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Abstract

Change detection is a well-known topic of remote sensing. The goal is to
track and monitor the evolution of changes affecting the Earth surface over
time. The recently increased availability in remote sensing data for Earth
observation and in computational power has raised the interest in this field of
research. In particular, the keywords “multitemporal” and “heterogeneous”
play prominent roles. The former refers to the availability and the compari-
son of two or more satellite images of the same place on the ground, in order
to find changes and track the evolution of the observed surface, maybe with
different time sensitivities. The latter refers to the capability of performing
change detection with images coming from different sources, corresponding
to different sensors, wavelengths, polarizations, acquisition geometries, etc.

This thesis addresses the challenging topic of multitemporal change detec-
tion with heterogeneous remote sensing images. It proposes a novel ap-
proach, taking inspiration from recent developments in the literature. The
proposed method is based on deep learning - involving autoencoders of con-
volutional neural networks - and represents an exapmple of unsupervised
change detection. A major novelty of the work consists in including a
prior information model, used to make the method unsupervised, within
a well-established algorithm such as the canonical correlation analysis, and
in combining these with a deep learning framework to give rise to an image
translation method able to compare heterogeneous images regardless of their
highly different domains.

The theoretical analysis is supported by experimental results, comparing
the proposed methodology to the state of the art of this discipline. Two
different datasets were used for the experiments, and the results obtained
on both of them show the effectiveness of the proposed method.
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Chapter 1

Introduction

Nowadays, data are one of the leading assets in our society, and their anal-
ysis is a driver for new researches and new investments. Thanks to the
new generations of satellites, and increased capacity in storage and com-
putation, remote sensing is gaining more and more importance in research
studies of many fields. The number of satellites is continuously growing,
and this leads to more acquisitions which allow for an easier Earth and
environmental monitoring. Remote sensing images are catching on in our
daily life, ranging from common web mapping and weather forecast services
to advanced studies on climate change, environmental monitoring, disaster
risk management, etc.
This thesis deals with the topic of multi-temporal change detection with het-
erogeneous remote sensing images. It is an emerging and highly prominent
topic in publications and journals. The attention to this matter is related to
the vast availability of images acquired by different missions and sensors. In
the past, almost only same-sensor (i.e. homogeneous) acquisitions were used
for multitemporal change detection. However, it is becoming of the utmost
importance to be able to compare heterogeneous images to take advantage of
the variety of satellite observations: multispectral, panchromatic and radar
with different wavelength bands, radar frequencies, polarisations, acquisition
geometries, etc. Let us give a couple of examples: to track changes in time,
it is necessary to assure the backward compatibility with older acquisitions
systems; maybe old data were acquired by a retired satellite with outdated
technology, and here comes the necessity of heterogeneous change detection.
Furthermore, in case of disaster recovery, it is essential to use the first avail-
able image to assess the damages to roads and infrastructures, and it may
not be possible to wait for the next same-satellite acquisition, which can
be a few days later. Other social valuable applications of change detection
are land usage and urban monitoring, post-catastrophe assessments, crop
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2 CHAPTER 1. INTRODUCTION

monitoring and surveillance.
This hot topic in research is also challenging; the heterogeneous change de-
tection aims to compare two acquisitions which are semantically different,
for example, an optical image and a synthetic aperture radar (SAR) im-
age, but also two optical images acquired by different optical sensors with
distinct channels are classified as heterogeneous. The core of the problem
is to tackle the complexity in comparing two different physical quantities
because different sensors measure different quantities. The problem cannot
be solved using visual inspection for many reasons, the first is that very
specialised knowledge would be needed and also the quantity of data to be
analysed would be extremely time-consuming if addressed through a photo-
interpretation effort. An automatic approach is developed in this thesis.
The path chosen in this work falls entirely within the framework of unsu-
pervised techniques of machine learning. More specifically, some concepts
of classical learning have been used in pair with deep learning strategies.
The research has been focused on bi-temporal acquisitions. The core idea of
the methodology proposed is the image translation across two domains, in
order to bring the two heterogeneous acquisition towards a common domain
in which they can be compared. For this purpose, A deep neural network is
deployed to learn the translation function from one domain to the other and
vice-versa. The domain translation is guided by prior information extracted
automatically off-line from the images through a graph-theoretic approach
based on local affinity matrices. The proposed deep neural network is formed
by a pair of autoencoders, coupled together by a processing block performing
the canonical correlation analysis (CCA) in the latent space to force code
space alignment.

1.1 Contribution

The candidate’s contribution is both theoretical and practical. Firstly, this
study investigates the literature about change detection in general and CCA.
Secondly, it proposes a new heterogeneous change detection method based
on the integration of the CCA method and its derived techniques, of a deep
learning architecture based on two autoencoders, and of a priori knowledge
extracted through local affinity matrices. In this respect, the present work
extends the approach developed in [Luppino et al., 2020], in which an ad-
versarial approach was used to favor the alignment in a common domain.
Moreover, the work conducted within the thesis activity also included the
development and integration of the code to carry out the experiments, using
different tools: Docker to create a virtual environment for the testing of the
project; Python, TensorFlow and Keras to develop and integrate the ma-
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chine learning code; experiments settings and testing to run the experiments
on a server.
This thesis was carried out within an internship at UiT – the Arctic Uni-
versity of Norway and resulted in the following publication:
[Figari Tomenotti et al., submitted], F. Figari Tomenotti; L.T. Luppino;
M.A. Hansen; G. Moser, S.N. Anfinsen;Heterogeneous Change Detection
with Self-Supervised Deep Canonically Correlated Autoencoders, submitted
to the 2020 IEEE IGARSS International Geoscience and Remote Sensing
Symposium (IGARSS), Kona, HI, July 2020.

1.2 Outline

This thesis is organised into four chapters. Chapter 2 provides a general in-
troduction to remote sensing, giving importance to data acquisition systems
and providing detailed explanations of different methodologies of change de-
tection. Chapter 3 presents some basic theory concepts and technical back-
ground in order to understand the machine learning methodologies used:
Canonical Correlation Analysis and some Deep learning frameworks are pre-
sented. Chapter 4 explains in detail the proposed methodology. Chapter 5
presents and discusses the experimental results and the comparisons. In the
last Chapter, 6, conclusions are drawn.
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Chapter 2

Introduction to remote
sensing and change detection

2.1 Remote Sensing

Remote sensing is the scientific and technical discipline whose aim is the
information acquisition about a target without accessing directly to it. In
other words, without touching or reaching it physically, it is possible to
retrieve some parameters which allow determining some physical quantity
of the object under analysis (such as shape, chemical composition, speed).
All these methods take advantage of different electromagnetic techniques
and data processing algorithms.

Despite the very generic name and the broad description given above,
in this work, we will refer in particular to remote sensing for Earth observa-
tion. Earth is the place where we live, and we extract our resources from it:
food, fuels, water; therefore, monitoring our planet is of the utmost impor-
tance. The results of remote sensing for Earth observation is also essential in
many research studies for climate changes: and the major space agencies of
the World play an active role in deploying new instruments and developing
novel ways of studying these phenomena [NASA]. Moreover, industrial and
agricultural applications of remote sensing studies are popular and already
employed. Some of the most interesting and valuable applications in this
discipline are briefly presented.

• Land cover mapping. It permits to monitor urban development as
well as farming lands. For example, searching for building alteration
or new construction is vital for authorities in order to collect taxes
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6 CHAPTER 2. REMOTE SENSING AND CHANGE DETECTION

and monitor the security of the country. Besides, soil usage allows
for observation of crop subdivision over territory and for statistical
purposes [Moser et al., 2012].

