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ABSTRACT 

 
Isotopic time series from sequentially sampled growth layer groups (GLGs) in marine 

mammal teeth can be combined to build chronologies allowing assessment of isotopic 

variation in marine ecosystems. Synchronous recording of baseline isotopic variation across 

dentinal GLGs of species with temporal and spatial overlap in foraging offers a unique 

opportunity for validation of marine mammal age estimation procedures through calibration 

of GLG deposition rates in one species against another whose GLG deposition has been 

independently determined. In this study, we compare trends in stable carbon isotope ratios 

(13C) across dentinal GLGs of three eastern Canadian Arctic (ECA) beluga (Delphinapterus 

leucas) populations through the 1960s-2000s with a 13C time series measured across 

dentinal GLGs of ECA/Northwest Atlantic killer whales (Orcinus orca) from 1944-1999. 

We use confirmed annual GLG deposition in killer whales as a means to assess beluga GLG 

deposition, and show linear 13C declines across chronologies of both species were 

statistically indistinguishable when based on annual GLG deposition in beluga whales, but 

differed when based on biannual deposition. We suggest 13C declines reflect the oceanic 13C 

Suess effect, and provide additional support for annual GLG deposition in beluga whales by 

comparing rates of 13C declines across beluga GLGs with published annual 13C declines 

attributed to the oceanic 13C Suess effect in the North Atlantic. 

 

INTRODUCTION 

 

Physical characteristics of growth layer groups (GLGs) in teeth have had 

important applications in marine mammal ecological studies, from counting 

GLGs as a method of age estimation (Perrin and Myrick 1980) to linking GLG 

width and layering patterns with sexual maturation (Klevezal and Stewart 

1994), parturition (Klevezal and Myrick Jr 1984, von Biela et al. 2008, Medill 

et al. 2010), and environmental variation (Manzanilla 1989). More recently, 

advances in analytical techniques allowing chemical characterization of small 

amounts of bulk sample, as with continuous flow isotopic ratio mass 

spectrometry (CF-IRMS) of micromilled material, or in situ micro-spatial 

analysis using laser ablation inductively coupled plasma mass spectrometry 

(LA-ICP-MS) or secondary ion mass spectrometry (SIMS), have opened a 

new area of ecological study focused on GLG microchemistry (e.g. Hobson 

and Sease 1998, Stern et al. 1999). 
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Chemical diet proxies such as stable isotopes (SI) are incorporated into teeth 

via diet and water (Walker and Macko 1999), which in turn reflects 

underlying biogeochemical processes within the ecosystem in which an 

animal fed. Chemical profiling of sequentially sampled GLGs therefore 

allows for chronological diet and habitat reconstructions spanning periods 

over which GLG deposition occurred, providing access to long-term 

ecological information that is difficult to obtain through direct observation. 

Recent studies characterizing SI ratios of carbon (13C) and nitrogen (15N) 

in GLGs of marine mammal teeth have uncovered patterns consistent with 

ontogenetic diet and distribution shifts (Hobson and Sease 1998, Mendes et 

al. 2007), while approaches combining individual SI profiles to build longer 

chronologies (in a manner analogous to cross dating techniques employed in 

dendrochronology) have revealed baseline temporal isotopic variation related 

to climate oscillations (Newsome et al. 2007, Hanson et al. 2009), primary 

productivity (e.g. Schell 2000, Schell 2001, Hirons et al. 2001; but see also 

Cullen et al. 2001), and anthropogenic carbon emissions (Newsome et al. 

2007, Lysiak 2009). 

 

One of the primary means through which anthropogenic carbon emissions 

influence baseline marine 13C values is through the oceanic 13C Suess effect, 

which is the serial decrease of marine dissolved inorganic carbon (DIC) 13C 

values caused by the dilution of atmospheric 13C/12C by isotopically light CO2 

emissions from burning of fossil fuels (Quay et al. 1992). Variation in 

baseline food web isotope dynamics due to this and other processes, such as 

changes in primary productivity (e.g. Laws et al. 1995, Popp et al. 1998), are 

expected to be synchronously recorded across the teeth of marine mammals 

with distributional overlap. The extent of spatial variation depends on 

whether the process is regional in scope, such as primary productivity (e.g. 

