The use and misuse of bibliometric indices in evaluating scholarly performance

Howard I. Browman Principal Research Scientist

(http://fishlarvae.org)

What do you think about how scientists are being assessed for promotion?

Very positive = 1.77% Positive = 20%

	Very positive effect overall	Positive effect overall	No effect overall	Negative effect overall	Very negative effect overall	l don't know
How scientists are assessed for	1.77%	20.06%	12.68%	38.79%	14.75%	11.95%
promotion during their careers	12	136	86	263	100	81

Nuffield Council on Bioethics

The culture of scientific research

Preliminary results of online survey 27 March – 4 June 2014

Scholarly

"Involving or relating to serious academic study"

"Having or showing knowledge, learning, or devotion to academic pursuits"

What are the best journals in your field?

ISI Web of Knowledge[™]

Journal Citation Reports®

welcome ? Help		
🗘 Journal Su	ummary List	
Journals from:	subject categories FISHERIES 🔞 VIEW CATEGORY SUMMARY LIST	
Sorted by:	Impact Factor SORT AGAIN	

Journals 1 - 20 (of 52)

MARK ALL UPDATE MARKED LIST

Ranking is based on your journal and sort selections.

		Abbreviated Journal Title (linked to journal information)		JCR Data (j					
Mark	Rank		ISSN	Total Cites	Impact Factor	5-Year Impact Factor	Immediacy Index	Articles	
	1	FISH FISH	1467-2960	2526	8.258	8.083	2.027	37	
	2	REV AQUACULT	1753-5123	355	3.923	4.481	0.471	17	
	3	REV FISH BIOL FISHER	0960-3166	2407	2.726	2.970	0.918	49	
	4	FISH SHELLFISH IMMUN	1050-4648	8732	2.674	2.996	0.367	376	
	5	FISH OCEANOGR	1054-6006	2012	2.543	2.788	0.457	35	
	6	ICES J MAR SCI	1054-3139	8113	2.377	2.576	1.030	237	
	7	CAN J FISH AQUAT SCI	0706-652X	16689	2.287	2.764	0.376	170	
	8	MAR RESOUR ECON	0738-1360	740	2.071	2.179	0.364	22	
	9	J FISH DIS	0140-7775	3750	2.056	2.112	0.378	119	
	10	AQUACULT ENV INTERAC	1869-215X	221	1.964	2.443	0.200	30	

Who are the best researchers in your field?

Publication Analysis 1996-2007 - Plant & Animal Ecology

Cit-

Art-

Most Cited Authors...

	ations	icles
1. Anders Pape Møller, Lab Parasitol. Evol., CNRS, Univ. Paris	10,686	329
2. Kevin J. Gaston, Anim. & Plant Sci. Univ. Sheffield	8,749	250
3. Godfrey M. Hewitt, Sch. Biol. Sci. Univ. East Anglia Norwich	7,374	91
4. I. Colin Prentice, Dept. Earth Sci. Univ. Bristol	7,280	80
5. Nils C. Stenseth, Zool. Univ. Oslo	7,020	229
6. Bernhard Schmid, Environm. Sci. Univ. Zürich	6,371	162
7. Ernst-Detlef Schulze, Max Planck Inst. Biogeochem. Jena	6,278	117
8. John H. Lawton, Ctr. Populat. Biol. Imperial Coll. Univ. London	6,147	63
9. Ian T. Baldwin, Max Planck Inst. Chem. Ecol. Jena	5,722	125
10. David A. Wardle, Forest Ecol. Swedish Univ. Agricultural Sci. Umeå	5,561	91
11. Josephine M. Pemberton, Mol. Ecol. Evol. Biol. Univ. Edinburgh	5,375	80
12. Tim H. Clutton-Brock, Large Anim. Res. Grp. Zool. Univ. Cambridge	5,330	113
13. Riccardo Valentini, Forest Ecol. Lab Univ. Tuscia Viterbo	5,228	63
14. Pierre Taberlet, Lab Biol. Populat. Altitude, CNRS, Univ. Grenoble	5,117	99
15. Ilkka Hanski, Ecol. & Systemat. Univ. Helsinki	5,077	91
16. Carlos M. Duarte, Inst. Mediterr. de Estud. Avanzados Univ. Mallorca	5,025	198
17. Reinhart Ceulemans, Plant & Vegetat. Ecol. Grp. Univ. Antwerp	5,008	150
18. Rémy J. Petit, INRA-UMR Biodiv., Genes & Commun. Univ. Bordeaux	4,883	74
19. André Granier, INRA Res. Ctr. Forest Ecol & Ecophysiol. Champenoux	4,716	78
20. Chris D. Thomas, Dept. Biol. Univ. York	4,582	79
21. Christian Körner, Bot. Univ. Basel	4,578	128
22. Alastair H. Fitter, Dept. Biol. Univ. York	4,527	84
23. Ben C. Sheldon, Zool. Univ. Oxford	4,508	170
24. Josep Peñuelas, Ctr. Ecol. Res. & Forestry Appl. Univ. Barcelona	4,146	178
25. David W. MacDonald, Zool. Univ. Oxford	4,104	250
26. Tim M. Blackburn, Inst. Zool. Zool. Soc. London (ZSL)	4,051	111 55
 27. Sandra Lavorel, Alpine Ecol. Lab, CNRS, Univ. Grenoble 28. Peter Högberg, Forest Ecol. & Manag. Swe. Univ. Agric. Sci. Umeå 	3,991 3,902	55 66
29. Richard D. Bardgett , Soil & Ecosyst. Ecol. Grp. Univ. Lancaster	3,899	84
	3,848	48
30. J. Philip Grime, Comp. Plant Ecol.Univ. Sheffield	3,040	40

