

FIEH IT 1.0-

STUDENT MANUAL

A TRAINING SYSTEM FOR AQUATIC RESOURCE MANAGERS

ABSTRACT

FIEH IT is part of a family of multimedia coursework about the management of aquatic living resources. The focus of the training system is on the computation and utilization of diverse methods to assess the state and potential of resources, as well as to develop balanced harvesting strategies for the future; the aim of the course is the training and assisting of managers in realistic exploitation projects. The system includes many different training and learning tools, such as online media, Excel workbooks and more advanced simulation tools. This student manual can be used as the master document, provided all subject files are downloaded into the same directory. The individual files are otherwise self-explanatory and can be consulted independently.

Jorge Santos

Norwegian College of Fishery Science University of Troms \varnothing

Santos, J. 2015. FIEH IT1.0-Student Manual: A Training System for Aquatic Resource Managers. Septentrio Educ ational 2015(3)

DOI: http://dx.doi.org/10.7557/se.2015.3
(c) EY

This work is licensed under a Creative Commons Attribution 4.0 Intemational License.

PREFACE

A manager is someone that makes decisions regarding the activities of others, a nd these are nomally important income-related decisions. A living resource are organisms, wild or fa med, that can be exploited by mankind as food, or for a ny other purposes that imply its elimination. The two first questions that a population manager asks is how much wild living resource can be utilized without jeopardizing future yields (susta inability), and how to avoid conflict among resource users (hamony). The question of how much to take is obviously qua ntita tive. It is also often related to another question: how much resource will be left un-exploited in the water. There are many solutions to this trade-off between leaving the resource in the water, where it can grow ordie, or harvest it and make use of it right away. Ultimately, the decision haseconomic, social, ethic al and politic al tones, all depending on the context of the industry. It is often the job of a population biologist to study the life-strategies, abundance and resilience of the resource, and to calculate the potential harvests for different levels of human input. In a fishery, this input comes in the form of fishing effort and fishing method. These calculations are the focus of the first chapters of this work.

A manager normally tries to avoid conflict among users. But, some of the users may not be immediately apparent, because the same resource may be targeted by many, in different places and times. Thus, some of these invisible competitors, which can be people or other wild life, may easily be the loosing part, or, on the contrary, take the la rgest share. The managers or the agents have three ways to find acceptable yieldsand mitiga te disputes. One would be to make use of some historic al rulesthat have functioned adequately there or elsewhere for unknown reasons. A second solution would be experimentation: by trial and error the a gents could find suitable solutions in the future, but they should be careful (conservative) along the way. With time one would leam something about the dynamics of the resource and user behaviour, even without fully understanding the underlying mechanisms. These two solutions require experience, common sense and, often, self-control to resist precipitation and all sorts of pressures. The third solution relies on some sort of qua ntitative prediction, also called a simulation model. With a fair mathematical description of the dynamics of the resource, one can try to predict future trends of yield and revenue. The advantage of these forecast models is that we can make an endless number of "experiments" with slight va ria tions of the input, for instance of the fishing effort or season. We can quickly get a grasp of the consequences of our a ctions. Along our courses, we tend to disc uss the two first types of solutions in class and in case-studies. The aim of the second part of this manual is to tra in in the utilization of these simulation models. These predictive models attempt to mimic fluctuating environments, uncertainty about many factors, as well as competing fleets and predators. Both deterministic and stoc hastic formulations of these computer models are used.

Quantitative methods are not immediately attractive or understandable to everybody. Here, an attempt is made to introduce some of the mathematical methods often used in

FIEH IT 1.0 - student manual

fishery biology in a gradual way. We start with simple statistic sa nd statistic al methods and proceed to more and more complex simulation models. This gradient reflects also the cost of information in real life: simple models are nomally used where there is not much information available for research; complex models require large amounts of expensive information, and are thereby only utilized in some industrial fisheries. A fishery manager should be familiar with the different approaches, and be able to make suitable and conservative decisionseven in the absence of complexscience. The aim of the course is to train and assist managers to understand biological advice without being unduly distracted by the mathematic al aspects. Teachers like Per Grotnes introduced me to the idea of leaming serious matters with simple exercises, simulations and games. Fishery mathematicians with good pedagogic al skills like Haddon, Hilbom, Pope and Punt were other important sources of knowled ge a nd inspiration.

