30% of the mean population size. What do you conclude?

CONइERV IT 1.0 - STUDENTMANUAL

4- A new problem with a landlocked population. The lake owner, Mr. Killa, decides to get rid of the fish that shown the "FF syndrome", because they are really ugly. "It may take me some years...but these f...f... will disappear!" He kills every parr (immature salmon) there is affec ted with this FF-syndrome. As the name says, the FF-syndrome is only visible in the homozygous state, a nd the fish that possess the F gene are as capable as a ny other. Besides, even if they are really ugly there is no uncommon sexual selection for them. On average, there are 4 FF fish for the 100 fish in the lake, and no genetic drift, nor bottlenecks in the population. How many years will have Mr. Killa to wait to get a lake clean of the F gene, taking into account that the reproductive age of these fish is 6 years.?
(Note: according to the Hardy-Weinberg law the phenotype FF corresponds to the genotype frequency q^{2}. If $\mathrm{FF}=4$ then $\mathrm{q}_{\mathrm{F}}=0.2$. The selection pressure on this homozygote is 1 , and its fitness is thereby 0 . This problem resembles the eugenics dilemma.)

5- The fish that have a new mutation $F(q F=0.05)$ in the homozygote state have a slightly higher (5\%) relative fitness than the heterozygotes, and 10% higher relative fitness than the SS homozygotes. The population is pa nmictic , N=100, and there is genetic drift and bottlenecks (20% SD of the mean N). What do you conclude?

...they built a channel down the lake, and now the fammed (diploid) salmon are invading it...

6- Every generation one farmed salmon manages to pass the traps in the channel that leads to the lake. The original gene frequency in the lake is $q F=0.8$ but the invading salmon does not have this allele F. How will the population look like many years from now with regard to this locus? (No genetic drift, nor bottlenecks in the population, and all genotypes have similar fitness.)

7- The thing is getting out of control! Every generation 20 farmed salmon (20\% of the population !!!) enter and reproduce in the lake. Invaders have a strange mating behaviour and only have a 50% chance of reproducing in relation to the wild variant. The hybrids only perform 25% worse tha n the wild salmon. How many years until the wild genotype is decimated? (Same parameters as in 6).)
(Note: here sexual selection is the type of selection acting on the fitness of the fish.)
8- The size of the local spawning population hasconsiderably varied in the last 10 years: 100, 130, 150, 100, 80, 40, 100, 40, 100, 120. Calculate the effec tive population size $\left(\mathrm{N}_{\mathrm{e}}\right)$ of the reproductive population. (Hint: calculate the

CONEERV IT 1.0 - STUDENTMANUAL

arithmetic, the geometric and the hamonic means and backcalculated sta ndard deviations. It is the hamonic mean that gives the N_{e}).

Formulas:
anthmetic mean $=" N_{e} "=\frac{1}{t} * \sum_{1}^{t} N_{t} ;$ geometric mean $=" N_{e} "=\operatorname{anti} \ln \left(\frac{1}{t} * \sum_{1}^{t} \ln N_{t}\right)$ hamonic mean $=\frac{1}{N_{e}}=\frac{1}{t} * \sum_{1}^{t} \frac{1}{N_{t}}$; Remember that we know the TOTAL population size when you compute the standard deviation.
... meanwhile, down the river, in the hatchery...
8 - The hatchery has kept 600 spawners, in a sex ratio of 1:1 as in nature. This programme has already been very expensive. Last year the hatchery decided to keep only 20 males in addition to the 300 females. What is the Ne ?

Formulas
When the two sexes do not contribute equally to the genes in the next generation, the effective number is twice the hamonic mean of the numbers of the two sexes, and that is approximately:
$N_{e}=\frac{4 * N_{f}^{*} N_{m}}{N_{f}+N_{m}}$. This requires that the probability of reproductive success is equal for all individuals (e.g. do not pool the milk and eggs in the buckets).

9- New rules state that it is necessary to a void rates of inbreeding ($\Delta \mathrm{F}$) at levels higher than 1% pergeneration. Is the present spawning population structure satisfa c tory?

$$
\text { Formula: } \Delta F=\frac{1}{2 N_{e}}
$$

...out in the sea there is a large population of diploid capelin....
11- Repeat problems 3, 5 and 6 with a population size of 30 million.
12- Repeat problem 5 with capelin, but this time use a SD of 35% of the population size to simulate bottlenecks. Did any "extinction" oc cur? Why?

Note: the problem here lies on the statistics, not in the population genetics: if sd islargerthan 30% f the mean, then according to the nomal distribution mean - 3sd is less than 0 , a nd the population vanishes irespective of the gene frequency.