Pancost et al. 1997), or larger, such as the oceanic 13C Suess effect, which has 

influence over ocean-basin and global scales (Quay et al. 1992). Although not 

commonly documented in high trophic level marine mammals, Newsome et 

al. (2007) attributed 13C declines in teeth of northern fur seals (Callorhinus 

ursinus) in the North Pacific over 1948–2000 to anthropogenic carbon inputs 

consistent with the oceanic 13C Suess effect. 

 

Comparison of synchronous isotopic variation across dentinal GLGs of 

species with similar distributions offers a unique opportunity for validation 

of marine mammal age estimation procedures through calibration of GLG 

deposition rates in one species against another whose GLG deposition has 

been independently determined. Validation of age estimation procedures in 

free-ranging animals has proven difficult, and such an approach could prove 

useful for species for which age validation has not previously been possible 

or has been met with contention, such as beluga whales (Delphinapterus 

leucas) (e.g. Lockyer et al. 2007). Although beluga ages have routinely been 
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estimated from dentinal GLG counts, only recently has the prevailing 

assumption of biannual dentinal GLG deposition (Goren et al. 1987, Brodie 

et al. 1990, Heide-Jørgensen et al. 1994) been rejected after studies 

examining radiocarbon patterns in beluga teeth (Stewart et al. 2006) and 

allometric relationships between female age and length at maturity among 

various delphinoid cetaceans (Luque et al. 2007) have indicated annual GLG 

deposition. The ecological implications of this shift in age estimation have 

not been trivial; the doubling of beluga lifespan has had significant 

management consequences for estimating life history parameters such as 

growth and age at maturity, as well as reproductive rates and population 

growth projections (Stewart et al. 2006). 

 

Here we provide further support for annual GLG deposition in beluga whales 

by comparing temporal 13C declines across dentinal GLGs of beluga from 

three eastern Canadian Arctic (ECA) populations over the 1960s–2000s with 

13C declines observed across GLGs of ECA/northwest Atlantic (NWA) 

killer whales (Orcinus orca) deposited over 1944–1999. We assume the 

spatial extent of baseline 13C variation was sufficient to cause synchronous 

13C patterns across the GLGs of both species, and use confirmed annual 

GLG deposition in killer whales (Mitchell and Baker 1980, Myrick et al. 

1988, Amano et al. 2011) as a reference from which to calculate annual 13C 

declines and assess GLG deposition in beluga whales. 13C trends in teeth of 

both species were statistically indistinguishable when based on annual GLG 

deposition in beluga teeth, but differed when biannual deposition was 

assumed. While we recognize various processes affecting marine 13C 

dynamics introduce uncertainty in our interpretations, we also found 13C 

declines observed across GLGs of both species match the oceanic 13C Suess 

effect, thereby providing additional support for annual GLG deposition in 

beluga whales using published oceanic 13C Suess effect rates in the North 

Atlantic as a reference point. 

 

MATERIALS AND METHODS 

 

Tooth collection and micromilling 

Beluga whales 

Teeth were obtained from whales harvested in subsistence hunts near several 

Nunavut communities (Arviat, Pangnirtung, and Grise Fiord) during the 

1980s–2000s, representing three ECA beluga whale populations, 

respectively: Western Hudson Bay (WHB; n=21), Cumberland Sound (CS; 

n=28), and Eastern High Arctic–Baffin Bay (EHA–BB; n=20) (Fig. 1). 

Mandibles were collected from each whale and sent to Fisheries and Oceans 

Canada, Winnipeg, where they were frozen until sampled. Following beluga 

ageing protocol (Stewart 2012), teeth were selected from the standard 
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positions 2 and 5, except when noticeably less wear occurred in adjacent 

teeth.  