• Bio- and Geophysical parameters retrieval. Very useful in environmen-
tal monitoring: biomass concentration retrieval in forests, analysis of
plant species dispersion in a territory or surveillance of their health
status; oceans studies and supervision (such as chlorophyll density,
temperature [Minnett et al., 2019], Figure 2.1 shows an example).
Mapping soil moisture and type for agricultural planning. Measuring
wind speed or air temperature in a wide range of places, also in the
middle of the oceans (e.g. allowing feasibility studies for wind farms).

• Disaster Management. Remote sensing permits authorities to have a
clear idea of the entity of a natural (or anthropic) disaster just after it:
comparing images of the same zone before and after the event [Inglada
and Giros, 2004]. Of course, at least one post-catastrophe image needs
to be acquired.

• Arctic wildlife monitoring. Scientists have found interesting to monitor
animals, especially white animals who live in the Arctic, easy to spot
by satellites [Lavigne, 1976].

• Weather forecast. It is of uttermost importance both in the short
period:“tomorrow there will be a hurrican”; as in the long one: “tem-
perature will increase of 2.5 K in the next 50 year”. [Racah et al.,
2016]

Figure 2.1: Example of remote sensing application: World sea surface tem-
perature, November 2018. Credit: [Minnett et al., 2019]
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All the mentioned applications are not new, neither impossible before the
use of remote sensing techniques; however, they were too much expensive or
time-consuming to be accomplished in an extensive way as nowadays. In the
last decades, remote sensing for Earth observations has become increasingly
popular due to the new techniques of data processing and the new capabil-
ities in terms of available computational power. Furthermore, the number
of satellites for this purpose has hugely increased, and some resources are
now available for free. Remote sensing consists of two different operative
moments: data acquisition and data processing, summed up in Figure 2.2

Figure 2.2: Summary of the operational moments in an Earth observation
processing chain.

2.2 Data Acquisition System

Remote sensing can use different means in order to acquire data; however,
nowadays, the majority of data are collected from satellites. These satellites
are equipped with special sensors which permit to scan the Earth surfaces
in many distinct ways and to look for various targets. An example of the
working principle is illustrated in Figure 2.3. Technically speaking, pas-
sive sensors measure the electromagnetic radiation (related to power density
[Watt/m2]) reflected from the Earth surface or spontaneously emitted by the
surface itself. Each satellite is equipped to capture the electromagnetic radi-
ation in several bands, where each band is a determined interval of contigu-
ous frequencies. The information carried by each frequency is different, the
optical (visible) portion of the spectrum carries information about colours
of the target (the same structure we can appreciate with eyes); further on,
the thermal infrared frequencies give information about the temperature of
the objects. (There are many applications which use this concept to study
the temperatures of the oceans or also of the mainland in remote regions of
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the planet [Handcock et al., 2012]). An example of the working principle is
illustrated in Figure 2.3.

An acquisition system is very complex and many challenges need to be

Figure 2.3: Remote sensing for Earth observation. Scheme of the data
acquisition step.1

overcome in order to have it in place and working. Disregarding the phys-
ical structure and the instruments, we would like to spend a few words to
explain the difficulties of the information retrieval process. First of all, the
atmosphere is formed by many elements in the gas state, and it is hundreds
of kilometres thick. The electromagnetic radiation, while passing through
it, interact with these elements, and they can lose power due to absorption
and distortion. Secondly, the behaviour of the atmosphere is not static, and
so it should be modelled as a dynamic system, applying the right corrections
to the signal. The atmosphere behaviour respect to the electromagnetic ra-
diation is summed up in Figure 2.4; it is easily understandable that specific
frequencies are entirely absorbed, and others remain unchanged crossing the
atmosphere.

1Credits to Alessandra Maresca for drawing this beautiful scheme.
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Figure 2.4: Atmospheric windows in the electromagnetic spectrum. White
is the percentage of the transmitted power which passes through the atmo-
sphere at that wavelength. Black represents the complementary absorption
percentage and emphasizes the absorption bands.

This atmospheric behaviour forces to use only a small portion of the
electromagnetic spectrum for our purposes. Indeed, the following Table
2.1 illustrates the wavelengths for Earth observation, which report as an
example the bands in use of the Landsat 8 instruments, launched in February
2013.

Operational Land Imager

band type wavelength (µm) spatial resolution (m)

1 visible 0.43-0.45 30

2 visible 0.450-0.51 30

3 visible 0.53-0.59 30

4 red 0.64-0.67 30

5 near-infrared 0.85-0.88 30

6 SWIR1 1.75-1.65 30

7 SWIR2 2.11-2.29 30

8 panchromatic 0.50-0.68 15

9 cirrus 1.36-1.38 30

Thermal Infrared Sensor

10 TIRS1 10.6-11.19 100

11 TIRS2 11.5-12.51 100

Table 2.1: Electromagnetic bands in use by Landsat 8 instruments.
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2.2.1 Sensor and characteristics

There are many types of sensor for remote sensing, and they can be classi-
fied in different ways. The biggest classification is dividing sensors between
passive and active:

• passive: they measure the spectral signature of the electromagnetic
radiation emitted or reflected.
The electromagnetic profile acts like a signature which allows to iden-
tify materials. More clearly, we can state that every material has its
property of reflectance, and analysing the behaviour in a collection of
frequency it is possible to separate it from all the others. An example
is represented in fig 2.5.

• active: they illuminate the Earth with an electromagnetic source (usu-
ally in the microwaves) and measure the backscattered energy, this is
known as radar technique. The most advanced type used is the SAR
(synthetic aperture radar) system. Radar is extremely convenient be-
cause it uses longer wavelength compared to optical sensors. It ensures
the signal to pass easily through clouds, smoke and to work day and
night. However, it can not rely on a specific spectral signature for all
materials.
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Figure 2.5: Example of spectral signature: vegetation reflectance. Plants are
generally different in their reflectance signature, but differences are also ap-
preciable between green and dry plants of the same species. Credit: [Goven-
der et al., 2007]

Optical sensors are also characterised by some quantities which define
the quality of the final image: the spatial resolution (size of the smallest dis-
tinguishable target on Earth), the spectral resolution (width of the bandpass
around each scanned frequency), the radiometric resolution (quantisation of
each band), the temporal resolution (revisiting time over the same zone).

It is also possible to classify the passive sensors based on the number
of used bands in the electromagnetic spectrum:

• panchromatic sensor: it is a single-channel detector which usually
spans all the visible range; the acquired images are black and white
pictures from the space. The actual spatial resolution can reach 0.3
meters.

• multispectral sensor: it is a multi-channel detector, with 5-7 bands;
usually the visible region is included.

• superspectral sensor: it acquires an image which is a superposition of
different intensity measures in many separate and narrow bands of the
spectrum. This type of sensor usually has more than 10 bands.
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• hyperspectral sensor: it is also known as imaging spectrometer, and it
deploys many bands, usually hundreds, with a very narrow bandwidth.