FIEH IT 1.0 - student manual

Contents
Chapter 1 - Introduction 5
Chapter 2 - A self-assessment, and a tutorial in Excel 8
Chapter 3 - Basic calculus and statistics. 10
Chapter 4 - Predict the future: trend analysis 12
Chapter 5 - Using simple data: surplus production models. 14
Chapter 6 - Fish it now or later? Population processes 16
Chapter 7 - Size and reproduction: yield per recruit model 18
Chapter 8 - Hands wet: counting the fish 20
Chapter 9 - Rules for the future: forecasts and hindcasts. 22
Chapter 10 - Catching the same fish: fleet interactions 24
Chapter 11 - Competing with preda tors: multispec ies a nd sta keholder interactions in fluctuating environments. 26
Chapter 12 - In conclusion: how to manage fisheries? 28
References. 30
Sources of images 31

Chapter 1 - Introduction*

I developed much of the material in this training system between 1998 and 2005. My trainees had diverse disciplinary backgrounds (natural and social sciences) and were attending a multi-d isc iplina ry program on Intemational Fishery Ma na gement. Altogether, the time devoted to fish population dynamics and conservation management corresponded roughly to a one semester course. Given the wide background of the students and the purpose of the program, this training course waseminently practical. In the first part of the course we would have a classical progression, normally a lecture on a topic followed by a practical class. At later stages, problem-based approaches were more common.

Simulations and problem-solution often require intensive use of mathematics or computational tools. That is why this training system is mostly based on quantitative worksheets and software. I start this book (Chapter 2) with a simple test to the reporting and quantitative skills of the student, followed by some elementary training in the sp readsheet Excel. Spreadsheets have their limitations, but are low-threshold qua ntitative tools that are nearly free and available everywhere. These were definitively strong points with our batches of students that came from all over the world. Then, a simple refresher course in basic mathematics and statistics is made (Chapter 3), also in Excel, Later in the course, a soft introduction to a more powerful programming language, the R software, is made. This software is useful for i.a. simulation modelling.

This master doc ument introduc es the different topic s in different chapters. Ea ch chapter provides a hyperlink to one or several workbooks that are self-explanatory. The master document also provides links to intemet sites that have relevant theoretical information for the topic. If working offline, the only practical requirement in order for the master document to link properly to the dependent workbooks is that they are installed in the same directory. Workbooks can otherwise be utilized independently from the master document or downloaded directly from the intemet if working online. Some links to workbooks are inactive, partic ula ly when they refer to material that must be collected in practical classes, such ase.g. research cruises, as in the original course in Tromsø.

This document and the dependent workbooks were inspired by co-workers and works from many other people. I will mention some of these sources of inspiration in the different chapters. I will also attempt to give a full reference list of the literature as well as of the photographic material, at the end of this master document. The books often used to cover part of this course were King (2005) a nd Cochrane \& Garcia (Eds.) (2009), which are relatively easy reading formost students. On the next page isshown a list of logotypes:

[^0]
FIZH IT 1.0 - student manual

these logotypes make it easier to identify the source ortype of extemal leaming material used along the training system.

LOGOTYPES

Software

Online information

FIEH IT 1.0 - student manual

FİH IT: CHAPTERS, SOFTWARE AND MANAGEMENTSCALES

FILH IT 1.0 - student manual

Chapter 2 - A self-a ssessment, and a tutorial in Excel*

QUESTIONSASKED

- Am I aware of the basics of scientific writing required to write an informative report?
- Do I rememberthe basic s of mathematics?
- How do I use sta tistic sto plan a nd a nalyze my field or experimental data?
- How to lose the fear of using a spreadsheet?
- How to do basic repetitive calculations?
- How to present figures and reports in scientific style?
- How to effic iently select and summa rize sub-groups of data?

BACKG ROUND INFORMATION

- A fishery: Torbjordonso - Mackerel fishing in the North Sea

INFORMATION AND SOFTWARE

Chapter 2 of FILH IT contains a self-a wareness test that takes less than 10 minutes to a nswer. In this simple and short form, it is a pen-and-papertest that will, hopefully, encourage students to review past knowledge at secondary school or college levels. In the $2^{\text {nd }}$ part an introduction to Excel is made. Although most students claim to be familiar Excel, it is often the case that they are not acquainted with many of its useful capabilities (and limitations) for reporting and research work. It was in this spint that this short lab was developed. These two sessions are extracts from the sister training package CONEERV IT1.0. Additional multimedia material is contained in that package.