Lab Times 6-2009

Reducing a scholar's work to a number is the antithesis of scholarship

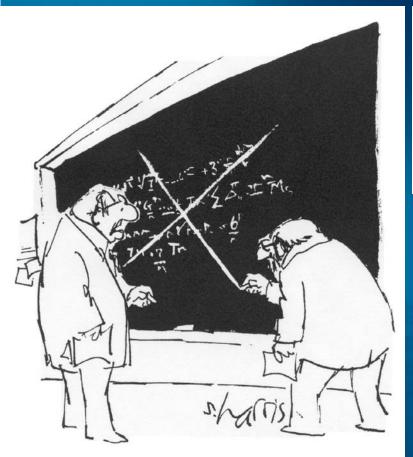
"Use of indices and factors as performance metrics, without a thorough and insightful understanding of their (few?) strengths and (many?) weaknesses, is a denial of the very activity that they purportedly measure."

Browman & Stergiou (2008) ESEP 8

Who are these metrics for?

Involving or relating to SERIOUS academic study

Having or showing knowledge, learning, or devotion to academic pursuits



What is "quality"? What is "impact"?

"My question is: Are we making an impact?"

That's it? That's peer review?

Is Peer Review a Game of Chance?

BRYAN D. NEFF AND JULIAN D. OLDEN

What is "quality"?

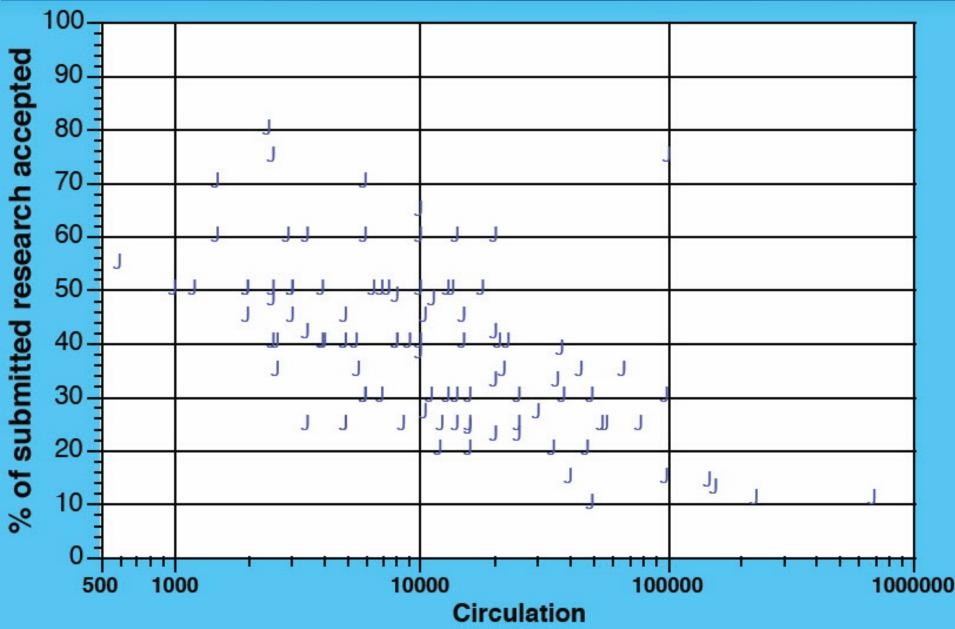
Neff & Olden (2006) Bioscience 56: 333-340

	Suitability value (80 percent confidence interval) or probability					
Prior probability of suitability	Two-of-two decision rule	Three-of-three decision rule	Four-of-four decision rule			
Editorial board prescreening						
Mean suitability of accepted papers Probability of wrongful acceptance Mean suitability of rejected papers Probability of wrongful rejection	85 (69–98) 0.29 41 (8–76) 0.07	87 (72–98) 0.24 43 (8–78) 0.09	88 (74–98) 0.19 44 (9–80) 0.10			
Editor prescreening						
Mean suitability of accepted papers Probability of wrongful acceptance Mean suitability of rejected papers Probability of wrongful rejection	78 (53–97) 0.45 45 (9–85) 0.14	82 (61–98) 0.36 46 (9–86) 0.14	85 (66–98) 0.29 47 (9–86) 0.15			
No prescreening						
Mean suitability of accepted papers Probability of wrongful acceptance Mean suitability of rejected papers Probability of wrongful rejection	75 (46–96) 0.51 38 (7–73) 0.06	80 (56–97) 0.41 40 (8–76) 0.07	83 (63–98) 0.33 42 (8–78) 0.08			