 
 

 
 

Fig. 1. Teeth were collected from belugas harvested in Arviat, NU 

(Western Hudson Bay population; ), Pangnirtung, NU 

(Cumberland Sound population; ), and Grise Fiord (Eastern 

High Arctic-Baffin Bay population; ) through the 1980s-

2000s. Locations where killer whale specimens were collected 

throughout the eastern Canadian Arctic, Newfoundland, and 

Nova Scotia are indicated by closed (single specimen) and open 

(two specimens) squares. 

 

 

Teeth were air-dried and sectioned longitudinally using a water-cooled 

diamond-edged blade to expose the midline, and polished using 30 and 9 µm 

aluminum oxide (AlOx) lapping film to accentuate GLG definition. Powdered 

dentine was collected from within dentinal GLGs using a high-resolution 

micromill (Merchantek) fitted with a 300 µm-diameter carbide dental drill bit 

at a depth of 150 µm to prevent collection of material from underlying layers. 

Only GLGs of sufficient clarity and width to ensure discrete sample collection 
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were micromilled, resulting in approximately 5–15 sampled GLGs from each 

individual. 
 

Killer whales 

Teeth collected from killer whales (n = 9) from locations throughout the ECA 

and along the coasts of Newfoundland and Nova Scotia (Fig. 1) during the 

1970s–2000s were acquired from museum and government collections. When 

possible, the largest tooth with minimal wear was chosen from each 

specimen. All teeth had been stored dry since collection. 

 

Longitudinal sections approximately 2 mm thick following the midline of the 

tooth were polished using lapping film, then placed in 10 % formic acid for 

12 h to etch the polished surface and accentuate GLG definition. Sections 

were air-dried for several weeks following thorough rinsing with distilled 

water. GLGs were micromilled using a 500 µm-diameter drill bit at a drilling 

depth of 400–500 µm to accommodate the larger size of dentinal GLGs in 

killer whale teeth. Up to 25 GLGs were sampled from larger teeth, while a 

minimum 5 GLGs were sampled from the youngest whale. 

 

Stable isotope analysis 

Studies of carbon isotopic composition of dentine typically measure δ13C 

values of either collagen (Newsome et al. 2009) or the inorganic mineral 

matrix (Hobson and Sease 1998), since metabolic routing of dietary proteins 

to collagen, and metabolites from all classes of biomolecules to structural 

carbonate, leads to isotopic differences between the organic and mineral 

components (Ambrose and Norr 1993). Small sample amounts collected from 

beluga GLGs made removal of inorganic carbon using acidification prior to 

analysis impractical, so bulk powdered dentine was analysed. Killer whale 

samples, on the other hand, were acidified using repeated rinses of 0.25 N 

HCl at 4 oC, and isolated collagen was rinsed using deionized water and 

freeze-dried. In a comparison of δ13C values between untreated and acidified 

portions of 15 beluga dentine samples, untreated samples had significantly 

higher mean δ13C values (-14.2 ± 0.2 ‰) than acidified samples (-14.4 ± 0.2 

‰) (p<0.001, paired samples t-test, df=14, t= -5.365), and differences 

between untreated and acidified pairs were consistent across all samples 

(Matthews unpubl. data). Therefore, although different treatments of beluga 

and killer whale dentine complicates direct comparison of absolute 13C 

values between species, 13C trends (i.e., relative changes over time) within 

a species are comparable. 

 

Approximately 1 mg of powdered dentine (beluga) or ~0.5 mg of collagen 

(killer whale) was weighed into tin cups for isotopic analysis on a Vario EL 

III elemental analyser (Elementar, Germany) interfaced with a DELTAplus 

XP isotope ratio mass spectrometer (Thermo, Germany). Stable carbon 
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isotope ratios are reported in delta notation () as parts per thousand (‰) 

deviation from the isotope ratio of Vienna Pee-Dee Belemnite limestone (V-

PDB), defined as 13C = (Rsample – RV-PDB) / RV-PDB) * 1000, where R is 
13C/12C. Analytical precision based on repeated measures of laboratory 

reference materials not used in calibrations was 0.06 ‰, as was that based on 

duplicate measures of ~10 % of samples. Atomic C:N of beluga dentine (2.98 

± 0.06; mean ± sd) and killer whale dentinal collagen (2.91 ± 0.1) were within 

the range of unaltered collagen (DeNiro 1985). 