- Ch2a Testyourself
- Ch2b Excel basics)dS.xlsx

[^1]
FIZH IT 1.0 - student manual

SNAPSHOTS

Country	Total fish catch (MT)	Population (thousands)	Area km2	$\%$ of total catch	Catch pr capita	Catch pr km 2
Bangladesh	1047170	125000	144000			
Cameroon	80000	15000	475000			
China	25721740	1222000	9600000			
Colombia	146407	37000	1140000			
Eritrea	3826	3600	121000			
Ghana	371227	18000	238000			
India	4324235	967000	3300000			
Namibia	285980	1700	825000			
Niqeria	255499	107000	924000			

Absolute reference used

Relative references

Figure Guidelines for Authors African Joumal of Marine Science

FILH IT 1.0 - student manual

Chapter 3 - Basic calculus and statistics*

QUESTIO NS ASKED

- Why rates, a nd why statistics?
- How to express such quantities in common speech?
- How to present much data in a concise and informative way?
- How to make predictions based on historical trends?

BACKGROUND INFORMATION

- Real statistics: Real statistic s using Excel
- Simon Sez: Using simple sta tistic al functions in Excel
- How Tech.Office: Add a trendline in Excel
- A fishery: Enpideguerra - Sea Bites - collecting goose bamacles Galicia

COVERAGE

- Rates
- Mea sures of tendency and dispersion
- Distributions and histograms
- Diverse trend lines a nd crude a ssessment of fit
- XY plots; extrapolation

INFORMATION AND SOFIWARE

The Chapter 3 of $\mathrm{FI} \Sigma \mathrm{H}$ IT is a refresher course for those that have some previous knowledge of statistics, but can easily be followed by those that do not have it. Emphasis is placed in the utilization of statistics in daily language and reports, in the summarization of large amounts of data, and in the application of trend lines to time-series data. This is a preparation to the next lab. One also deals with the a ssumptions of time-series a nalysis a nd the limits of extra polation.

[^2]
FIZH IT 1.0 - student manual

- Ch3 Statistics JdS.xIsX

SNAPSHOTS

TREND ANALYSIS
The distribution of income per capita in households of different sizes.
Fit all the possible trendlines to the following set of data
1-Make a chart (x - y plot) of the data
2-Use the trendline option. Remember to choose the 'include equation' option.
3-Which trendline fits the observations better?
4-Using the chosen trendline, try to make an extrapolation for households of up to 35 people.
No. income
people
1

FILH IT 1.0 - student manual

Chapter 4 - Predict the future: trend analysis*

QUESTIONS ASKED

- How to assess the state of a fishery with a minimum of information?
- Where to obta in national and regional fishery data?
- How to interpret simple indic ators of a bundance?
- Do fisheries have typical cycles that can be recognized?
- How to compare and adjust the fishing power of different fleets?

BACKGROUND INFORMATION

- Wikipedia: Trend estimation
- PivotTableGuy: Excel Video 101-Forecasting Part 1
- A fishery: AZII - Цigging for bonito in the Basque country

COVERAGE

- National and intemational databases
- Interpretation of cycles of catch, effort, cpue and relative rate of catch increase
- Typicalcycles of a fishery
- Fitting more complextrend lines
- Simple linearstandardization of cpue data between fleets

INFORMATION AND SOFTWARE

The Chapter 4 of FILH IT dealswith the retrieval of data from databases of landings, the description of trends in time-series of data and their extra polation to the future. The utilization of the Relative Rate of Catch Increase (Grainger \& Garcia 1996) to make an early assessment of the state of a fishery is introduced. In the absence of othertypes of data, knowledge of the fishery and the cycles of the simplest fishery statistics can give good indications of the abundance of the stock and lead to conservative ma nagement measures. Simple linearsta ndardization of catch rates to make data from different fleets comparable is introduced.

[^3]
FIEH IT 1.0 - student manual

- Ch4a Trend a nalysisJdS.xlsx
- Ch4b Standardization of catch ratesJdS.xlsx

SNAPSHOTS

FILH IT 1.0 - student manual

Chapter 5 - Using simple data: surplus production models*

QUESTIONSASKED

- How to assess the state of a fishery with a simple series of catch and effort?
- How is a fishery model different from a trend a nalysis?
- Do the assumptions of the model affect the management values of interest?
- How to word a management advice?

BACKG ROUND INFORMATION

- Wikipedia: Population dynamic s of fisheries
- Conservation Strategy Fund - Maximum Economic Yield
- A fishery: BBC - Underwater reef fishing in the Philippines

COVERAGE

- Equilibrium version of the Schaefer model: fit by hand and with computer
- Introduction to Solver, an optimization tool in Excel
- Dynamic version of the Schaefer model

INFORMATION AND SOFIWARE

The Chapter 5 of FILH IT deals with the provision of management advice using a simple fishery model that has a biological core. The equilibrium version of the Schaefer model is not utilized in serious fisheries stock a ssessment. But, since it can be fitted by hand, and is widely used in bio-economics, it is a good introduction to modelling. Then, the biodynamic version of the model, which does not rely on the assumption of equilibrium, is introduced. This part benefited from the recommendations from Punt \& Hilbom (1996, 2001). The dataset utilized (King, 2005) is the same as in the previous cha pter and allows an interesting compa rison a mong the predictions made with the different methods.