2.3 Data processing

Remote sensing is not only data acquisition but above all, data manipula-
tion and processing.
The acquired images undergo two different steps: the pre-processing phase
and the processing proper. The pre-processing includes some calibration,
correction of geometric or radiometric distortion and georeferencing. In-
stead, the processing phase aims to extract the useful and desired informa-
tion also combining them with ancillary information, maybe ground mea-
surements or some a priori information. Data processing for change detec-
tion makes use of machine learning algorithms; both supervised and unsu-
pervised settings found their application in remote sensing. For now, let us
only say that supervised algorithms need some extra input to reach their
goal correctly. On the other hand, unsupervised ones do not need any other
input more than the satellite data.
In the data processing framework, there are many possibilities in order to
achieve different goals. The target of this thesis is to perform change detec-
tion, which is described in the following sections.

2.3.1 Data types

Remote sensing is about acquiring data and process them to get useful infor-
mation. Before entering deeply into the processing part, we shall statistically
characterise the data.
First of all, data are always affected by errors; in this application, they are
mainly due to noise during the acquisition process. In particular, optical
data have two major noise types: additive uniform noise and salt and pep-
per noise. On the contrary, radar images are affected by speckle, which is a
multiplicative noise-like phenomenon. Properly speaking speckle is not noise
but an inborn result of the radar process acquisition, however, it makes im-
ages look noisy. The argument will be examined more in-depth in the next
chapter.
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2.4 Change detection

This discipline aims at finding differences given a series of images of the
same place, taken in different time instants. It is useful to highlight changes
on the ground (e.g. new buildings, change of crop). The simplest case is
when only two images are present X t1 and Y t2 , where t1, t2 are two generic
time instant, with t1 < t2.
Having a couple of images representing the same place (e.g. an urban area),
maybe in RGB colours or in b/w, it does not sound like a hard task spotting
differences between them. Even though our brain is capable of distinguish-
ing differences, it performs this operation in a very sophisticated way. For
example, it would neglect some features that we know not proper of the
terrain or the buildings, for example, the shadows. However, a machine
does not know what is a shadow, that it can turn with the Sun movements,
and that is not a proper change on the ground. Taking pictures from the
satellite implies to count for the differences in illumination, time of the day
or angle of view. These are not hard tasks for our brain; however, they are
for a computer.
On the contrary, a human can only analyse some km2 of terrain; instead, a
machine can analyse entire regions in a small amount of time. This argu-
ment is also more persuasive if we think to compare hyperspectral images
when the number of channels is quite high, and the information carried in
some bands, outside the visible region, can be meaningless to us, or better
we are not able to appreciate changes.
On the downside, a computer needs to know what is looking for and what
type of difference to neglect. Because, as partially already stated, the Sun el-
evation, parallax effects, registration error and noise can generate spectrally
appreciable changes, but without belonging to a specific or semantic class
transition [Volpi, 2013]. In other words, a critical point in change detection
is the influence of image changes which do not represent real variations in
the structure of the analysed environment; we have mentioned shadows, but
further, we can say clouds (in optical images) and clouds shadows on the
terrain; atmospheric interaction during different seasons or time of the day.
To cope with all these problems some countermeasures have been adopted;
the basic one is the assumption to use acquisition where relevant changes
are more significant in intensity than signal changes due to other reasons
(e.g. atmospheric conditions). The next two sections investigate two differ-
ent change detection framework: the Homogeneous and the Heterogeneous.
The former utilises types of images acquired by the same sensor, and in
similar conditions of light, orbit direction and angle. The latter, instead, is
more challenging because it concerns images from different sensors and also
from different domains, for example, from optical and radar sensors.
The final goal of change detection is a change map, that is a 2-class classifi-



14 CHAPTER 2. REMOTE SENSING AND CHANGE DETECTION

cation of the original image; in other words, each pixel must be labelled as
changed or not changed.

2.4.1 Homogeneous Change Detection

Homogeneous change detection means combining and comparing informa-
tion acquired by the same sensor, or at least the same sensor type. It deals
with the comparison of images which lay in the same domain, so acquired
with the same frequency, polarisation, geometry, etc. The key point is to
have a homogeneous domain where the measurements taken by the instru-
ments represent the same quantity: intensity, reflectance, radiance.
Different methodologies have been developed to obtain the change map in
a Homogeneous case. Nevertheless, the most simple way is through math-
ematical and comparison operators: difference for optical images, and ratio
for radar images. The approach is different because the two types of images
suffer from different noise patterns. For homogeneous change detection,
there are two typical approaches as highlighted in [Bovolo and Bruzzone,
2015]: fusion at the feature level and fusion at the decision level.
Fusion at feature level is intended as a comparison in the raw data domain.
It is possible to extract the multitemporal information needed, analysing
the different signatures in the two time instants. This class of techniques is
mainly used with unsupervised algorithms. To cite some of them: differenti-
ation/ratio (also known as Univariate Image Differencing or Change Vector
Analysis for optical images) with thresholding and automatic thresholding
algorithms [Moser and Serpico, 2006]; non-linear feature extraction is also
feasible but more complex; further, the Principal Component Analysis can
be applied to the single time image or to the stacked features as in [Fung
and LeDrew, 1987].
Fusion at decision level is quite different from the previous because it as-
sumes to classify and to segment the two images and then perform change
detection on the result of the segmentation. In this case, the segmenta-
tion can be done relying on each image separately or exploiting the mutual
information between them to construct the segmented images.

It is evident how the two methodologies are prone to errors in differ-
ent cases; however, when well-tuned and relying on good images (correctly
registered, calibrated, etc.), they can achieve good performances. Moreover,
there are many areas of interest where the homogeneous change detection
framework is easily applicable and very convenient. For example, to moni-
tor some medium-long term changes: because - even if the revisit time of a
satellite is long or some acquisitions are useless due to weather condition -
it is possible to obtain an excellent final result. The main drawback of the
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Figure 2.6: Multitemporal data fusion for change detection. (a) Fusion at
feature level, (b) Fusion at decision level.

Homogeneous methodology, in the most strict circumstances, it is that the
algorithm can be applied only to the measures taken from one sensor in one
specific operational modality. In case a satellite (or a family of them) has
been retired and substituted with a new one, the compatibility of the old
method in order to compare old and new images is not assured.Moreover,
the instruments of many recent missions can be operated in a variety of
modalities, which differ in their geometry, polarization, or frequency.
Concluding, it is essential to say that all the previous methods do not always
fit with very-high-resolution images.

2.4.2 Heterogeneous Change Detection

Heterogeneous change detection (HCD) is an emerging topic in earth ob-
servation. It answers the increasing availability of remote sensing data by
offering methods that allow to combine images of radically different nature
and still extract reliable information about changes on the surface. The
images could be acquired by multimodal sensors, such as optical instru-
ments and synthetic aperture radar (SAR), or they can be recorded with
different sensor parameters or under distinct environmental conditions, cases
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that would otherwise not be comparable unless possibly through meticulous
pre-processing and co-calibration. In the bitemporal setting (two images
available), HCD is particularly useful to obtain situational awareness after
sudden change events such as a natural disaster. That is when it is impor-
tant to use the first image source of opportunity to map changes, instead of
waiting for the next acquisition that permits a comparison of homogeneous
images. Furthermore, for monitoring long-term trends, the joint analysis of
heterogeneous sources allows us to extend the time frame of the analysis or
to increase the temporal resolution. Lastly, SAR images are available also
in case of cloud cover (tropical and sub-tropical areas are very prone to this
phenomenon) or smoke cover of the sky, because microwave penetrates in
them.