 

Data Analysis 

Each GLG was aged based on counts from the first GLG adjacent to prenatal 

dentine (beluga) or enamel (killer whales), and assigned a calendar year of 

deposition using the final GLG deposited during the year of death as a 

reference. Beluga GLG age and calendar year of formation were assigned 

assuming both annual and biannual GLG deposition. Isotope values from the 

first three GLGs were removed from all individual beluga and killer whale 

series, since significant ontogenetic trends associated with weaning were 

observed across those ages in both species (Matthews and Ferguson 2014, 

2015). Chronologies constructed from individual tooth 13C profiles spanned 

~50 years (1960s–2000s) for each beluga population, and from 1944–1999 

for killer whales (Table 1, Fig. 2).  

 

Generalized linear mixed effects models with random intercepts were used to 

compare temporal 13C trends in each population. Visual inspection indicated 

trends differed among populations, so models were run separately for each. 

Calendar year was treated as a fixed effect, along with sex and age class to 

account for variation in 13C values due to those factors. Age class included 

the categories ‘immature’ and ‘adult’, which comprised GLGs 4–11 and 12–

27, respectively (see Marcoux et al. 2012). Whale identity was included as a 

random effect to account for correlation of repeated measures within 

individuals. Models were run twice for each beluga population to estimate 

annual rates of 13C declines assuming both annual and biannual GLG 

deposition. To compare rates of 13C declines among populations, a model 

comprising all data was run with all fixed effects, including the interaction 

term calendar year*population to test equality of slopes among beluga and 

killer whale populations. All models were run using the maximum likelihood 

method, and the optimal model among full, reduced, and null models was 

selected based on AIC. Analyses were performed using the nlme package 

(Pinheiro et al. 2012) available for R software (R Core Team 2012). Matthews 

and Ferguson (2014) have shown previously that 13C values did not differ 

with age in ECA/NWA killer whales.  
 

Approximate 95 % confidence intervals around estimated rates of 13C 

declines in each population were compared with published oceanic 13C Suess 
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effect rates in the North Atlantic to assess whether it was a plausible cause of 

observed trends. 

 

RESULTS 

Best-fit models indicated population-specific 13C trends occurred over the 

period of GLG deposition (calendar year*population interaction term, p < 

0.001). Significant linear 13C declines occurred in the ECA/NWA killer 

whale and WHB and EHA–BB beluga populations, while no 13C trend 

occurred in the CS beluga population (Fig. 2, Table 1). The interaction term 

sex*age class remained in the final model of WHB beluga 13C values, and 

age class was a significant predictor of 13C values in the Cumberland Sound 

population. 13C variation was unrelated to sex or age class in the EHA–BB 

population (p > 0.5). 

 

Rates of 13C declines in the ECA/NWA killer whale (–0.0184 ± 0.0054 ‰ 

yr-1) and WHB and EHA–BB beluga populations (–0.0186 ± 0.0060 ‰ yr-1 

and –0.0285 ± 0.0046 ‰ yr-1, respectively) (Fig. 2, Table 1) were statistically 

indistinguishable when rates were based on annual GLG deposition in beluga 

whales (p > 0.65), but differed between the killer whale and beluga 

populations when biannual GLG deposition was assumed in beluga teeth (–

0.0362 ± 0.011 ‰ yr-1 and –0.0442 ± 0.0081 ‰ yr-1 for the WHB and EHA–

BB populations, respectively) (p < 0.001).  