- Ch5 Surplus production equilibrium and dyna mic modelsJdS.xlsx

[^4]
FIZH IT 1.0 - student manual

SNAPSHOTS

Yield and effort in non-equilibrium model

FILH IT 1.0 - student manual

Chapter 6 - Fish it now or later? Population processes*

QUESTIONS ASKED

- How to describe the life of a cohort?
- How long to wa it until we fish a cohort? The dilemma: catch it now or later?
- How to describe the sexual maturation and the recruitment processes in fish?

BACKGROUND INFORMATION

- FAO: Review of the State of the World Marine Resources 2011
- BBC: Reproduction in fish a nd birds
- Bozeman science:rand K selection
- A fishery: Sealord Story: Who caught your hoki?

COVERAGE

- Introduction to the mathematic al treatment of growth and mortality
- Calculation of critic al biomass for different life-histories
- The statistic al treatment of the sexual maturation and rec ruitment processes.

INFORMATION AND SOFTWARE

The Chapter 6 of $\mathrm{FI} \Sigma \mathrm{H}$ IT deals with mathematic al notation utilized in fisheries to describe growth and mortality of a cohort. The biomass development of an unexploited cohort is calculated in a worksheet-like manner for two species with different life-histories. The logistic regression is introduced to make the fit of sexual maturation curves, a nd the spawning biomass of a stock is calculated. The Ricker a nd the Beverton \& Holt recruitment functions are utilized and compared with the same set of spa wning biomass a nd rec ruit data. The text by Haddon (2010) and the collaboration with Natalia Yaragina were very useful to develop the rec ruitment exa mples.

- Ch6a Pop processes Growth JdS.xlsx
- Ch6a Pop processes Mortality JdS.xlsx

[^5]
FIEH IT 1.0 - student manual

- Ch6a Pop processes Maturation JdS.xlsx
- Ch6d Pop processes Recruitment J dS.xlsx

SNAPSHOTS

Soumya Mukherjee 2012

Maturation - pooled sexes; fit logit model

FILH IT 1.0 - student manual

Chapter 7 - Size and reproduction: yield per recruit model*

QUESTIONS ASKED

- What are the bases of the traditional regulations of effort and gear in fisheries?
- What are the trade-offs between fishing early or late on the reproductive potential of the stocks?
- How certain is the advice, and what are the nisks?

BACKGROUND INFORMATION

- Compendium: Fishery Biology - Yield per recruit model
- tweedfoundation: Reading fish scales
- The Guardian: Who should have the right to catch fish?
- A fishery: UNESCO - Shrimp fishing on horseback

COVERAGE

- Yield perrecruit and biomass perrecruit
- Management advice in fisheries and aqua culture
- Study the uncertainty in the advice with Monte-Carlo methods

INFORMATION AND SOFTWARE

The Chapter 7 of FILH IT deals with the classic al yield per recruit model developed by Beverton and Holt, which is described in many textbooks. Equipped with this model the students are expected to provide sound management advice. Although we tend to start this session with an Excel-based model, here only the Rbased applications are given. They allow a quicker and more advanced treatment of the model (e.g. calculating isopleths automatically) as well as a study of risk. This requires only a preliminary introduction to the R software by the instruc tor.

- Ch7a Yield pr recruit R-based JdS.xlsx
- Ch7a R-script YRI PR by projection contour Ftc JdS.R
- Ch7a R-scriptYR II PR by projection single tc (F and f based) JdS.R

[^6]
FIEH IT 1.0 - student manual

- Ch7a R-script YR III PR by projection Monte Carlo Risk single Ftc JdS.R
- Ch7b Yield pr recruit Excel JdS.xlsx

SNAPSHOTS

Profit: annual distribution

FILH IT 1.0 - student manual

Chapter 8 - Hands wet: counting the fish*

QUESTIONS ASKED

- How do biologists count orga nisms in the field?
- How do they design their sampling?
- How can one scale orextrapolate observations to otherareas?