Regardless of the motivation, HCD relies on the fundamental assump-
tion that the changed areas have a distinct signature for all the sensors
involved, even though the physical origin of this signal may be different.
Moreover, since an absolute reference is lacking when we contrast heteroge-
neous data, the problem is inherently ill-posed, and the labelling of pixels or
segments as changed and unchanged is generally ambiguous. It is necessary
to assume some additional prior information in order to discern the change
class. A typical prior assumption is that the change concerns small regions
or a minority of the pixels in an image or another one is when the charac-
teristic signature of one of the classes involved in the transition is known.
The mentioned minority assumption is common in generic methods, while
signature assumptions can be advantageous to customise an algorithm for a
thematic application.

While the first works on HCD were developed in the supervised setting,
focus in recent years has turned to the unsupervised case [Mercier et al.,
2008]. This makes the method more suitable for practical cases since ground
truth in Earth observation is sparse and costly to collect. Another trend is
that deep learning prevails more and more, as in other areas of computer
vision and image analysis. Most current HCD approaches adopt transforma-
tions between the input domains, or from these to a common latent domain,
to bring data to a space where they can be efficiently compared. Con-
volutional neural network (CNN) architectures such as autoencoders and
generative adversarial networks are flexible and powerful tools that can ac-
complish these image translation tasks, as reviewed in [Luppino et al., 2019,
2020].



Chapter 3

Theory and technical
background

3.1 Machine Learning Introduction

Machine Learning is a discipline at the intersection of computer science and
statistics. It is the ability to use data and models to predict some behaviour,
or again to use data to create an high predictive model of a phenomenon.
The machine learning core is detecting patterns and regularities underneath
the raw data. Machine learning is also a part of the big world of artificial
intelligence. To be intelligent, a system needs also to have the capability of
adapt to the changes in the environment. So we have stated that machine
learning is to create models based on statistical and probabilistic rules. This
thesis deploys some classical machine learning algorithms and methods as
well as some modern deep learning ones. In the following, the basics knowl-
edge to understand our methodology is presented; and because this work is
not a systematic dissertation on machine learning, neither on deep learning
only the necessary concepts will be illustrated.

3.2 Prior computation: the affinity matrix

An affinity matrix is a statistical object used to show similarity between
data points. Is is constructed setting a metric and looking for data which
have minimum distances, and represent them with a 1 in the matrix (a 0
means different data); so it uses the concept of distance, but however it is
quite the opposite, because when the distance between two instances is 0,
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the matrix entry is set to 1. The deploy of this concepts let machine to mimic
the human action of associating similar things. And this similarity can be
every concept, it depend on the metric chosen. Specialising the concept, an
affinity matrix can look for repetitive or similar patterns inside pixels and
group of pixel.
An extension of a binary affinity matrix is a matrix where each entry is
calculated as a result of a multiplication of our data with a kernel, in this
case values can range, for example, in the set [0, 1].

3.3 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is a method for reducing the dimen-
sionality of a couple of sets of samples taking into account their mutual
correlation. It projects the samples in a common space where the correla-
tion between them is maximized.

The next section introduces the CCA theory for vectors following [Mar-
dia et al., 1979], the other try to define some operative rules.

3.3.1 Theory

Suppose to have two random vectors: x and y respectively q-dimensional
and p-dimensional: x ∈ Rq, y ∈ Rp. Now suppose further that

µ = E{x}

ν = E{y}

are their means, and

Cov(x) = Σ11 = E{(x − µ)(x − µ)T } ∈ Rq×q (3.1)

Cov(y) = Σ22 = E{(y − ν)(y − ν)T } ∈ Rp×p (3.2)

Cov(x, y) = Σ12 = ΣT21 = E{(x − µ)(y − ν)T } ∈ Rq×p (3.3)

Now consider two linear combinations η = aT x and φ = bT y . They are
projections of our vectors along the directions of a and b. The correlation
between η and φ is

ρ(a, b) =
aTΣ12b

(aTΣ11ab
TΣ22b)

1
2

(3.4)
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Now we want to find a and b for which the correlation is maximised. In
other words we try to solve the problem

max
a,b

aTΣ12b s.t. aTΣ11a = bTΣ22b = 1 (3.5)

because equation 3.4 does not depend on the scaling of a and b (both the
numerator and the denominator depends linearly on the magnitude of the
two), hence it is not restrictive to consider a unit-variance constraint on each
projection [Alpaydin, 2014].
It is now possible to write our problem as a Lagrangian problem,

L(λ, a, b) = aTΣ12b −
λx
2
(aTΣ11a − 1) −

λy

2
(bTΣ22b − 1) (3.6)

and then we take the partial derivatives respect a and b and equal them
to zero

∂ f
∂a
= Σ12b − λxΣ11a = 0 (3.7)

∂ f
∂b
= Σ21a − λyΣ22b = 0 (3.8)

After some calculation, we end up with an eigenproblem, and in its solution,
a and b should be eigenvectors of Σ11

−1Σ12Σ22
−1Σ21 and Σ22

−1Σ21Σ11
−1Σ12,

respectively [Hardoon et al., 2004]. Because we are interested in maximixing
the correlation, we choose the two eigenvectors with the highest eigenvalues;
let us define the two eigenvalues as a1, b1, of dimensions respectively q and p;
the eigenvalues are actually just one, shared by the two matrices (eigenvalues
of AB are the same of BA [Alpaydin, 2014]).
It is however possible to choose how many pairs of eigenvectors ai, bi to
use. If k pairs of eigenvectors are in use, to project our data we must
take the matrix q × k whose columns are ai, and respectively the matrix
p × k composed by wi as columns. The new space has constituted by non
redundant features: all the ai are uncorrelated and each ai is uncorrelated
with b j, i , j.

3.4 Deep learning

Deep learning is quite a new approach to learning, however is based on some
rather consolidated ideas, for example artificial neural networks. The term
deep broadly indicates a huge neural network, and more precisely refers to a
neural network with a high depth, i.e., many hidden layers. It has begun to
attract attention since some years now, because the computational power of
our machines has become capable to cope with the complexity in managing
very big artificial neural networks. Their fame is due to the optimal results
obtained by deep nets in many applications in the most different fields.
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3.4.1 Artificial Neural Networks

An artificial neural network is a collection of simple units called neurons.
Each neuron is composed by a summing unit and an activation function.
Suppose to have some inputs xj ∈ R, j = 1, ..., d and for each of them, a
connection weight wi ∈ R. The output in the simplest case is a weighted
sum of the inputs:

o =
d∑
j=1

wj xi + wo

where w0 is a bias. It is possible to write in a more compact notation using
the dot product y = wT x, where w = [w0,w1, ...wd]

T and x = [1, x1, ..., xd]T

include the bias. The learning is performed looking for the correct vector
w. Let us introduce the activation function φ, which can be, for example:

y = ϕ(o) =

{
> 0 a ∈ R

< 0 b ∈ R

This is usually a non linear function, i.e. a sigmoid or a ReLU (rectified
linear unit) and outputs just a scalar result. To visually understand the
concept we can use Figure 3.1. A single layer of weights can approximate a
linear function; instead, a connection between many neurons can also learn
some non-linear relations and is called a network.

Figure 3.1: Structure of an artificial neuron.