CONEERV IT 1.0 - STUDENTMANUAL

Chapter 5 - Population viability

QUESTIONSASKED

- What is conservation biology?
- Do fish populations get extinct or extipated?
- Isit bad that related populations rescue each other?

BACKG ROUND INFORMATION

- Compendium: Santos(2015a)
- Wikipedia: Conservation Biology, IUCN Red List
- IUCN Red List Categories and C riteria 3.1
- YouTube: DNews, 3 extinct animals make a comeback
- YouTube: RippleAfrica, Fish conservation in Lake Malawi

COVERAGE

- Concepts and categories of vulnerability
- Examples of vulnerable fish populations
- Estimation of the probability of extinction from sporadic sightings INSPIRATION AND SOFTWARE

Some few species along the coasts, and partic ularly in estuaries and lakes, have theirfuture threatened somehow. There is, however, a great confusion about what "threatened" means. The vocabulary and definitions used by IUCN are introduced. Interesting examples for calculation of the probability of extipation of populations found in museums, or sporadic ally in the fishery by-catch, are worked with. The examples are inspired on the proposition made by Grogan \& Boreman (1998). C onsiderations are made about the socio-economic contexts of fisheries and conservation initia tives.

- Ch5 Extirpation JdS.xlsx

CONLERV $\mathrm{IT}_{1.0}$ - STUDENTMANUAL

SNAPSHOTS

$$
p=1-(t c / T)^{k}
$$

CONEERV IT 1.0 - STUDENTMANUAL

Chapter 6 - Population Sub-Struc ture and Management

QUESTIONSASKED

- Does it matter how fish populations are divided spatially?
- How do we deal with different spatial linkages, configurations and populations sizes in fisheries ma na gement?
- How much biomass or money do we lose by not fishing or by overfishing small and large mixed populations?

BACKG ROUND INFORMATION

- Compendium: Santos (2015a)
- Wikipedia: Insularbiogeography, Metapopulation
- YouTube: Robertandkylie, Bugger off with Metapopulation Theory
- YouTube: scienc eclassisgreat, Metapopulation

COVERAGE

- Colonization, depletion and rescue effects
- Mainland-island structure (peripatry)
- Mixed-stocks metapopulation struc ture (sympatry)
- Stepping-stone structure (parapaty)

INSPIRATION AND SOFTWARE
Although the issue of mixed stocks and stock disc rimination has long been disc ussed in fishery biology, the works of i.a. Wilson, MacArhtur and Levins were critic al to bring ecology and genetics together and construct theories of biogeography. Here simple fishery dynamic models are applied to their ideas. Conta ins macros.

- Ch6a ConservArea I Ma inland_Isla nd whelk macro JdS.xlsm
- Ch6b ConservArea II Meta population sard ine macro JdS.xlsm
- Ch6c ConservArea III Stepping-stone salmon mac ro IdS.xlsm

CONEERV IT 1.0 - STUDENTMANUAL

SNAPSHOTS

Turnover in mixed fishery: immigration (t / biomass ($(\mathrm{t}-1$)

CONLERV $\mathrm{IT}_{1.0}$ - STUDENTMANUAL

Chapter 7 - Diversity: measurement and valuation

QUESTIONSASKED

- What do ecologists call diversity?
- How can we measure changes in diversity in locally impacted areas?
- How can we valuate those changes by simple means?

BACKG ROUND INFORMATION

- Compendium: Santos (2015b)
- Wikipedia: Biodiversity, Species diversity
- YouTube: CSIRO, What is biodiversity and why is it important?
- YouTube: CCVEnvBio, Biodiversity: Ric hness, Evenness, and Importance

COVERAGE

- Indic es of species diversity: nic hness, heterogeneity, evenness
- Mea surement of species diversity change in impacted aquatic ecosystem
- Valuation of two states of an aquatic ecosystem using a contingent valuation method

INSPIRATION AND SOFTWARE

The concept of species diversity has had the largest and longest tradition in ecology. Krebs's book on experimental ecology is the definitive reference on sampling and data analysis of distribution and abundance, and easy reading. One of the methods used by bio-economists to value biodiversity and ecosystem services, the willingness to pay, is introduced.

- Ch7 Conservation and valuation of diversity Belize \dS.xlsx

CONEERV IT 1.0 - STUDENTMANUAL

SNAPSHOTS

Valuation and economic value of reserve implementation

Divers (tourists) seems to rank reserve quality, and willingness to pay, according to the following characteristics:

CONEERV IT 1.0 - STUDENTMANUAL

Chapter 8 - Conservation planning

QUESTIONSASKED

- How do we express the suita bility of habitat for different organisms and communities?
- How to make spatial planning of conservation networks that takes into account multiple ecological and social c niteria?
- How to perform an economic analysis of the non-monetized conservation effects?