BACKGROUND INFORMATION

- UCSC: scientific diving - sampling methods
- Fisheries Research Australia:Tagging fish
- NOAA: Alaska Fisheries Science Center Longline Survey
- Ben Donnelly: Whale Aerial Survey

COVERAGE

- Sampling design: quadrats a nd distance sampling. Estimates and va riance.
- Transects, tagging and depletion methods.
- Research cruises: echo-integration and swept-area surveys

INFORMATION AND SOFTWARE

The Chapter 8 of FILH IT deals with the field methods nomally used by biologists to estimate the numbers of fish or sessile organisms in the sea, or on land. There is a great diversity of methods, but they rely on a few basic principles. A good knowledge of sampling design is required if any survey is going to be representative and unbiased. Surveys are nomally very costly, and improvement of design inc reases precision for the same, or lower, cost. Some of these methods can be utilized onboard commercial boats; others are more suita bly performed in research vessels. Some exercises deal with scaling of estimates in oceans and lakes. Sample estimates from echo-integration and swept-area surveys are dealt with in a practic al lab during the cruise: for sampling strategy consult Galluci et al. (1995) and course manuals.

- Ch8a Sampling design scaling JdS.x|sx

[^7]
FIEH IT 1.0 - student manual

- Ch8b Direct counting (general) JdS
- Ch8c Echo-integration and demersal survey (practic als Tromsø) JdS.xlsx

SNAPSHOTS

The echo integration method and sampling with pelagic trawl

	0			3	4	5	6	7	
Lat. 0	0	0	0	1	1	3	4	3	
1	1	3	2	2	4	11	27	12	4
2	3	22	6	5	7	28	133	28	5
3	2	6	10	23	13	16	31	17	7
4	1	4	22	86	24	11	19	38	15
5	1	3	9	23	12	10	37	102	36
	0	1	3	5	4	5	14	35	14
	0	0	1	1	2	2	4	6	4
¢	0	0	0	0	0	1	1	2	

Rog Lars 2015

(13) RB Larsen, NFH-UiTø

distance (y)
Right triangle sighting model

FILH IT 1.0 - student manual

Cha pter 9 - Rules for the future: forec asts a nd hind casts*

QUESTIONS ASKED

- How do discuss a nd agree on fishery management plans for the future?
- Can we develop harvest rules in small-scale fisheries, without models?
- How can we express the probable costs of fishing too much or too little?

BACKGROUND INFORMATION

- Wikipedia: Adaptive management
- Wikipedia: Overfishing
- URIRC: Marine FisheriesCo-Management in Senegal
- A fishery: na noe91-Squid fishing Argentina

COVERAGE

- Harvest rules in a quota managed fishery using a model (parametric)
- Statements a nd calculations of risk
- Adaptive management in small-scale fisheries (non-parametric)

INFORMATION AND SOFTWARE

The Chapter 9 of FILH IT deals with different methods to design harvest rules for the future that can be understood and acceptable by the different agents in a fishery. These agents do not necessarily have deep understanding the dynamics of the stocks, but must be able to express and quantify their goals. The players are asked to formulate strategies, statements of risk a nd judge the achievements, sometimes in a cooperative way with the other agents in the fishery. The player must understand the socio-economic context of the fishery when developing these strategies. The models used to make forecasts have in-built forms of uncerta inty, but are deteministic. This simplifies the calculations of nisk by the players.

- Ch9a Forecasts and harvest rules-parametric quotas ddS.xlsx
- Ch9b Adaptive harvest rules - non-pa rametric JdS.xlsx

[^8]
SNAPSHOTS

Selectivity pattern gillnets

FIEH IT 1.0 - student manual

Chapter 10 - Catching the same fish: fleet interactions*

QUESTIONS ASKED

- How to apply different effort controls in a fishery?
- What does risk mean in fluctuating fisheries?
- Do we need information from all fleets involved in a fishery?

BACKGROUND INFORMATION

- ShrimpAlliance: How DoesA Shrimp Boat Work?
- Global Fishing Watch: Technology Illuminating the global fleet
- Integrated project: IDPPE, Mozambique - Sofala Bank artisanal fisheries project

COVERAGE

- Simulta neous applic ation of technic al mea sures and closed seasons
- Dealing with competing fleets with different socio-economic profiles
- Further practice in the statement of development strategies and risk

INFORMATION AND SOFTWARE

The Chapter 10 of FILH IT deals with a very frequent situation in manine fisheries, which has rec eived little formal treatment: a small-sc ale coastal fleet catc hes the same spec ies that is targeted by an industrial fleet offshore. This raises dilemmas about the purpose of managing fisheries, and the players are forced to make clear statements about goals and positive and negative risks associated with the chosen strategies. The game invites to make experiments, but requires that the players devise simple and consistent strategies to be able to test their hypotheses. To increase realism, the simulations are stochastic, which forces the players to measure achievements in terms of probabilities and risk. This is an early version of this game, Sofala Shrimp Fishery v1.0. More advanced and realistic versions have been developed over the years, but this one has been often tested by students in the computerlab. Much of the background forthisfishery isexplained by de Sousa et al. (2006) and in special lectures. In the 2nd workbook the presence of the artisa nal fleet is recognized and accounted for in the management of the fishery.