The most simple network is a feedforward neural network which is built
up using layers, and each layer is composed by many neurons; there are the
input layer, the hidden layers and the output layer. The number of these
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layers represents the depth of the network: here comes the term deep learn-
ing.
The training of the network, as of the single neuron, is performed feeding
the network with some data instances, one by one, and defining an error
(loss) function to guide the procedure. When a datum transverses the net,
the activation propagates in the forward direction, the output is calculated
and the error function is evaluated. The goal is to minimise the error, which
is done by calculating the derivatives of the loss respect all the parameters
θ (weights and biases) of the network. Based on this gradient, the parame-
ters are changed according to the result of the operation. This operation is
performed applying the derivatives and the chain rule, and its result is back-
ward propagated along the chain till the input layer. In this way the error
is propagated from output to input and that is why it is called backpropa-
gation. The error is minimised iteration after iteration (some optimisation
algorithm is used). This iterative behaviour suggests that training a network
can be long and time consuming, but assures that the learning is continu-
ous in time and the machine adapts to changes. The method presented
is called stochastic gradient descent and starts initialising the weights ran-
domly [Allen-Zhu et al., 2019]. However, there are advanced methods for
learning, for example batch learning procedure, where the parameters are
updated after some input data and not every sample; when all the dataset
has passed inside the network an epoch is passed.

Motivation for interest in neural networks is also based on theorems
which we are going to state and for whose proofs it is possible to read
[Cybenko, 1989], [Csáji, 2001].

Theorem 1 Universal Approximation Theorem.
A feed-forward network with a single hidden layer containing a finite number
of neurons can approximate any continuous function uniformly on a compact
subset of Rn, under mild assumptions on the activation function.

Even if it is possible, this may not be practically feasible for whatever func-
tion, due to the dimension of the network. Because, the theorem does not say
anything about constraints on the number of neurons respect the function
complexity. However, under the assumption of a ReLU activation function
it has been demonstrated in [Lu et al., 2017] that any Lebesgue-integrable
function f from Rn to R can be approximated by a fully connected width
(n + 4) ReLU network to arbitrary accuracy.
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3.4.2 Convolutional Neural Networks

Convolutional neural network are a specialised type of networks for pro-
cessing data that has a known grid-like topology [Goodfellow et al., 2016].
Examples are time-series data (1-D dimension) and images (2-D grid of pix-
els). The name arises from the specific type of calculation that is performed
in the CNN: a convolution. It is possible to imagine this type of network as
a series of different stacks of finite impulse-response filters, each disposed in
a different layer. In other words, each filter can be thought as a convolution
of the image with a kernel of smaller dimension. This type of network is
extremely powerful in the images domain because it succeeds to capture the
intrinsic representation of images, as sets of edges, patterns and figures.

3.4.3 Autoencoders

An autoencoder is a specific type of network whose goal is to copy the input
on the output while favouring some specific properties. It can be seen as a
network composed by two parts: an encoder function e(·) and a decoder d(·).
If an input x is provided, it tries to reproduce it in the output y, d(e(x)) = x.
In between the two parts, a code layer is present, which provides a trans-
formed (often compressed) representation of the input data. However, this
is not a complete description, because a network that has this behaviour
is useless. Actually, the aim of the network is to recover x̃ ' x, trying to
reconstruct only interesting part of the inputs, and discarding some feature
we want to get rid of. The topology of the network (Figure 3.2) is similar
to a feedforward network, and also the training uses the same techniques,
typically minibatch gradient descent following the gradients computed by
backpropagation. Unlike the previous networks, also re-circulation may be
used, that is an output is re-used as input. The usual architecture has a
code layer where the representation of the input information is compressed;
this allows the network to extract only the useful features and prevent the
network to learn the identity transformation. If the encoder and decoder
have too many parameters respect the problem dimension, it can occur that
the autoencoder learns the useless identity transformation. To prevent this
unwanted situation, some precautions have been adopted and some more
properties have been added to the autoencoder: sparsity of the representa-
tion, robustness to noise, smallness of the derivative. To implement the first
feature, in each cycle of learning not all the samples are fed to the algorithm
but only a randomly chosen subset is used. For the second, some noise is
added to input samples during the learning and at the output compared with
the original de-noised ones. The last aforementioned case, instead, is simply
the trick to maintain derivatives small enough, in order to learn better the
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features which are constant respect to x.

Figure 3.2: Sketch of an autoencoder network. The encoder and decoder
are composed of neural networks.

3.4.4 Deep Canonical Correlation Analysis

In the world of deep networks many different architectures have been pro-
posed, among them, we recall here [Andrew et al., 2013] and [Wang et al.,
2015]. The common ancestor of most of them is reported in Figure 3.3.
Moreover, all the cited works deployed a supervised framework for all of
them.
In the Deep Canonical Correlation Analysis (DCCA) the metric used to
measure the extracted information and the performances is the “quantity of
correlation”: the sum of the correlation for the top most correlated direc-
tions. Indeed, [Andrew et al., 2013] focused on the quantity of correlation
which can be extracted with different methodologies and demonstrated that
a DCCA extracts much more correlated feature as compared to a CCA and
a Kernel CCA (KCCA) [Andrew et al., 2013].
The training for this network, using a gradient descent algorithm, need a
custom gradient function which [Andrew et al., 2013] has provided. More-
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over, because the correlation objective is a function of the entire training
set and cannot be decomposed into a sum over the data points, a stochastic
approach is not feasible; the article instead proposes mini-batch descent or
full-batch optimisation.

Figure 3.3: DCCA framework proposed in [Wang et al., 2015]. It includes
two NN (encoders), and at their output a transformation in a maximally
correlated domain through the U and V matrices.

3.4.5 Deep Canonically Correlated Autoencoders

Inspired by DCCA [Wang et al., 2015] proposed the Deep Canonically Cor-
related AutoEncoder (DCCAE), see Figure 3.4. This network implements
a trade off: the autoencoder maximises the learning of information between
inputs and learned features, instead the CCA maximises the information of
the two different views. From this perspective, it can represent more sophis-
ticated interactions between data as compared to a simple DCCA, and also
autoencoders alone.

The DCCAE network has been adopted by [Zhou et al., 2019] to per-
form an heterogeneous change detection task and showed good results and
low variance. It especially over-performed CCA and DCCA. The training
have been carried on with mini-batch gradient descent, but assuring to use
a batch size big enough to be representative in the calculation of the sample
covariances.
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Figure 3.4: DCCAE framework proposed in [Wang et al., 2015]. Two au-
toencoders are tied together by a CCA performed in the latent space.
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Chapter 4

The Proposed Change
Detection Method

4.1 General idea of the methodology

This chapter is devolved to explain the proposed heterogeneous change de-
tection method.
The methodology proposed in this work aims to compare two different types
of data, which, on their own, could not be compared. Indeed, it is not possi-
ble to use a traditional method to do change detection in this environment;
for instance, only subtracting the two images does not have any meaning.
As mentioned above the two images lay in two different domains; hence we
need to transform them into a common domain and then compare them.
Denoting the two images to be compared as X and Y and using the same
names for their respective domains, we can summarise as in Figure 4.1. The
figure shows that not only it is possible to convert the two images in a com-
mon domain, but it is also feasible to convert one image in the domain of
the other. Theoretically, it allows to compare the two images in the domain
of X , or Y , or in the latent space Z .
In this framework (Figure 4.1) the arrows represent regression functions. In
particular, each of these is a neural network properly trained for the purpose.