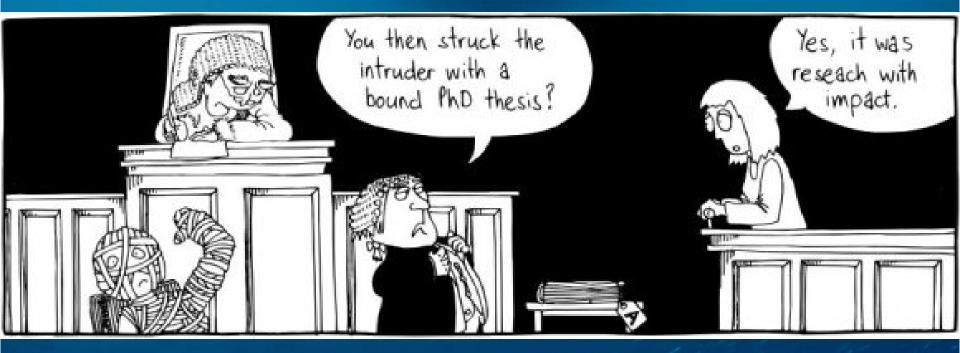
Neff & Olden (2006) Bioscience 56: 333-340

Selectivity yields "impact"

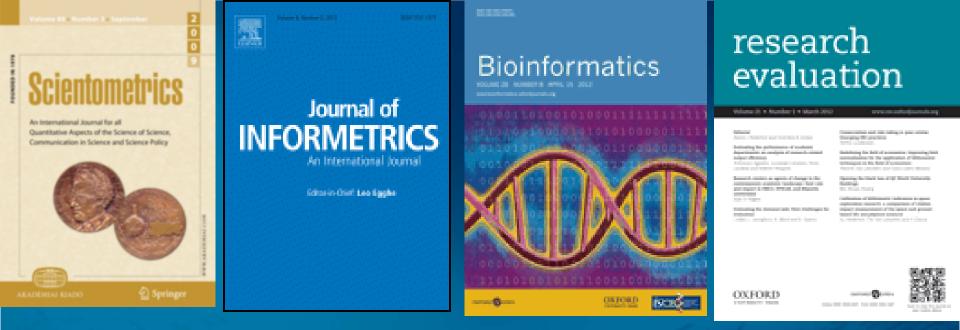
Table 1. Journal information, including acceptance rate, Impact Factor (2010 data) and mean and median numbers of citations in May 2012 for ecological research papers published throughout 2009 (N = 30 except for *Nature* (N = 26) and *Science* (N = 28)) according to the Web of Science database.


Journal	Manuscript acceptance rate (%)	Impact factor (Web of Science)	Number of citations for ecological research papers	
			Mean	Median
PLoS ONE	69	4.4	11.6	8.0
Ecology	20	5.1	11.3	9.0
Oikos	15	3.4	7.8	6.5
Functional Ecology	15	4.6	10.7	9.0
Ecology Letters	<11	15.2	20.9	16.0
Science	<7	31.3	66.9	44.0
Nature	8	36.1	64.7	58.5

Editorial screening for "impact"



Wardle 2012


Selectivity yields profit

Can a number based on counts of citations (or something else) be used to assess "impact"?

The development and study of metrics

ISI Web of Knowledge[™]

ISI Web of Knowledge[™]

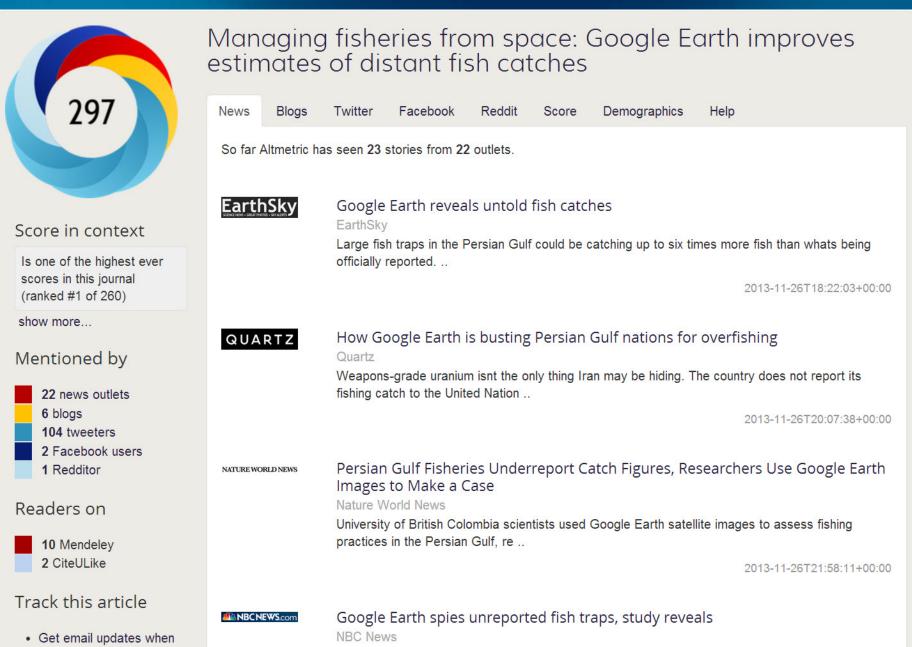
ISI Web of Knowledge[™]

