Table 9. Estimated density and abundance of white-beaked dolphins identified with high, medium and low confidence from the combined platforms using revised (non-compromised) effort sailed under acceptable conditions. Density and abundance are corrected by including a proportion of the abundance of L. spp. based on the proportions of L. albirostris and L. acutus observed in each stratum. Totals are shown for original and with block IG post-stratified to eliminate overlap with the East Greenland survey (_EG). IGIR_N covers the overlap area between the core survey and the fall capelin survey (CAP). n - number of sightings; L - effort (nm); $E(S)$ - group size; esw - effective search half width $(\mathrm{m}) ; f(0)$ - probability density of the detection function at distance 0 ; D - density of animals (number nm ${ }^{-2} ; N$ - abundance, N_{s} uncorrected for perception bias, N_{ϵ} corrected for perception bias; LCL and UCL - upper and lower confidence limits; p(0) - probability of detection at distance 0 .

Block	n	n / L	cv	$E(S)$	cv	esw	$f(0)$	cv	D	Ns	cv	LCL	UCL	$p(0)$	cv	Nc	cv	LCL	UCL
FC	0																		
FW	0																		
IE	1	2.69E-03	1.11	10.00	0.00				3.70E-02	4,000		504	31,767			13,046	1.26	1,588	107,171
IG	3	3.13E-03	0.76	10.00	0.29				4.97E-02	4,666	0.78	1,123	19,379			15,216	0.96	3,001	77,141
IG_EG	6	$6.67 \mathrm{E}-03$	0.51	6.50	0.33				5.29E-02	4,809	0.78	1,158	19,959			15,682	0.96	3,096	79,466
IP	1	2.57E-03	1.09	15.00	0.00	673.0	$1.49 \mathrm{E}-03$	0.17	6.10E-02	8,499	0.96	953	75,838	0.31	0.55	27,721	1.11	3,425	224,357
IQ	1	7.28E-03	0.56	8.00	0.00				8.01E-02	5,616	0.58	48	659,486			18,317	0.80	2,686	124,887
IR	8	$8.95 \mathrm{E}-03$	0.61	7.38	0.33				2.04E-01	22,107	0.39	10,394	47,019			72,102	0.68	21,236	244,808
IW	6	$8.89 \mathrm{E}-03$	0.61	8.33	0.40				1.02E-01	3,863	0.70	974	15,316			12,599	0.90	2,624	60,495
SW	0																		
X	2	$1.51 \mathrm{E}-02$	0.89	3.00	0.33														
TOTAL	39								6.00E-02	48,752	0.31	26,562	89,478			159,000	0.63	49,957	506,054
TOTAL_EG	39								6.04E-02	48,894	0.31	26,653	89,696			159,466	0.63	50,111	507,467
$\begin{aligned} & \text { IG_N } \\ & \text { IR_N } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$																		
IGIR_N	0																		
CAP		6.38E-02																	

