Proceedings of 1st International Workshop in Computational Linguistics for Uralic Languages IWCLUL 2015); <attp://dx.doi .org/10.7557/scs.2015.2>

Grammatical Framework Tutorial, with a Focus
on Fenno-Ugric Languages

Aarne Ranta and Inari Listenmaa

Goteborgs universitet och Chalmers tekniska hogskola

1 GF in a nutshell

Grammatical Framework, GF, is a grammar formalism designed to support
multilingual grammars. A multilingual grammar has an abstract syntax,
which is shared by a set of languages. Each of these languages has a con-
crete syntax, which defines a relation between trees in the abstract syntax
and strings in the language. For example, here is an abstract syntax tree
representing predication with the verb love, subject I, and object you:

PredVP

/' "\

I NP ComplV2

/\-.

love VZ2 vyouSg NP

With appropriate concrete syntaxes for Chinese, English, Finnish, and French,
we obtain the following strings, together with word alignments determined by
the tree structure:

2.1. Grammatical Framework Tutorial with a Focus on Fenno-Ugric Languages [page 4 of [31] <attp://dx.doi.org/10.7557/5.345€>


http://dx.doi.org/10.7557/scs.2015.2
http://dx.doi.org/10.7557/5.3456

Proceedings of 1st International Workshop in Computational Linguistics for Uralic Languages IWCLUL 2015); <attp: //dx.doi .org/10.7557/scs.2015.2>

rakastan sinua

/><”

alme

The process of generating the strings from the tree is called linearization,
and the reverse process is parsing. All GF grammars are reversible, in the
sense that they can be used for both linearization and parsing.

The main application of GF' is translation, where the abstract syntax is
used as an interlingua. But GF can also be used for language comparison,
because the abstract syntax gives a formally precise way to express common
structures. The predication structure (PredVP in the above tree) is an example:
it is a common structure for the languages shown, even though the concrete
syntaxes are quite different.

Technically, GF is based on constructive type theory, which is used for
the abstract syntax, and parallel multiple context-free grammars (PM-
CFG), which are used for the concrete syntax. PMCFG is more expressive than
context-free grammars, but it still enjoys polynomial parsing; in practice, the
parsing speed is usually close to linear. The advantage of PMCFG is that it sup-
ports things like morphological variation and discontinuous constituents. This
is what makes it possible to share abstract syntax for seemingly very different
languages.

Writing PMCFG grammars manually would be very time-consuming and
error-prone. An important feature of GF is therefore its support for functional
programming, as a concise way of writing concrete syntaxes. Functional pro-
gramming makes it easy to share common parts of code and thereby to avoid
repetitive coding almost entirely. GF source code can hence be much more con-
cise than e.g. context-free grammars or regular expressions, and GF has in fact
been used as a method to generate code in these formats, independently of its

2.1. Grammatical Framework Tutorial with a Focus on Fenno-Ugric Languages [page 5 of [31] <1ttp://dx.doi.org/10.7557/5.345€>


http://dx.doi.org/10.7557/scs.2015.2
http://dx.doi.org/10.7557/5.3456

Proceedings of 1st International Workshop in Computational Linguistics for Uralic Languages IWCLUL 2015); <attp://dx.doi .org/10.7557/scs.2015.2>

multilingual uses.

Together with the abstract syntax, the abstractions provided by functional
programming methods make it possible to express linguistic generalizations.
Such generalizations can be interesting for both linguistic theory (e.g. language
typology) and practical engineering (reuse of code within and across languages).
In particular, grammars for closely related languages can share major parts of
code even in concrete syntax.

With the first release in 1998, GF has been applied to over 30 languages and
has over 100 active developers around the world. Its main focus has been on
controlled languages and precision-oriented translation. But the com-
prehensive resource grammar library (RGL) also makes it possible to build
large-scale translation systems. An experimental system is currently available
for 11 languages, covering all 110 language pairs.

GF is open-source software, released under licenses such as GLP (the gram-
mar compiler) and LGPL and BSD (the run-time and RGL). This makes it
possible to use GF for any purpose, including proprietary commercial applica-
tions. At least 6 companies have used GF in their projects.

2 The tutorial

The goal of the tutorial is to enable the participants to

e explore and reuse the resources currently available in GF

e contribute to the RGL, especially to its lexical resources

e get started with their own grammars

The ultimate goal is the development of RGL implementations for new Uralic
languages, but some more training will probably be needed for this than this
short tutorial. This can of course be done by achieved by using free material
from the GF web page.

The contents of the tutorial can be divided to four lessons, which optimally
need three hours in total.

2.1 Hands-on introduction

We will first show a demo of web-based translation in GF. After that, we will
build a simple multilingual grammar together, by using the cloud-based gram-
mar editor. Simple examples are enough to show that languages differ in non-
trivial ways but can still share an abstract syntax.

2.1. Grammatical Framework Tutorial with a Focus on Fenno-Ugric Languages [page 6 of [31] <attp://dx.doi.org/10.7557/5.345€>


http://dx.doi.org/10.7557/scs.2015.2
http://dx.doi.org/10.7557/5.3456

Proceedings of 1st International Workshop in Computational Linguistics for Uralic Languages IWCLUL 2015); <attp: //dx.doi .org/10.7557/scs.2015.2>

The cloud-based grammar editor is a pedagogical tool enabling the use of
GF without installing any software. Grammars created in it are also readily
usable for translation and other functionalities in the GF cloud.

2.2 Tool and resource overview

We make a tour of the GF web pages to show what is available, how to install
the tools, and how to reuse GF grammars on other platforms.

2.3 Morphology

We introduce the technique of smart paradigms and show how it is used to
define inflection and lexica, with Finnish and Estonian inflection as examples.

2.4 Syntax

We look at some peculiarities of Finnish and Estonian agreement, word order,
and nominalized verb phrase constructions as examples. For instance, we see
how to deal with the rich system of participles and infinitives of Finnish in
translation.

References

e GF home page: http://www.grammaticalframework.org/

e GF book: A. Ranta, Grammatical Framework. Programming with Multi-

lingual Grammars, CSLI, Stanford, 2011.
Chinese translation: ba#iER nsmasEsEss2, Shanghai Jiao Tong Univer-
sity Press, 2014.

e GF Summer School: http://school.grammaticalframework.org/, 19-31 July
2015 in Malta

2.1. Grammatical Framework Tutorial with a Focus on Fenno-Ugric Languages [page 7 of [31] <1ttp://dx.doi.org/10.7557/5.345€>


http://dx.doi.org/10.7557/scs.2015.2
http://dx.doi.org/10.7557/5.3456