SCOPUS

Counting Online Usage of Networked Electronic Resources

Metrics from scholarly usage of resources

Dubious indices of impact


Table 1. Some websites that provide impact factors of dubious validity

				Processing
Name	Website	Number of journals	Method of IF calculation	fee per journal indexed
Scientific Journal Impact Factor	http://www.sjifactor.inno-space.net/	>18,000	Not described	USD 50
CiteFactor	http://www.citefactor.org	11,649	Not described	NA
International Scientific Institute	http://www.scijournal.org	9,000	Not described	NA
Institute for Science Information	http://isi-thomsonreuters.com	8,282	Similar to JCR	NA
Global Impact Factor (GIF)	http://globalimpactfactor.com	1,800	Not described	USD 100
Scientific Indexing Services	http://sindexs.org	1,401	Similar to JCR	NA
Open Academic Journals Index	http://oaji.net	1,300	Not described	USD 100
Advanced Science Index	http://journal-index.org	1,092	Similar to JCR	NA
International Impact Factor Services	http://impactfactorservice.com	1,040	Similar to JCR	NA
Journals Impact Factor (JIFACTOR)	http://www.jifactor.orghttp://www.jifactor.com/	542	Similar to JCR	USD 25
ISRA Journal Impact Factor	http://www.israjif.org	514	Similar to JCR	USD 16
Journal Influence Factor	http://www.journalsconsortium.org	235	Not described	NA
Directory of Indexing and IF	http://www.diif.org	223	Similar to JCR	NA
Journal Impact Factor (JIF)	http://www.jifactor.com	200	Similar to JCR	NA
International Scientific Indexing ISI	http://isindexing.com	69	Not described	USD 100
Einstein Inst. for Scientific Information	http://journalimpactfactor.co.in	43	Not described	USD 41
General Impact Factor (GIF)	http://generalimpactfactor.com	30	Not described	NA
Council for Innovative Research	http://cirworld.org	16	Not described	NA
Universal Impact Factor	http://www.uifactor.org	NA	Not described	NA
Impact Factor (JCC)	http://www.journal-metrics.com	NA	Not described	NA
Impact Factor Journals	http://www.impactfactorjournals.com	NA	Not described	NA

Gutierrez et al. 2015

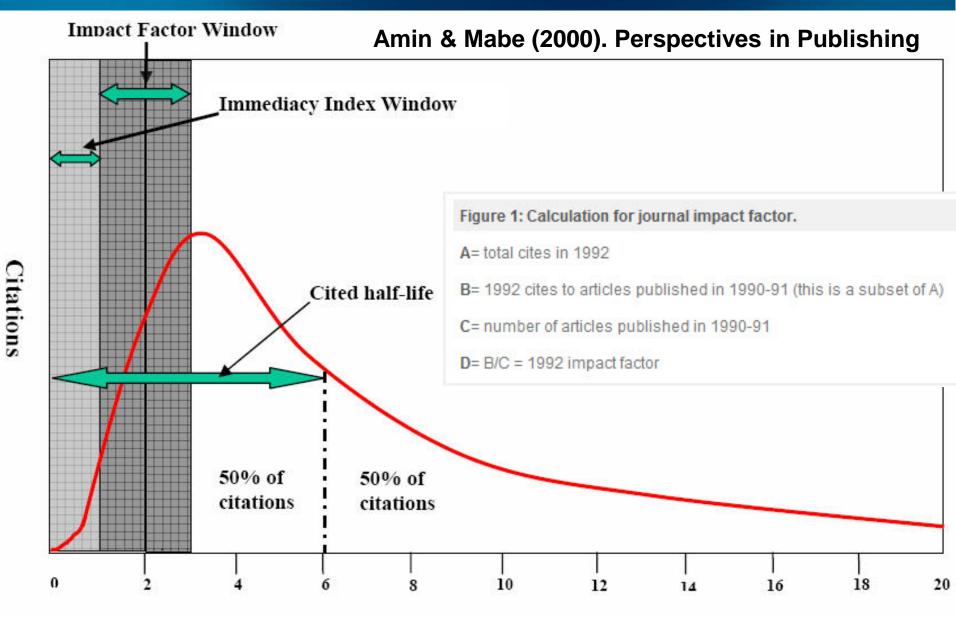
Alternative metrics

Scholarly

Involving or relating to SERIOUS academic study

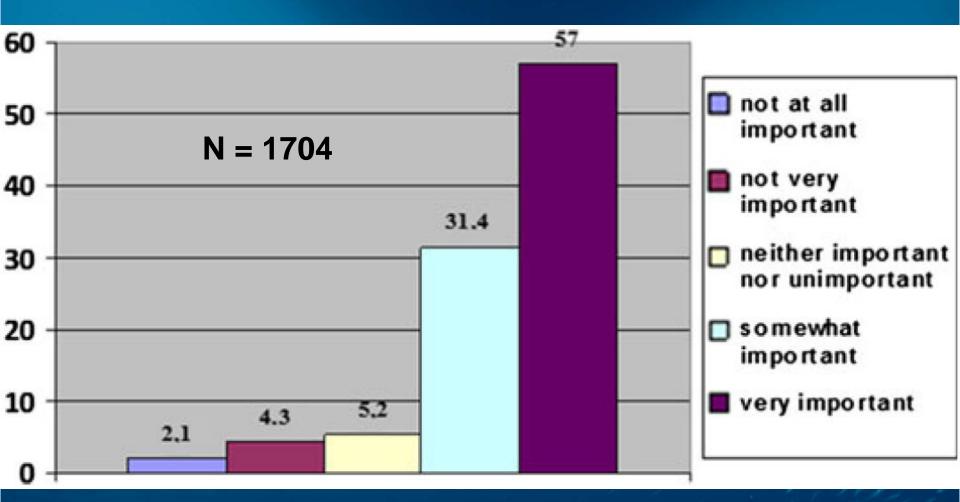
Having or showing knowledge, learning, or devotion to academic pursuits