BACKG ROUND INFORMATION

- Compendium: Santos (2015b)
- Wikipedia: Reserve design, Marine Protected Area
- YouTube: CSIRO, Multiple criteria decision making

COVERAGE

- Habitat suita bility indic es
- Optimization of area utilization in socio-ecologic al networks; minimum area and minimum conflict networks
- Multiple criteria decision making
- Cost-effectiveness a nalysis

INSPIRATION AND SOFTWARE
In 1990, Millsap et al performed a spatial analysis of the vulnerability of several taxa in Florida using very simple means. Even today, this is still a work of reference. In 2003, Williams et al developed this method, including socio-economic constraints and numeric al optimization methods, and applied it to the enomous Guinean-Congolian forest. The present exerc ise, in its student version, requires manual optimization of the network, but facilitates the computation of suitability totals a nd costs.

- Ch8 Conservation LosCayos Reserve short version JdS.xlsx

CONEERV IT 1.0 - STUDENTMANUAL

SNAPSHOTS

Visit CayosCochinos!
You
Tuhe

September

Good news. The government was very favourable to your proposal for monitoring funds but only allocated $\$ 1180$ for that purpose.
Re-design reserve, maximising protection for those monitoring costs
$\square-\quad$ -

CONEERV IT 1.0 - STUDENTMANUAL

9 - Bibliography

Grogan, C. S., \& Boreman, J. (1998). Estimating the probability that historical populations of fish species are extirpated. North American Journal of Fisheries Management, 18(3), 522-529.
http://dx.doi.org/10.1577/1548-8675(1998)018\<0522:ETPTHP\>2.0.CO;2
Hartl, D. L., Clark, A. G., \& Clark, A. G. (1997). Principles of population genetics (3 $\left.{ }^{\text {rd }} \mathrm{ed}.\right)$. Sunderland: Sinauer associates.

Krebs, C. J. (2008). The experimental analysis of distribution and abundance. Ecology. $6^{\text {th }}$ edition. S. Francisco: Benjamin Cummings.

Levins, R. (1969). Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America, 15(3), 237240. http://dx.doi.org/10.1093/besa/15.3.237

MacArthur, R. H., \& Wilson, E. O. (1967). The theory of island biogeography (Vol. 1). Princeton University Press.

Millsap, B. A., Gore, J. A., Runde, D. E., \& Cerulean, S. I. (1990). Setting priorities for the conservation of fish and wildlife species in Florida. Wildlife Monographs, 3-57.
http://www.jstor.org/stable/3830656
Santos, J. (2015a) Conservation Science 1 - Populations. Lecture compilation. Norwegian College of Fishery Sciences, University of Tromsø, Norway.

Santos, J. (2015b) Conservation Science 1 - Communities. Lecture compilation. Norwegian College of Fishery Sciences, University of Tromsø, Norway.

Williams, I. D., \& Polunin, N. V. (2000). Differences between protected and unprotected reefs of the western Caribbean in attributes preferred by dive tourists. Environmental Conservation, 27(04), 382-391. http://dx.doi.org/10.1017/S0376892900000436

Williams, P. H., Moore, J. L., Toham, A. K., Brooks, T. M., Strand, H., D'amico, J., ... \& Rahbek, C. (2003). Integrating biodiversity priorities with conflicting socio-economic values in the Guinean-Congolian forest region. Biodiversity \& Conservation, 12(6), 1297-1320. http://dx.doi.org/10.1023/A:1023092100942

Wilson, E. O., \& Bossert, W. H. (1971). A primer of Population Biology (Vol. 3, No. 4.2). Sunderland: Sinauer Associates.

CONEERV IT 1.0 - STUDENTMANUAL

10 - Sources of images

Anoldent (2007) BZ一ECAYE, Belize. Licensed under the Creative Commons Attribution-Share Alike 2.0 Generic license. https://commons.wikimedia.org/wiki/File:BZEC AYE.jpg

Aquaimages (undated) Divers and a large Barrel Sponge, Roatan, Honduras. Licensed under the Creative Commons Attribution-Share Alike 2.5 Generic license.
https://commons.wikimedia.org/wiki/File:Divers_and_a_large_Barrel_Sponge,_Roatan,_Honduras.j pg

Blackledge, A. (2011) Coral Reef, Belize 2. Licensed under the Creative Commons Attribution 2.0 Generic license. https://commons.wikimedia.org/wiki/File:Coral_Reef,_Belize_2.jpg

