
CODECHECK: An open-science initiative to facilitate sharing of
computer programs and results presented in scientific publications.
Stephen J Eglen (University of Cambridge) and Daniel Nüst (University of Münster).
Supported by Mozilla mini science award and UK Software Sustainability Institute. (CC BY 4.0 License)

WHAT IS IT?
1. CODECHECK is a system for independent verification of

computations reported in publications.

2. A CODECHECKER is a reviewer of the code, checking
that it works in an independent environment.

3. CODECHECKER writes a certificate showing what could
be reproduced using the author’s data and code.

4. This certificate increases trust in the results presented
in scientific publications and allows others to reuse the
code.

WHY?
• Problem: Computer programs underlying publica-

tions are valuable artifacts, yet are currently rarely
archived or shared.

• Some solutions emerging, e.g. CODE OCEAN (“repro-
ducible forever for everyone”).

• We deliberately set the bar low: “reproducible once for
someone else.”

• We believe that sharing code, in whatever state, is better
than nothing; having some of it independently checked is
useful.

HOW DOES IT WORK?

WHO DOES THE WORK?
AUTHOR must provide code and data, and assume it will be freely available at some point.

Must also provide a description (either human or machine readable) description of how
to run code.

CODECHECKER has to run code and check that it works, then write short certificate.

PUBLISHER can oversee this process, and refers to certificate in article.

WHO BENEFITS?
AUTHOR Can run check before submission and confirm “code works” for someone else.

Archival for future reference.

PEER REVIEWERS If certificate available during peer review, reviewer can read it.

PUBLISHER Gets a code/data/results bundle to share.

READERS Can check certificate contents and immediately build upon the work.

HOW DOES IT WORK?
1. AUTHOR submits code and data.

2. CODECHECKER runs code and data; iterates with AU-
THOR until “code works”.

3. CODECHECKER writes certificate stating what outputs
were generated in their computing environment.

4. Certificate, with code and data, submitted to ZENODO.

5. Certificate is then shared by AUTHOR and PUBLISHER
to the community. (Badge or URL in methods.)

PRINCIPLES
1. CODECHECKERS ARE HUMANS AND COMMUNICATION IS KEY. Codechecker will

likely need to communicate with author to iterate on checking software.

2. CODECHECKERS RECORD BUT DON’T INVESTIGATE OR FIX. If any problems are
found, the author is informed of the problem and normally expected to fix it.

3. CREDIT IS GIVEN TO CODECHECKERS. Certificate is authored by CODECHECKER
and deposited in Zenodo. Metadata about certificate deposited to public databases (e.g.
CrossRef, Publons).

4. WORKFLOWS ARE SCRIPTED, AUDITABLE, AND THEY WORK. Codechecker will
write scripts (Makefile, Dockerfile) to automate the process and provide an audit log of
what was done.

TECHNOLOGY
1. Author provides code + data. We need LICENSE, MANIFEST, and README or Makefile.

2. Codechecker repository on github stores code and data.

3. Use software (Docker, python virtualenvs, R renv ) for fresh environments.

4. Makefile to provide human- and machine-readable description of workflow.

5. mybinder for interactively sharing environments.

6. Rmarkdown currently used to author certificates.

7. Certificates deposited on Zenodo by Codechecker.

8. Currently reliant on publishers for deposition of metadata to relevant sites (ORCID,
CrossRef, Publons).

LIMITATIONS
1. Relies on a human Codechecker, so needs resource (and credit) to succeed.

2. Author’s code and data must be freely available.

3. Easy to pass the CODECHECK (e.g. by embedding output figures in code!), but as
code/data are open, should be easily found.

4. Threshold for certificate is low (minimum suggested: one figure from a paper).

5. High-performance compute examples may be too demanding to replicate.

WHAT NEXT?
1. Generating workflows consistent with principles that adapt to situation (particular needs

for publishers, or author testing pre-submission).

2. Develop and train a pool of Codecheckers, perhaps Early Career Researchers.

3. Continue discussions with journals eLife, Gigascience, Scientific Data.

4. Generating portfolio of certificates in computational neuroscience to act as examplars.

5. Check our website for further information: http://codecheck.org.uk