All bibliometric indices/factors/ranking algorithms have their own inherent biases and limitations. These can be categorized as


internal (technical/empirical; based upon false premises or assumptions)

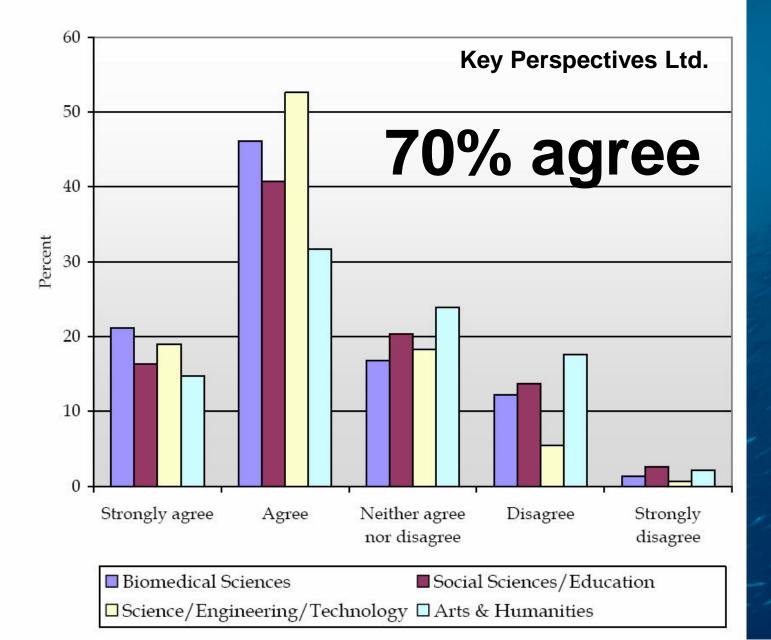
and

external (misinterpretation; misbehaviour of those being evaluated).



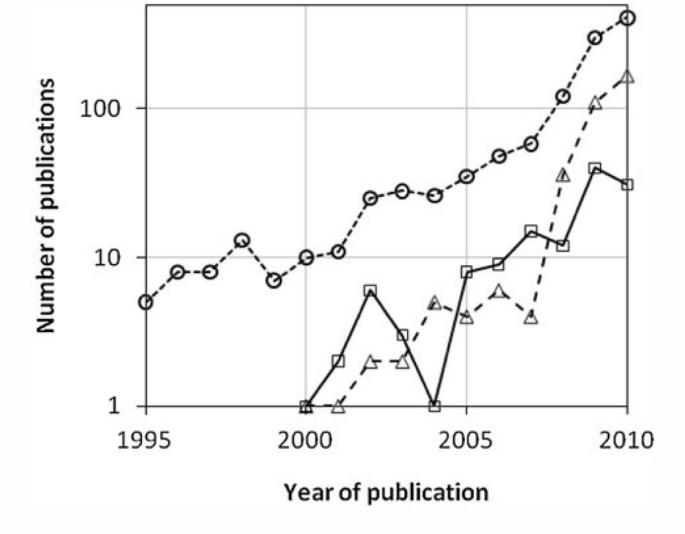
Impact Factor and associated metrics

Time after publication (Years)


How important is the JIF for the evaluation of science?

Buela-Casal & Zych 2012.

Authors were asked: To what extent do you agree or disagree with the following statement? Too much weight is given to journal Impact Factors in the assessment of scholars' published work.



- The 2-year citation window is too short for most fields annual citation rates for articles typically peak after three to five years (see e.g. IMU, 2008, p. 7).
- There are wide variations with journal and field in the proportion of published items not included in the JIF denominator, while the process by which Thomson Reuters classifies published items as 'substantive' has been characterised as "unscientific and arbitrary" (PLoS Medicine, 2006, p. 707).
- There are variations with type of paper, so review journals often emerge at the top of IIF rankings (Rogers, 2002, p. 541).
- The articles contributing to JIF exhibit a highly skewed distribution,⁸ so it is statistically invalid to use an arithmetic mean in calculating JIF (Metze, 2010, p. 937; Vanclay, 2012, p. 227).⁹
- Thomson Reuters insist on quoting JIF to 3 decimal places (i.e. 4 significant figures for many journals), even though the number of papers and citations involved means that most JIF values are not reliable to more than two significant figures (Hicks et al., 2015).¹⁰
- Independent efforts to replicate individual JIF values have failed, Thomson Reuters apparently using data that no-one else is allowed to see (Rossner et al., 2007, 2008).¹¹

Fig. 1 Exponential increase in documents found with a Scopus search for 'journal impact factor', showing all documents (*dotted line, circles*), editorial comment (*solid line, squares*) and critical documents (*dashed line, triangles*; with the words 'bias', 'limitation', 'problem', 'manipulate', 'misuse' or 'flaw' in the abstract)

Vanclay 2011

Aberrant/unethical behaviour – "Gaming" citations

Honorary authorship; gift authorship; ghost authorship; authorship exchanges

Citation exchanging

Cross-citing within journals

Frequent editorials

Aberrant/unethical behaviour – "Gaming" citations

Self-citation

Editors/reviewers suggesting that you cite their work or articles from their journals (= coercion)

Long publication queues

5. The 'online queue' stratagem

A new stratagem for inflating one's JIF has more recently come to light, although it has apparently been operating for several years.²³ A leading management journal (at least in terms of its JIF) was observed to have an unusually long queue of papers that are available online but yet to be fully published (i.e. with an issue and page number). Such an online queue has several considerable benefits with respect to the JIF.