At this stage, we have brought the two images in a shared (or common)
space, where it makes sense to use some elementary change detection method
(e.g. image differencing). However, we introduced some neural networks,
which need training to be used. In remote sensing, some labelled samples
are needed to train a network, and they are difficult to retrieve and expen-
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Figure 4.1: The proposed framework with three different domains repre-
sented as sets and four regression functions represented as arrows.

sive. Therefore, in our case, we want to train the networks to transform one
image into the other one, but using nothing more than the input data.
What would happen if we trained the network with our two images? We
could have done because they provide examples of the two distributions we
would like the network to learn. However, we must recall that the two im-
ages are taken at different times and generally exhibit changes, and this
is a big issue for our learning. We want the network to learn to individu-
ate changes as abnormal patterns, and not as a rule. Thus, an innovative
technique is used to automatically retrieve some training samples located
in likely unchanged areas from our data [Luppino et al., 2019], turning our
procedure to a completely unsupervised method. This stage is conceived as
a method to extract information and to return a probability-like score that
expresses the chance that each pixel is changed from one acquisition to the
other; this is explained in [Luppino et al., 2020].

The second big issue to solve is the problem of being sure that the latent
space Z is unique and is a common transformed space for both mappings
R (X) and P (Y ) (see Figure 4.1). To assure this consistency, a technique
involving Canonical Correlation Analysis is proposed [Figari Tomenotti et
al., submitted]. A very attractive feature of CCA is that ”if there is noise in
either view that is uncorrelated with the other view, the learned represen-
tation should not contain the noise in the uncorrelated dimension” [Andrew
et al., 2013].

The change detection scheme applied in the rest of the chapter is ex-
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Figure 4.2: Block diagram of the change detection scheme used in this work.
X is the image before the change, Y after it.

plained by Figure 4.2. After the problem setting description, the following
sections will present the different functional blocks needed to build up the
complete proposed system.

4.2 Problem setting

Two different sensors scan a geographical area in two different moments in
time. We denote the two sensors (and also their respective domains) as X
and Y and the respective acquisition times as t1 and t2. The two sensors
generate two images with the same height H and width W (up to possible
re-sampling and co-registration). The two images generally include different
numbers of channels identified as C1 and C2. Thus, the two images are
respectively X ∈ RH×W×C1 and Y ∈ RH×W×C2 .
In the following, it is also assumed that a limited part of the image contains
changes; this is crucial because we need a reliable non-changed part to train
our networks (regression functions).

4.3 Affinity-based Change Prior

Our prior information is an affinity-based cross-domain pixel distance pro-
posed in [Luppino et al., 2020], which is interpreted as a probability of
change of that pixel.
The following procedure is applied to an image patch of dimension k × k,
and, when computed, the patch position is shifted in order to progressively
reach all pixels in the entire image; it is applied to the images from both
modalities.
Firstly, we compute the domain-specific affinity matrices AX and AY , whose
elements AXi j and AYi j are pairwise affinities between pixels i and j belonging

to the patch. These are computed from pairwise distance measures dXi j and
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dYi j as

AXi j = exp(−(dXi j )
2/hX) (4.1)

and
AYi j = exp(−(dYi j )

2/hY) (4.2)

by use of the common Gaussian kernel function with kernel widths hX and
hY . The two kernel widths are domain specific, and set equal to the average
distance of the K th nearest neighbour, with K = 3

4 k2. This method allow
to capture an intrinsic distance inside the patch [Luppino et al., 2020].
Moreover, the distance measures d are computed as Euclidean distances.
This choice is understandable considering the domain and the data distri-
bution: optical images have a Gaussian behaviour (in intensity), whereas
SAR images can be transformed applying a logarithm bringing them to
near-Gaussianity [Zhan et al., 2018].

Highlighting the fact that the matrices A are symmetric, the cross-
domain pixel distance for pixel i is obtained as

αi =
1

n

n∑
j=1

|AXi j −A
Y
i j | , (4.3)

which is the average absolute affinity difference between pixel i and n other
pixels. This assures that αi ∈ [0, 1], providing small values when pixel
relations, within the size n image patch or neighbourhood, remains similar
across image domains, and large values otherwise. This is reasonable because
only changes between images should present larger values in the difference
matrix. This method is very powerful to look for changed patterns inside
images and assign to every single pixel a probability of being changed. Even
if the method is not too heavy for modern computational power, it can be
sped up using a sliding window which moves faster than a pixel per time.
Of course, this comes with a resolution degradation. To examine in depth
the prior retrieval discussed, it is possible to refer to [Luppino et al., 2020]]
where a useful toy-example is presented.

We will utilise αi to suppress the influence of pixels with a high prob-
ability of change, and therefore we must define a weighting function Π(α) :
[0, 1] → [0, 1] that is monotonically decreasing. Hence, the higher is Π(α),
the lower is the probability of that pixel to be changed from one acquisition
to the other, and the higher is the confidence to use it as a learning sample.
We use the simple function

Π(αi) = 1 − αi (4.4)

however other decreasing functions can be adapted and used.
The computation of this matrix is meant to be performed offline: the Π(αi)
values can be calculated, stored and used when needed.
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4.4 CCA formulation

The Canonical Correlation Analysis has been formulated as in [Wang et al.,
2015] but adding the prior information in it. It is clear from the Section 3.3
that the CCA is a linear method and extract the covariances Σ11, Σ22 and
the cross-covariance Σ12. The approach we choose is to insert here the result
of 4.4. So modifying the equations 3.1, using

H1 = x − µ , H2 = y − ν

and also using N as the numbers of samples (pixels) taken into account, we
obtain

Σ̂11 =
E{H1(H1 � Π)

T }

N − 1
∈ Rq×q (4.5)

Σ̂22 =
E{H2(H2 � Π)

T }

N − 1
∈ Rp×p (4.6)

Σ̂12 = Σ̂
T
21 =

E{H1(H2 � Π)
T }

N − 1
∈ Rq×p (4.7)

where the � stands for the Hadamard product (or element-wise multipli-
cation), which does not change the dimensions of the matrices nor the order
of the main eigenvalues, provided that the two matrices are positive-definite.
Σ are positive semi-definite for construction, but to avoid zeroes in the com-
putations of inverses, a small δ has been substituted when needed. The
result of the CCA block are the optimal matrix projection, U = [u1, ..., uL]

and V = [v1, ..., vL].

4.5 Deep Canonical Correlation Analysis with Au-
toencoders

4.5.1 The network topology

The chosen topology is similar to the one in [Luppino et al., 2020], and it
is inspired by [Wang et al., 2015] for what concerns the CCA block. In our
methodology we are interested in taking advantage of our prior information
inside the just mentioned framework. As far as we know we are the first to
deploy a DCCAE methodology in an unsupervised fashion. The architecture
is composed of two autoencoders, coupled in a novel fashion through different
losses computation. The four networks are Deep Convolutional Neural Net-
works, and they implement image regression functions. The encoders take
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images as input and they transform them in a common domain called Z; the
functions are R(·) : RH×W×C1 → RH×W×Cz and P(·) : RH×W×C2 → RH×W×Cz

so the image dimensions are preserved also in the latent space and the fea-
ture dimension is a common parameter. The decoders S(·) and Q(·) perform
the inverse transformation, taking the images from the Z domain to the
two original domains. Additionally, the CCA block performs a linear Cor-
relation between the output of the two encoders, thus highlighting the most
canonical correlated features and calculating the correlation itself for each
feature. Figure 4.3 presents the network topology.

Figure 4.3: Network topology divided by colours: encoders in green, de-
coders in yellow, sets in red and the CCA block in blue.

4.5.2 Training and losses definition

The training phase of the network is crucial for the system itself, and has
been studied in depth, in order to assure a fast and robust training. The
training parameters are the network weights, defined in a vector called ϑ.
The overall loss function has been designed ad hoc, and it consists of four
loss terms with respective weights.