Charles \& Clint (2005) Parac anthurus hepatus 1. Licensed under the Creative Commons Attribution-Share Alike 2.0 Generic license.
https://commons.wikimedia.org/wiki/File:Paracanthurus_hepatus_1.jpg
Claros, E. (undated) C ayoscochinos (29). Public Domain.
https://c ommons.wikimedia .org/wiki/File:Cayos cochinos (29).JPG
Cobb, J. N. (1900) Sturgeon fishery of Delaware River and Bay, Report of the United States Commissioner of Fisheries, 1899, Wa shington, DC: Govemment Printing Office. Public Doma in. https://commons.wikimedia.org/wiki/File:FMIB_32667_Acipenser_Sturio_Linnaeus.jpeg

Diliff (2006) Georgia Aquarium - Giant Grouper edit. Licensed under the Creative Commons Attribution-Share Alike 3.0 Unported lic ense.
https://commons.wikimedia.org/wiki/File:Georgia Aquarium - Giant Grouper edit.jpg
Edwards, P. (2012) Town of Oc ho Rios. Licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. https://commons.wikimedia.org/wiki/File:Town_of_Ocho_Rios.JPG

Gardieff, S. (2003) "Atlantic blue marlin" by NOAA -. Atlantic Blue Marlin. Florida Museum of Natural History. Licensed under Public Doma in via Wikimedia Commons https://commons.wikimedia.org/wiki/File:Atlantic_blue_marlin.jpg\#/media/File:Atlantic_blue_mar in.jpg

Gratwic ke, B. (2009) Sa rgassum triggerfish Xanthichthys ringens. Licensed under the Creative Commons Attribution-Share Alike 2.0 Generic lic ense.
https://commons.wikimedia .org/wiki/File:Sargassum_triggerfish_Xanthic hthys_ringens.jpg
Isla ndmen (2012) Lachse im Aqua rium des Norsk Villa kssenter. Licensed under the Creative Commons Attribution 3.0 Unported license.
https:// commons.wikimed ia .org/wiki/ File:Villa kssenter03.jpg

CONEERV IT 1.0 - STUDENTMANUAL

Kubina, J . (2006) Carchariastaurus newport. Licensed under the Creative Commons AttributionShare Alike 2.0 Generic lic ense.
https://commons.wikimedia.org/wiki/File:Carcharias_taurus_newport.jpg
Krimo18 (2014) Pelic an Resting on a Boat. Licensed under the Creative Commons AttributionShare Alike 4.0 Intemational license.
https://commons.wikimedia.org/wiki/File:Pelican_Resting_on_a_Boat.jpg
Na liaka, T. K. (2015) Whelk in West Afric an C uisine. Licensed under the Creative Commons Attribution-Share Alike 4.0 Intemational lic ense.
https://commons.wikimedia .org/wiki/File:Edible_Mollusk_-_Whelk_in_West_Afric an_Cuisine.jpg\#file
Nikdahl (2009) GreenSeaTurtle-HoICha nMarineReserve-Belize. Lic ensed underthe Creative Commons Attribution-Share Alike 3.0 Unported lic ense.
https://commons.wikimedia.org/wiki/File:G reenSeaTurtle-HolChanMarineReserve-
Belize.JPG \#metadata
NOAA (2006) Sardine photo4 exp. U.S. National Oceanic and Atmospheric Administration. Public Doma in. https:// commons.wikimed ia .org/wiki/File:Sard ine_photo4_exp.jpg

NSW govemment (2013) Purple spotted gudgeon - Primefact. New South Wales Department of Primary Industries. http://www.dpi.nsw.gov.au/fisheries/species-protection/conservation/what-current/endangered-species/purple-spotted-gudgeon/purple-spotted-gudgeon

Pokrzyvinski, A. (2008) Fresh-c aught smelt, Ala ska. Lic ensed under the Creative Commons Attribution 2.0 Generic license. https://commons.wikimedia.org/wiki/File:Kuskokwim_Smelt.jpg

Rio G Tomlin (2010) Cayo Menor through forest. Lic ensed under the Creative Commons AttributionShare Alike 3.0 Unported license.
https://commons.wikimedia .org/wiki/File:Cayo_Menor_through_forest.jpg
Roatavani (2012) Chachauate 2012 WBT. Lic ensed under the Creative Commons AttributionShare Alike 3.0 Unported license.
https://commons.wikimed ia .org/wiki/File:Chachauate_2012_WBT.jpg
Uxbona (2008) Ma Idives Pa rotfish (Scaridae). Licensed under the Creative Commons AttributionShare Alike 3.0 Unported license.
https://commons.wikimedia .org/wiki/File:Ma Idives_Pa rrotfish_(Scaridae).jpg