1. If the online queue is, say, around two years long, then this doubles the number of papers that can be cited during the two-year JIF citation window without affecting the denominator.²⁴ Then, when an online paper is finally published two years later, it counts again for a further two years towards the JIF. Thus, a paper made available online towards the end of 2010 counts in the 2011 and 2012 JIF calculations (but not in the denominator); if it is then published at the start of 2013, it counts towards the 2014 and 2015 JIF. The net effect is thus to potentially double the JIF *the JIF doubler effect*).

journal homepage: www.elsevier.com/locate/resp

Editorial

- 2. Citations to a paper tend to build up slowly in Years 1 and 2 and then accumulate at a much faster rate in Years 3 and 4. By holding a paper in the online queue for two years, when it is finally published, it is then earning citations at the Year 3 rate. Papers in Year 3 typically earn about the same number of citations as in Years 1 and 2 combined, and the Year 4 figure is broadly similar.²⁵ Hence, the net effect of this is to add a further 50% or so to the doubling effect described above *(the JIF accelerator effect)*.
- 3. The astute editor, when deciding which papers in the online queue should be chosen to publish in the next issue, can 'cherry' pick' those accruing citations at a faster rate. Conversely, those online papers still earning few citations can be left in the online queue where, because they do not count in the IIF denominator, they do not 'dilute' the JIF. If the editor has an available queue, say, of two years-worth of papers from which those to be published in a given year are to be chosen, and if the top 50% most cited papers are indeed chosen, then for a typical journal²⁶ these earn approximately twice as many citations per year as the bottom 50% (least cited) papers (i.e. a third more than the overall average). Hence, this stratagem offers the possibility for a further 30% increase of the JIF the JIF cherry-picking effect).

Martin (2016) Research Policy

Contents lists available at ScienceDirect

journal homepage; www.elsevier.com/locate/respo

Editorial

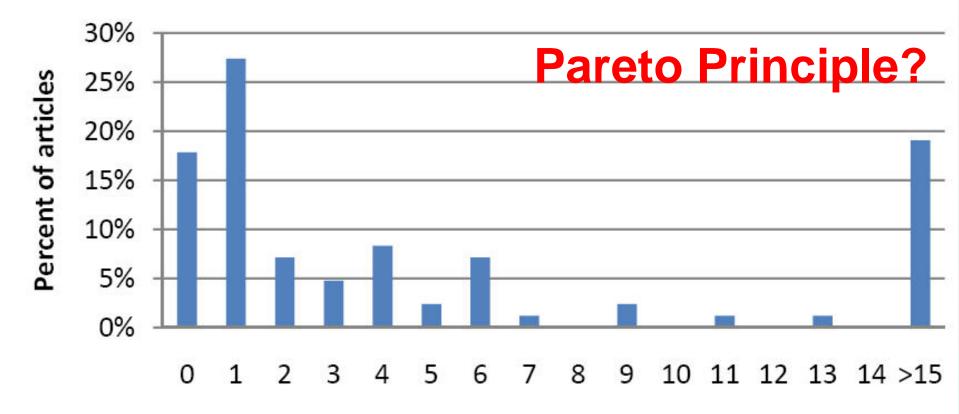
4. Finally, a really smart editor might leave some of the highest cited papers in the online queue until he/she is ready to compile the January issue at the start of the calendar year. That way, these papers would have the longest possible time to accrue citations before the JIF window closes. Since papers published in the first of the two years included in the JIF 'window' tend to predominate in contributing to the JIF calculation, the effect is to give the most cited papers 23 months to contribute rather than an average of around 17 months. Hence, if an editor was able to implement this strategy successfully, it could add up to another 30% or so to the JIF (the JIF front-loading effect)