 

Approximate 95 % confidence intervals around slope estimates showed 13C 

declines based on annual GLG deposition in both species encompassed 

published oceanic 13C Suess effect rates in the North Atlantic Ocean. When 

13C declines were based on biannual deposition, Suess effect rates were 

outside the 95 % C.I. of estimates for the EHA–BB population, and largely 

so for the WHB population (Tables 1 and 2). 

 

DISCUSSION 

 

Annual dentinal GLG deposition in killer whales has been confirmed through 

comparisons of GLG counts with estimated age of a well-recognized wild 

killer whale (Mitchell and Baker 1980) and corpora counts in sexually mature 

wild females (Amano et al. 2011), along with assessment of tetracycline 

labels in teeth of captive individuals with known treatment history (Myrick et 

al. 1988). We contend statistically indistinguishable rates of 13C decline 

across dentinal GLGs of killer whales and beluga whales based on deposition 

of one GLG per year provides support for annual GLG deposition in beluga 

whales, as has been recently shown by other studies (Stewart et al. 2006, 

Luque et al. 2007). Our approach implicitly assumes that regional baseline 

13C variation caused synchronous 13C patterns across the GLGs of both 
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Table 1. Rates of δ13C declines across dentinal GLGs of killer whales (1944–1999) and beluga (1960s–2000s) in the eastern Canadian Arctic/North 

Atlantic. 95 % confidence intervals in parentheses. 

 
Species Population Annual GLG Deposition Biannual GLG Deposition 

  δ13C 

(‰ yr-1) 

Years δ13C 

(‰ yr-1) 

Years 

Killer whale (O. 

orca) 

Eastern Canadian Arctic/ 

Northwest Atlantic 

(ECA/NWA) –0.0184 (–0.00781, –0.0291) (p=0.001) 1944–1999 – – 

Beluga whale 

(D. leucas) Western Hudson Bay (WHB) –0.0186 (–0.00689, –0.0304) (p<0.01) 1963–2008 –0.0362 (–0.0153, –0.0570) (p < 0.001) 1980–2008 

 Cumberland Sound (CS) –0.00138 (0.00468, –0.00744) (p>0.5) 1966–2007 –0.00231 (0.00569, –0.0103,) (p > 0.5) 1977–2007 

 

Eastern High Arctic–Baffin 

Bay (EHA–BB) –0.0285 (–0.0195, –0.0375) (p<0.001) 1976–2001 –0.0442 (–0.0283, –0.0600) (p < 0.001) 1981–2001 
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Fig. 2. Significant 13C declines across dentinal GLGs of –0.0186 

± 0.00602 ‰ yr-1 and –0.0285 ± 0.00458 ‰ yr-1 in both the 

Western Hudson Bay (WHB) and Eastern High Arctic–Baffin 

Bay (EHA–BB) beluga populations, respectively, were 

statistically indistinguishable from 13C declines across dentinal 

GLGs of Eastern Canadian Arctic/Northwest Atlantic killer 

whales (–0.0184 ± 0.00540 ‰ yr-1; ECA/NWA) over a similar 

timeframe when rates were based on annual GLG deposition in 

beluga whales. In contrast, 13C values in the Cumberland Sound 

(CS) population were relatively constant over the same 

timeframe.  
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species, although we acknowledge other factors, such as shifts in foraging 

behavior and processes affecting marine 13C dynamics at more localised 

scales (e.g. Pancost et al. 1997), introduce a degree of uncertainty in our 

interpretations. 

 

 

Table 2. Oceanic 13C Suess effect rates for the North Atlantic 

Ocean basin spanning the timeframe represented by sampled 

killer whale and beluga GLGs. Estimates are restricted to depths 

< 1000 m. 
 