[^9]
FIEH IT 1.0 - student manual

- Ch10a Shrimp industrial fishery JdS.xlsx
- Ch10b Shrimp multi-fleet fishery JdS.xlsx

SNAPSHOTS

Size of shrimp in industrial catch (weight $=0$ in closed season)

GROWTH SHRIMP

FILH IT 1.0 - student manual

Chapter 11 - Competing with predators: multispecies and sta keholder interactions in fluctuating environments*

QUESTIO NS ASKED

- How does the climate influence a fishery?
- How to conciliate the interests of predators?
- How to conciliate the interests of different industries?

BACKGROUND INFORMATION

- Minnesota Sea Grant: Food web in Lake Superior
- USG S: Climate Change Effects on Fisheries in the Great Lakes
- UWASC: How Many Sport Fish Can Lake Michigan Support?
- A fishery: InDepthOutdoorsTV - Sports fishing trout in Lake Superior

COVERAGE

- A bottom-up controlled fishery in the absence of information on predators
- Seasonal cycles and control of predators
- Application of tec hnical measures and closed sea sons in complex settings

INFORMATION AND SOFTWARE

The Chapter 11 of FIEH IT deals with environmental forcing and multispecies interactions in a relatively simple three-species fishery. As in the earlier chapter, the first workbook depicts a situation where management is performed in absence of full information. In the second workbook the information about predators is explicit and the players have to develop fishery strategies that reconcile the interests of different stakeholders. Environmental forcing can be modulated by the user to remove complexity. These examples and this game were suggested by the fishers of Comumane dam who had themselves very sophistic a ted suggestionsabout the best population management stra tegies. The last example is a cruise + lab practical on the utilization of network analysis (Ecopath, Christensen et al. 2005) to describe the food web of a fjord.

[^10]
FIEH IT 1.0 - student manual

- Ch11a Comumane dam ecosystem MonoldS
- Ch11b Comumane dam ecosystem MultiJdS
- Ch11c Balsfjord ecosystem with Ecopath (practicals Tromsø)

SNAPSHOTS

Ecological regime
Flow cycl \qquad 1 1=constant; 2=seasonal; 3=seasonal + annual

Food preference matrix

Prey	Tilapia	Clarias	Tiger
1ary prod	0.8	0.2	
2ary prod	0.2	0.6	0.2
		0.2	0.8

FIEH IT 1.0 - student manual

Chapter 12 - In conclusion: how to manage fisheries? *

QUESTIONS ASKED

- What is the real state of fisheries around the world?
- What experiences have we on the assessment and management of different fish populations?
- When should we invest, or refrain from investing or intervening, in the fishing industry?

BACKGROUND INFORMATION

- Da niel Pauly - CIESM Pa nel on Fishery Govema nce
- Ray Hilbom Plenary, Seafood Summit 2011
- CLAW 14'- Group 3: Balanced Harvesting
- EUsem1 Susta ina ble Fishing Methods
- C ostello et al. 2013 Status of the world's una ssessed fisheries

COVERAGE

- Conflicting views about the state and ma nagement of marine fisheries
- Simple rules of the thumb for fishery and ecosystem mana gement
- \quad C hallenges for the student

INFORMATION AND SOFTWARE

The Chapter 12 of FIIH IT reveals that despite the large body of knowledge in fishery science, we are still far from agreeing on the best methods to manage or govem our fisheries. This is probably a challenge for the students who would expect more objective advice from science. With basis on their long professional experience, rather than complicated mathematics, Caddy \& Gulland made in 1983 a very good, and still relevant, summary of the limitations of fishery science. They suggested possible strategies to handle and invest in different types of fisheries a round the world. Students are otherwise challenged to address the policy of balanced harvesting (e.g. Garcia et al 2015), by discussing it, or by making simulations based on either some of the software distributed in this package or developed by their instructors (practicals in Tromsø). It should be

[^11]
FIIH IT 1.0 - student manual

recognized that changes in the way we exploit aquatic populations might require adaptation in the whole govemance process and management procedures.