= quadrupled JiF

Research Policy 45 (2016) 1-7

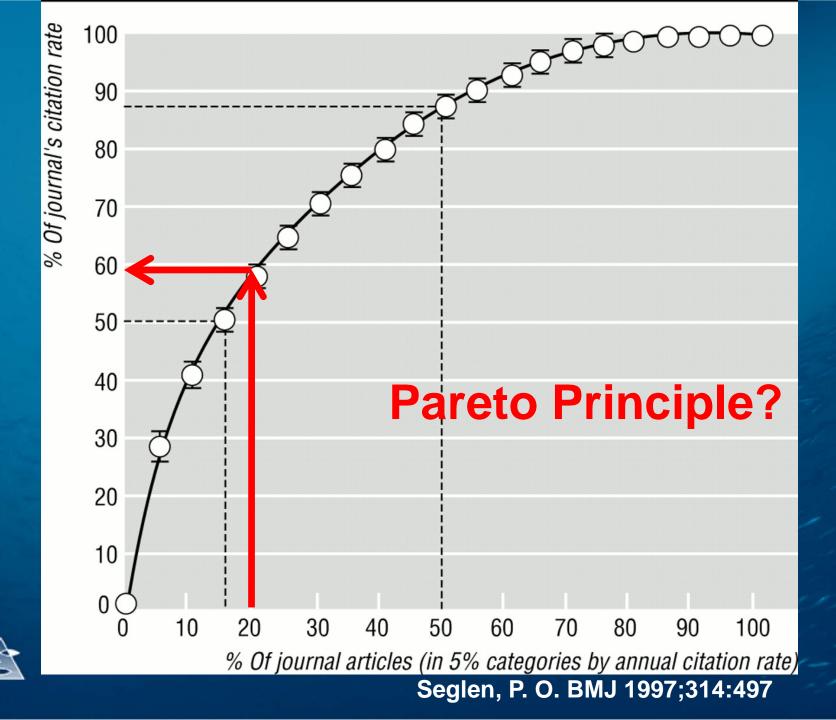
Martin (2016) Research Policy

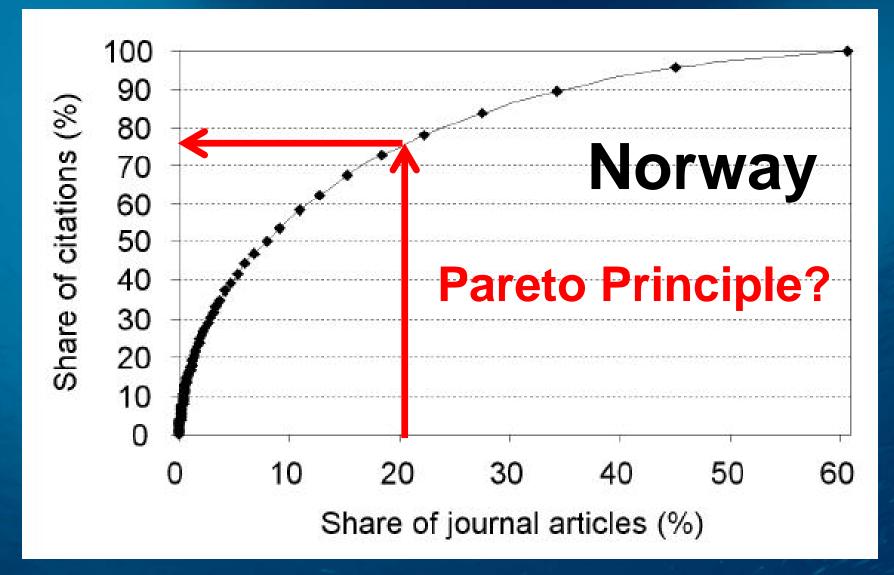
Editorial


The Pareto principle

(also known as the 80-20 rule, the law of the vital few and the principle of factor sparsity)

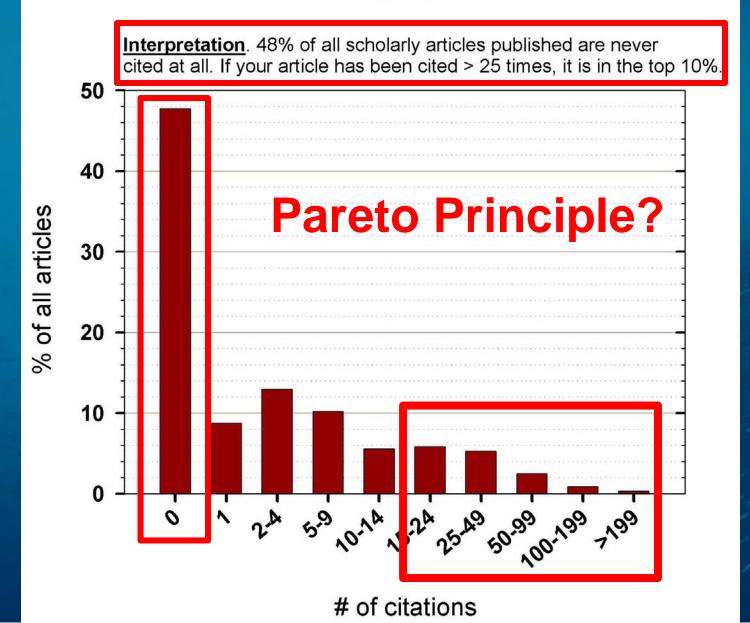
states that, for many events, 80% of the effects come from 20% of the causes.