Depth 

(m) 

Latitude Years Suess 

Effect (‰ 

yr-1) 

Source 

600–800 25oN–37oN 1969–1979 
–0.018 ± 

0.002* 

Sonnerup et 

al. 1999 

800–1000 45oN–60oN 1973–1990 
–0.023 ± 

0.006* 

Sonnerup et 

al. 1999 

<1000 5oS–65oN 1993 
-0.026 ± 

0.002 

Körtzinger 

and Quay 

2003 

Surface 32oN 1981–1983 
-0.025 ± 

0.002 

Gruber et 

al. 1999 

Surface 
tropical to 

polar 

1981–1983; 

1992–1995 
-0.019* 

Quay et al. 

2003 

*published as ‰ decade-1 

 

 

Gradual changes in diet composition over time would confound our 

assumption that observed 13C trends reflected only baseline isotopic 

variation. Gradual inclusion of a higher proportion of 13C depleted prey, such 

as lower trophic level (McCutchan et al. 2003) or pelagic (France 1995) 

fishes, over time could hypothetically account for observed 13C decreases. 

15N values measured across dentinal GLGs offer an internal check on diet 

shifts, since concurrent (and more pronounced) declines in 15N values are 

expected to accompany 13C decreases associated with trophic-level diet 

variation (McCutchan et al. 2003). The lack of linear 15N trends across 

GLGs of ECA/NWA killer whales or WHB and EHA–BB belugas (Matthews 

and Ferguson 2014; Matthews unpubl. data) indicates trophic-level dietary 

shifts are an unlikely explanation for observed 13C declines in any of these 

populations, but does not rule out potential incorporation of more pelagic prey 

over the timeframe of the study. 
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There is, however, credible evidence of a pronounced dietary shift within the 

CS beluga population over the timeframe of our study, which could account 

for different 13C patterns in their teeth. Marcoux et al. (2012) attributed 

declines in CS beluga skin and muscle 15N values over 1982–2009 to a 

dietary shift precipitated by recent invasion of capelin (Mallotus villosus) into 

the Cumberland Sound ecosystem. Diet comprising a greater proportion of 

capelin may have offset 13C declines observed in the other populations, 

given that capelin are enriched in 13C by ~1 ‰ relative to Arctic cod 

(Boreogadus saida) (Marcoux et al. 2012, Watt et al. 2013), the primary prey 

of CS beluga (Kelley et al. 2010, Marcoux et al. 2012). Evidence of recent 

diet shifts among CS beluga offers a reasonable explanation for the absence 

of 13C declines observed across the GLGs of the other beluga and killer 

whale populations. 

 

Decreasing 13C values in the absence of 15N trends suggests isotope patterns 

across GLGs were driven by variation in baseline carbon isotope 

composition. Processes influencing marine 13C dynamics can vary over 

local, regional, and larger scales, which, depending on species distributions, 

could lead to decoupling of isotopic patterns between different populations 

(e.g. Hirons et al. 2001). Although beluga and killer whale populations 

included in our study occur throughout the eastern Canadian Arctic during 

the open water season (Reeves and Mitchell 1988, Higdon et al. 2012), 

ECA/NWA killer whale movements in the North Atlantic at other times of 

the year (Matthews et al. 2011) span a gradient in surface zooplankton 13C 

values of several per mil (Graham et al. 2010). Matthews and Ferguson 

(2014) examined distributional differences of ECA/NWA killer whales using 

amino acid specific 15N analysis of dentine, and two whales with 13C values 

related to spatial variation were excluded from population-level 13C declines 

we assess here. Distributional differences also exist among the three Eastern 

Canadian Arctic beluga populations. CS whales have a restricted distribution 

relative to the more expansive seasonal migrations undertaken by the WHB 

and EHA–BB populations (Smith and Martin 1994, Richard et al. 1998, 2001, 

Richard and Stewart 2008). CS belugas may therefore be more influenced by 

local processes in Cumberland Sound and less influenced by region-scale 

processes, which may have contributed to population-specific 13C 

differences. 