Ltot = λCCA · LCCA + λRecon · LRecon + λα · Lα + λCross · LCross (4.8)

Canonical Correlation. The canonical correlation loss is computed on
the output of the encoder, and the loss term is defined as follows (analogous
but not identical to representation as 3.3).

LCCA = −
1

n
tr(UT R(x)P(y)TV ) (4.9)

where n is the total number of pixels in a patch, U,V are the optimal transfor-
mation matrices, x, y represents co-located patches of the respective images
and tr is the matrix trace. U,V are now matrices, and no more vectors as
explained in 3.3, because now x, y are multi-channel images.
This term forces the two autoencoders to converge to the same latent space,
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which is the space where the correlation between the retrieved represen-
tations is maximised. It is possible to set the latent space dimension Cz

(feature dimensions) as big as desired, respecting the constraint

Cz ≤ max (C1,C2)

Reconstruction of the input. It is obvious, having autoencoders, we
want to have our outputs as much similar to the inputs as possible; in other
words, our reconstruction from the latent space should be as faithful as
possible. Stating we would like to have

X ' X̃ = Q (R (X))

and analogously for Y . Recalling that ϑ is the weight vector of the entire
network, and calling x and y the vectors collecting the data of an image
patch centered on the same pixel in the two image domains, the loss term
is defined as

LRecon (ϑ) =EX,Y
[
‖Q (R (x)) − x‖22

]
+

EX,Y
[
‖S (P (y)) − y‖22

] (4.10)

It is clear from 4.10 that the raw difference between input and output should
be minimised. In Figure 4.4 it is illustrated the operation to obtain the
parameters of the loss.

Figure 4.4: Reconstruction of the input. The terms used to compute the
loss are at the right and left ends of the diagram. The contribution in the
Z domain are not mixed, codes from X and Y are maintained separated.

Prior weighted similarity. This is one of the novelties that were re-
cently proposed in [Luppino et al., 2020], it encapsulates the use of the
prior information about the probability of each pixel of being changed in
the translation of the images. In other words, we would like our network to
learn the transformation from one domain to the other, so

X̂ ' Q (P (Y ))
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must hold true. However, it is necessary that our network learns only from
unchanged pixels, and so during the learning phase a correction term should
be used, as stated in Equation 4.11. In order to define this loss, it is necessary
to define the following notation:

‖a‖2Π =
∑

iΠi ‖ai ‖
2
2

where ai is a generic feature vector representing the i-th pixel in a patch,
its modulus is the sum squared of all the features (Euclidean metric). The
weighting of Π is applied pixel-wise on the pixel plane within the patch rep-
resented by a vector a. In other words, ‖a‖2Π is the modulus of a, weighted
on Π pixel-wise.

Lα (ϑ) =EX,Y
[
‖F (x) − y‖2Π

]
+

EX,Y
[
‖G (y) − x‖2Π

] (4.11)

where F(·) , S(R(·)) and G(·) , Q(P(·)). Figure 4.5 illustrates the network
operations to obtain the loss parameters.

Figure 4.5: Prior weighted similarity. Contributions in the Z domain are
cross-connected and weighted by Π(α) on the pixel plane.

Consistency cycle. As pointed out in [Zhu et al., 2017], domain trans-
lations should maintain consistency cyclically; it means that after the data
have been transformed once, they can be re-transformed to their original do-
main without becoming meaningless or losing properties. If the regression
functions are rightly tuned the following must hold

X ' Q(P(Ŷ )) = Q(P(S(R(X))))

and to force our network to maintain this alignment we introduced 4.12

LCycle (ϑ) =EX,Y
[
‖G (F (x)) − x‖22

]
+

EX,Y
[
‖F (G (y)) − y‖22

] (4.12)
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Figure 4.6 illustrates the just mentioned concept

Figure 4.6: Consistency cycle. The cycle is like two prior-weighted similari-
ties in cascade: it performs a double transformation on X and Y .

The training procedure, as described in this paragraph, minimising the
total loss follows the formula 4.13

min
ϑ,U,V

Ltot (4.13)

s.t.

UT

(
1

n
R(x)T R(x) + r1I

)
U = I

VT

(
1

n
P(y)T P(y) + r2I

)
V = I

ui
T R(x)P(y)T + r1u j = 0, for i , j

where r1, r2 are regularisation parameters of the CCA.
The constraints have been taken into account into the CCA evaluation, and
they assure to have uncorrelated directions inside each matrix projection;
this leads to maximise the information kept in the transformed space. The
expectations in the loss contributions 4.10, 4.11, and 4.12 are estimated as
sample means on a random ensemble of fixed-size image patches drawn from
the two image domains X and Y .

4.5.3 The back-propagation

Backpropagation of the network is obvious, for what it concerns the Neural
Networks strictly speaking, however, to minimise also with respect to α, a
manually written procedure have been added. It was required in order to
use a gradient-based optimisation, as we have done in this thesis. Indeed,
the gradient of corr(H1,H2) is required, and the paper by [Andrew et al.,
2013] has been followed. Demonstration of the 4.14 formula can be found in
that paper.

δcorr(H1,H2)

δH1
=

1

m − 1
(2∇11H̄1 + ∇12H̄2) (4.14)
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where

∇12 = Σ11
− 1

2UVT
Σ22
− 1

2

∇11 = −
1

2
Σ11
− 1

2UDVT
Σ11
− 1

2

where H1 and H2 are the transformed X and Y in the Z domain, and H̄1 =

H1−
1
mH11 is the centered data matrix (and respectively H̄2 for H2). Instead,

UDVT is the singular value decomposition of the matrix T , which is the
solution of the canonical correlation.

4.5.4 Thresholding

The final result is obtained differentiating the transformed images and ap-
plying a suitable thresholding algorithm to them, in order to retrieve the
two classes: changed, not-changed. The difference image is obtained as a
weighted mean (on the number of channels) of | X̃ − X̂ | and |Ỹ − Ŷ |. The
algorithm used to detect the optimal threshold in an unsupervised way is
the Otsu threshold algorithm [Otsu, 1979]. It is an iterative method which
works on minimising intra-class variance, defined as a weighted sum of vari-
ances of the two classes, where the weights are the probability of fixing
the threshold on a level. This exploits the fact that minimising intra-class
variance is equal to maximising the inter-class variance, as stated in [Otsu,
1979].

4.5.5 Filtering

Lastly, to obtain a clear and meaningful result, a filtering algorithm is ap-
plied. It helps against spurious results, especially to filter out isolated pixels,
i.e. pixels classified as changed in a contiguous and extended non-changed
region or vice versa. Of course, this is done because it is very unlikely to
have a single-pixel classified differently from all its neighbours.
The method proposed in [Krähenbühl et al., 2011] is used. It exploits spatial
context to filter with a fully connected conditional random field model. It
defines the pairwise edge potentials between all pairs of pixels in the image
by a linear combination of Gaussian kernels in an arbitrary feature space.
Iterative optimisation of the random field has one main downside: it requires
the propagation of all the potentials across the image. However, this highly
efficient algorithm reduces the computational complexity from quadratic to
linear in the number of pixels by approximating the random field with a
mean-field whose iterative update can be computed using Gaussian filtering
in the feature space. The number of iterations and the kernel width of the
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Gaussian kernels are the only hyper-parameters manually set, and we opted
to tune them according to [Luppino et al., 2019]: 5 iterations and a kernel
width of 0.1.