- Balanced harvest single-species
- Balanced harvest food web

References

C addy, J. F., \& G ulland, J. A. (1983). Historic al pattems of fish stocks. Ma rine Polic y, 7(4), 267-278. http://dx.doi.org/10.1016/0308-597X(83)90040-4

Christensen, V., Walters, C. J., \& Pa uly, D. (2005). Ec opath with Ec osim: a user's guide. Fisheries Centre, University of British Columbia, Vancouver, 154.

Cochrane, K. L, \& Garcia , S. M. (Eds.). (2009). A fishery ma nager's guidebook. J ohn Wiley \& Sons. Chic ago. http://dx.doi.org/10.1002/9781444316315

C ostello, C., Ovando, D., Hilbom, R., Gaines, S. D., Deschenes, O., \& Lester, S. E. (2012). Status and solutions for the world's unassessed fisheries. Science, 338(6106), 517-520. http://dx.doi.org/10.1126/science. 1223389
de Sousa, L. P., Brito, A., Abdula, S., \& Caputi, N. (2006). Research a ssessment for the mana gement of the industrial shallow-water multi-species shrimp fishery in Sofala Bank in Moza mbique. Fisheries research, 77(2), 207-219.
http://dx.doi.org/10.1016/j.fishres.2005.10.009
G alluc ci, V. F., Sa ila, S. B., Gusta fson, D. J ., \& Rothsc hild, B. J . (1995).Stock Assessment: Quantitative Methods and Applications for Small Sc ale Fisheries (Vol. 1). CRC Press.

Garcia, S. M., Rice, J., \& Charles, A. (2015). Balanced harvesting in fisheries: a preliminary a nalysis of ma na gement implic ations. ICESJ oumal of Marine Science: J oumal du Conseil, fsv156.

Grainger, R. J. R., \& Garcia, S. M. (1996). Chronicles of marine fishery landings (19501994): trend a nalysis a nd fisheries potential (p. 51). Rome: FAO.

Gulla nd, J.A. (1969).M a nual of methods for fish stock assessment. Part I. Fish population a nalysis. FAO Man. Fish. Sci. 4:l-154 (1969).

Haddon, M. (2010). Modelling and quantitative methods in fisheries. CRC press.
Hilbom, R. (2007). Defining success in fisheries and conflicts in objectives. Marine Policy, 31(2), 153-158. http://dx.doi.org/10.1016/j.ma pol.2006.05.014

King, M. (2005). Fisheries biology, assessment and mana gement. J ohn Wiley \& Sons.
Pope JG (1983). Fisheries resource management theory and practice. In: Ta ylor JL, Baird GG, editors. New Zealand finfish fisheries: the resources and their management.
Auckland New Zealand: Tra de Public ations Limited; 1983. p. 56-62.
Punt, A., \& Hilbom, R. (1996). BIODYN. Biomass dynamic models. User's ma nual. FAOComputerized Information Series, Rome.

FILH IT 1.0 - student manual

Punt, A. E., \& Hilbom, R. (2001). BAYES-SA. Ba yesian stock a ssessment methods in fisheries. User's ma nual. FAO-C omputerized Information Series, Rome.

Sources of images

License to publish pictures and diagrams was gently given by Iñigo Onandia, AZIITecnalia, San Sebastian, Spain (c over and p 19); the University of Tromsø (p 21); Roger Larsen, Norwegian College of Fishery Sciences, University of Tromsø (p 21); and Åsmund Bjordal, Institute of Marine Research, Bergen, Norway (p 25). In addition to the picturesand diagramsby the author, the following imagescan be re-utilized in accordance with the original license conditions:

Bley, G.F.J \& Tropenmuseum, part of the National Museum of World Cultures

https://commons.wikimedia.org/wiki/File:COUECTIE_TROPENMUSEUM_Vissers_met_sleepnetten_langs_het_st rand_bekijken_hun_vangst_Wijnkoops-baai_TMnr_60016756.jpg? uselang=en This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported lic ense.

Chowdhury, F.L (2010) https://commons.wikimedia.org/wiki/File:Hilsha_Fish_Boatload.jpg This file is lic ensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.

Furtado, R.A. (2013) https://commons.wikimedia.org/wiki/File:Harvesting_fishing_nets.JPG This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication

Mukherjee S. (2012)
https://commons.wikimedia.org/wik//File:Fresh_out_of water_Fishes_of_different_kinds,_for_sale.PNG? uselan $\mathrm{g}=\mathrm{nb}$ This file is licensed under the Creative Commons Attribution-Share Alike 4.0 Intemational lic ense.

```
National Atlas of the United States.
https://upload.wikimedia.org/wikipedia/commons/7/79/Northeast_Personal_Income_Per_Capita_as_of_200 3.gif Public doma in
```

Thome, N. (2001) https://commons.wikimedia.org/wiki/File:Barramundi.jpg This file is lic ensed under the Creative Commons Attribution 2.5 Generic license.