 

Sea-ice reductions in the Arctic marine ecosystem spanning the duration of 

GLG deposition could have caused changes in primary production or algal 

community composition, which in turn may have altered baseline 13C values 

(e.g. Laws et al. 1995, Bidigare 1997, Pancost et al. 1997, Popp et al. 1998, 

Burkhardt et al. 1999). WHB beluga summer in Hudson Bay, where the 

length of the open water season has increased by approximately 3 days 
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decade-1 from the 1970s to 2000s (Gough et al. 2004). Further north on the 

summering grounds of EHA–BB beluga in the Canadian Arctic archipelago, 

ice-free conditions have increased by approximately 7 days decade-1 over the 

same period (Howell et al. 2009). Primary production, chlorophyll, and 

nutrient concentrations measured in the Canadian Arctic archipelago during 

the 1980s–2000s (Michel et al. 2006) however, are similar in magnitude and 

interannual variability to those measured in the 1950s and 60s (Apollonio and 

Matria 2011), suggesting observed 13C trends are not a reflection of 

changing levels of Arctic primary production in response to changing sea ice 

dynamics. Another possibility with earlier ice melt and later ice formation is 

reduced contribution of sympagic (ice-associated) algal production to overall 

ecosystem primary production. Due to well-defined boundary layers that limit 

diffusion of DIC, reduced isotopic discrimination during photosynthesis leads 

to higher 13C values of ice algae than phytoplankton (Hobson et al. 1995). 

A gradual decrease in ice algae production related to loss of Arctic sea ice 

could therefore have led to lower baseline 13C values, which presumably 

would have influenced belugas feeding entirely within Arctic food webs more 

so than killer whales, which are seasonal inhabitants. 

 

Although confounding factors outlined above prevent dismissal of 13C 

declines based on biannual deposition with certainty (i.e., we cannot rule out 

that the populations did not experience population-specific processes leading 

to different long-term 13C trends), we propose similar 13C declines among 

two of the three beluga populations, when based on annual GLG deposition, 

and ECA/NWA killer whales reflect regional variation in baseline carbon 

isotope composition. The most parsimonious explanation for synchronous 

13C trends across the GLGs of marine mammals ranging over such a large 

area is the oceanic 13C Suess effect, which influences baseline marine 13C 

values at ocean basin scales (Quay et al. 1992). Several studies have provided 

estimates of oceanic 13C Suess effect rates ranging from –0.018 to –0.026 ‰ 

yr-1 in the North Atlantic over the past several decades (Table 2). These 

independent estimates agree with rates of 13C decline based on annual GLG 

deposition in killer whale and beluga teeth, but fall largely or entirely outside 

estimates based on biannual GLG deposition. Although the oceanic 13C Suess 

effect varies among ocean basins and at different depths (Quay et al. 1992), 

nowhere could we find rates approaching –0.036 to –0.044 ‰ yr-1 to account 

for biannual GLG deposition in beluga whales. While dentinal GLGs 

integrate various factors affecting marine 13C values, good agreement 

between 13C declines across dentinal GLGs and independently assessed 

oceanic 13C Suess effect rates provides additional support for annual GLG 

deposition in beluga teeth.  

 

In this study, we assume variation in baseline isotope dynamics occurred over 
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a sufficient spatial scale to have led to synchronous 13C declines across 

dentinal GLGs of ECA beluga and ECA/NWA killer whale populations, 

which we use to calibrate GLG deposition rates in beluga against annually-

deposited GLGs in killer whales. We outline several factors that introduce 

limited uncertainty in our interpretations, but contend that agreement between 

13C declines across beluga and killer whale GLGs and published annual 

oceanic 13C Suess effect rates in the North Atlantic provides support for 

annual GLG deposition in beluga whales. The lack of similar declines in a 

third beluga population (CS) is most likely related to pronounced and well-

documented dietary shifts over the past several decades, which likely masked 

baseline 13C trends recorded in GLGs of the other populations. Results from 

this novel approach using isotopic chronologies derived from teeth to assess 

dentinal deposition rates in beluga whales add to the considerable evidence 

of recent studies confirming one GLG is deposited per year in this species. 
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