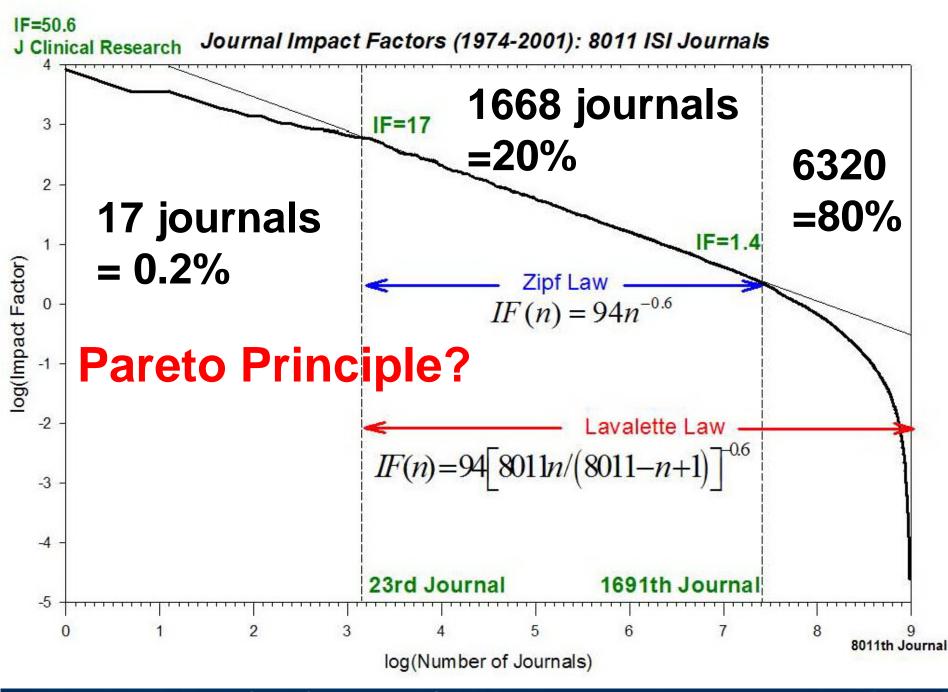

Scientist's Citation Record (84 articles)



Citations

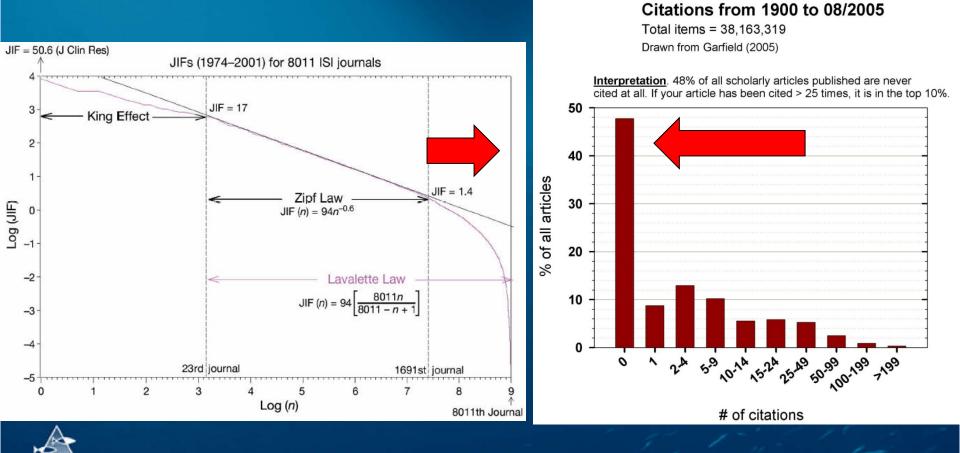
Adler et al. (2008). Internat. Math. Union. Report on Citation Statistics


Aksnes & Sivertsen (2004). Scientometrics 59: 213-224.



Citations from 1900 to 08/2005

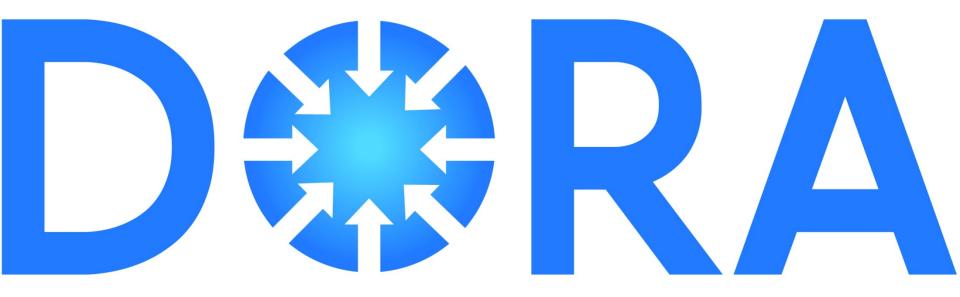
Total items = 38,163,319


Drawn from Garfield (2005)

Taylor et al. (2008) Ethics in Science and Environmental Politics

Is >90% of all published scholarly output of low quality and without impact?

IF mania continues despite broad condemnation because it is useful to certain elite investigators, journals and funding organizations (2). As long as resources and positions remain scarce, the perverse competitive cycle driven by IF mania will continue despite the overall damage that it causes to the scientific enterprise. The possibility that a focus on impact over importance is distorting the course of science should be of tremendous concern to all scientists, even those who benefit from the status quo. A renewed effort is needed to return science to an emphasis on rigor, reproducibility, and responsibility while encouraging scientific curiosity in all its forms. Together we can disimpact science. (In clinical medicine, the procedure of disimpaction involves the manual removal of feces from the rectum of an impacted individual to relieve constipation. The patient feels much better afterwards.)


Impacted Science: Impact Is Not Importance

Arturo Casadevall,^a Founding Editor in Chief, mBio, Ferric C. Fang,^b Editor in Chief, Infection

http://fishlarvae.org

San Francisco

Declaration on Research Assessment

http://am.ascb.org/dora/

Recommendations

Compare your publication record against peers in your own field, and with the same number of years experience

Compare the citations of your articles to those published on the same topic in the same year in a journal of equivalent rank

Accept the 80/20 rule and expect to have many articles with few or no cites

View publishing in "high impact" journals, or having a highly cited article, as a rare event, not a main career objective