Thomas, A. (2012) https://commons.wikimedia.org/wiki/File:\"HSIANG_MING_NO.6_\"_IMO-_8648107_-_FISHING_VESSEL_489_tons._(8396549907).jpg This file is lic ensed under the Creative Commons Attribution-Share Alike 2.0 Generic license.

Van der Bank, F. H. (2012) https://commons.wikimedia.org/wiki/File:Merluc cius capensis.jpg The copyright holder of this work a llows anyone to use it for any purpose including unrestricted redistribution, commercial use, and modification.

[^0]: * Sa ntos, J. 2015. FILH IT1.0-Student Manual: A Tra ining System for Aquatic Resource Ma nagers. Septentrio Educ ational 2015(3). DOI: http://dx.doi.org/10.7557/se.2015.3 . This work is lic ensed under a Creative Commons Attribution 4.0 Intemational License.

[^1]: *Santos, J. 2015. FIEH IT1.0 - Student Manual: A Training System for Aquatic Resource Ma nagers. Septentrio Educ ational 2015(3). DOI: http://dx.doi.org/10.7557/se.2015.3. This work is licensed under a Creative Commons Attribution 4.0 Intemational License.

[^2]: *Santos, J. 2015. FILH IT1.0 - Student Manual: A Training System for Aquatic Resource Managers. Septentrio Educ ational 2015(3). DOI: http://dx.doi.org/10.7557/se.2015.3 . This work is lic ensed under a Creative Commons Attribution 4.0 Intemational License.

[^3]: *Santos, J. 2015. FIEH IT1.0 - Student Manual: A Training System for Aquatic Resource Ma nagers. Septentrio Educ ational 2015(3). DOI: http://dx.doi.org/10.7557/se.2015.3. This work is licensed under a Creative Commons Attribution 4.0 Intemational License.

[^4]: *Santos, J. 2015. FIEH IT1.0 - Student Manual: A Training System for Aquatic Resource Ma nagers. Septentrio Educ ational 2015(3). DOI: http://dx.doi.org/10.7557/se.2015.3. This work is licensed under a Creative Commons Attribution 4.0 Intemational Lic ense.

[^5]: *Santos, J. 2015. FIEH IT1.0 - Student Manual: A Training System for Aquatic Resource Ma nagers. Septentrio Educ ational 2015(3). DOI: http://dx.doi.org/10.7557/se.2015.3. This work is licensed under a Creative Commons Attribution 4.0 Intemational Lic ense.

[^6]: * Sa ntos, J. 2015. FIIH IT1.0 - Student Ma nual: A Tra ining System for Aquatic Resource Ma na gers. Septentrio Educ ational 2015(3). DOI: http://dx.doi.org/10.7557/se.2015.3. This work is licensed under a Creative Commons Attribution 4.0 Intemational License.

[^7]: *Santos, J. 2015. FIEH IT1.0 - Student Manual: A Training System for Aquatic Resource Ma nagers. Septentrio Educ ational 2015(3). DOI: http://dx.doi.org/10.7557/se.2015.3. This work is licensed under a Creative Commons Attribution 4.0 Intemational Lic ense.

[^8]: *Santos, J. 2015. FIEH IT1.0 - Student Manual: A Training System for Aquatic Resource Ma nagers. Septentrio Educ ational 2015(3). DOI: http://dx.doi.org/10.7557/se.2015.3. This work is lic ensed under a Creative Commons Attribution 4.0 Intemational Lic ense.

[^9]: *Santos, J. 2015. FIEH IT1.0 - Student Manual: A Training System for Aquatic Resource Ma nagers. Septentrio Educ ational 2015(3). DOI: http://dx.doi.org/10.7557/se.2015.3. This work is licensed under a Creative Commons Attribution 4.0 Intemational Lic ense.

[^10]: *Santos, J. 2015. FIEH IT1.0 - Student Manual: A Training System for Aquatic Resource Ma nagers. Septentrio Educ ational 2015(3). DOI: http://dx.doi.org/10.7557/se.2015.3. This work is licensed under a Creative Commons Attribution 4.0 Intemational Lic ense.

[^11]: * Sa ntos, J. 2015. FIIH IT1.0 - Student Ma nual: A Tra ining System for Aquatic Resource Ma na gers. Septentrio Educ ational 2015(3). DOI: http://dx.doi.org/10.7557/se.2015.3. This work is lic ensed under a Creative Commons Attribution 4.0 Intemational License.