4.6 Extensions of the proposed approach

4.6.1 Linear CCA

The most simple alternative that has been investigated is the use of a simple
linear Canonical Correlation Analysis, as it is. The procedure is: a) feed the
images to the CCA; 2)CCA finds a representation where the correlation is
maximised; 3)project the two images in the new space; 4)subtract one image
from the other to obtain a difference image. This alternative is supposed to
work if the two images under examination have some common or contiguous
bands; this method is unlikely to work in a completely heterogeneous envi-
ronment. This peculiarity is because the transformation applied by CCA is
linear, so it can compensate for differences in certain data types, or extract
the more similar feature from two images, but it is not able to perform a
non-linear transformation.

4.6.2 Variations on Deep Canonical Correlation Analysis

Another interesting network explored is the Deep Canonical Correlation
Analysis proposed by [Andrew et al., 2013]. We have of course modified the
CCA to use our prior information as described above, and the network does
not include any feedback, and the only loss considered is the maximisation
of the canonical correlation of the two views. So, it is possible to say that
the two networks have learned a non-linear type of CCA because the non-
linearity shows up from the Neural network itself.
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Figure 4.7: DCCA sketch: two encoders whose output are used to calculate
the canonical correlation in the output/Z space.

Figure 4.8: variation of DCCA: two encoders whose output are CCA-
projected in a common space Z .

4.6.3 Variation of DCCAE

A variation of DCCAE has been implemented for testing, its main architec-
tures is proposed below.

Figure 4.9: variation of DCCAE: the output of the encoders is CCA-
projected in a common space with maximised correlation and then re-
transformed back to the X and Y domains.
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Figure 4.9 represents a very similar network to the previous, but the
core difference here is that the projection of the encoder results along with
the directions of maximum correlations. The operation is performed multi-
plying the encoder’s output by U and V , which are the optimal matrices for
the projection. In theory, it is also possible to try this configuration with
different dimensions for the latent space Z .
Nevertheless, this alternative implementation has a drawback: the projec-
tion along the most correlated direction can change abruptly from one it-
eration to another, leaving encoders and decoders largely unpaired. This
shortcoming happens because CCA is just a linear method looking for cor-
relation; indeed, during the training of the network, the direction which
maximises the CCA functional can change and does not let the network
adapt to this change. This behaviour was straightforward to appreciate,
because during the training, when the network was learning and losses were
decreasing, suddenly a peak occurred. The peaks were related to this change
in the CCA transformation.
Another approach which has been tried is to train encoders and decoders
separately, or performing the CCA only once per epoch or similar; however,
the limitation persists. So this network has been abandoned; however, it
leaves an open question, i.e., finding a CCA-similar algorithm which changes
slowly from one representation to the other.

4.6.4 DCCAE with latent space differentiation

The last architecture we would like to mention is a DCCAE (as in Section
4.5.2) with the differencing procedure for the change detection performed in
the latent space Z, where the information should be maximally correlated.
However, even if it was built as in Figure 4.3 or 4.9, it has some limitations,
as shown in preliminary tests: the code space is not assured to be always
perfectly aligned. This deficiency is probably due to the weak constraints
of the network in that point, which does not allow to have a robust and
persistent representation in the Z domain.
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Chapter 5

Experimental Results

5.1 Environment

All the experiments were run on a graphics processing units (GPU) server
in the domain of the Machine Learning Group of the UiT. The code was
implemented in Python and Tensorflow 2.0, and will be available on line
soon.

5.2 Datasets description

Flood in California

Figure 5.1a displays the RGB channels of a Landsat 8 acquisition1 of Sacra-
mento County, Yuba County and Sutter County, California on 5 January
2017. The Operational Land Imager (OLI) and TIRS (Thermal InfraRed
Sensor) sensors on Landsat 8 together acquire data in 11 channels, from
deep blue up to thermal infrared.
This area was affected by a flood in Febraury of the same year, and the sec-
ond acquisition, in Figure 5.1b, has been taken by Sentinel-1A1 and recorded
in polarisations VV and VH on 18 February 2017 by a single C-band SAR.
The ratio between the two intensities is included both as the blue component
of the false colour composite in 5.1b and as the third channel provided as
input to the networks. All these SAR channels were log-transformed. The
ground truth in Figure 5.1c has been provided by [Luppino et al., 2019] and

1Data processed by ESA, http://www.copernicus.eu/

41
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was manually annotated. Originally these images were of 3500×2000 pixels,
but they have been resampled to 850 × 500 pixels because of computational
time constraints.

(a) Landsat 8 (b) Sentinel-1A (c) Ground truth

Figure 5.1: Flood in California. (a) Pre-event image taken by Landsat 8,
RGB channels displayed. (b) Post-event image taken by Sentinel-1A, SAR
channels in false colours. (c) Ground truth.

Forest fire in Texas

Bastrop County in Texas was struck by a forest fire during September-
October, 2011. The Landsat 5 Thematic Mapper (TM) acquired the image
pre-event, a multispectral optical image with 7 bands. The Earth Observing-
1 Advanced Land Imager (EO-1 ALI) acquired the post-event multispectral
optical image with 10 bands. The resulting co-registered and cropped im-
ages of size 1520×800 are displayed in false colour in Figure 5.2a and Figure
5.2b2. Some of the spectral bands of the instruments (7 and 10 in total, re-
spectively) overlap, so the signatures of the land covers involved are partly
similar. Volpi et al. [Volpi et al., 2015] provided the ground truth shown in
Figure 5.2c. Table 5.1 shows a comparison in the bands of the two instru-
ments.

2Distributed by LP DAAC, http://lpdaac.usgs.gov



5.2. DATASETS DESCRIPTION 43

Landsat-5 TM Earth-Observing-1 ALI

band λ (µm) GSD (m) band λ (µm) GSD (m)

- - - MS-1’ 0.433-0.453 30

1 0.45-0.52 30 MS-1 0.450-0.515 30

2 0.52-0.60 30 Ms-2 0.525-0.605 30

- - - PAN 0.480-0.690 10

3 0.63-0.69 30 MS-3 0.630-0.690 30

4 0.0.76-0.90 30 MS-4 0.775-0.805 30

- - - MS4’ 0.845-.890 30

- - - MS-5’ 1.200-1.300 30

5 1.55-1.75 30 MS-5 1.550-1.750 30

6 10.40-12.50 120 - - -

7 2.08-2.35 30 MS-7 2.080-2.350 30

Table 5.1: bands of Landsat-5 TM and Earth-Observer 1 OLI. The bands
partially overlap. λ stands for the wavelength, and GSD for the Ground
Sample Distance, which is related to the resolution on the ground.

(a) Landsat 5 (t1) (b) EO-1 ALI (t2) (c) Ground truth

Figure 5.2: Forest fire in Texas. (a) Pre-event image taken by Landsat 5.
(b) Post-event image taken by Earth Observing-1 ALI. (c) Ground truth.
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5.3 Affinity-based Prior

The prior was computed off line, even if it is not a heavy task. The procedure
has been explained in the previous chapter, here the results are presented
in Figure 5.3: the greyscale (black to white) indicates increasing probabil-
ity of not been changed. Having in mind the ground-truths above (Figures
5.2c,5.1c), it is possible to compare those to these images which represent
this prior information: how much to trust each pixel in learning the trans-
formation. However, the visual inspection may be misleading, because the
histogram of the images have been stretched for visualisation; so the real
prior has values which are far more similar (refer to Figures 5.4 and 5.5)
than the illustrated ones. Nevertheless it is worth noting how -especially
in the Texas one- the change is very well localised, and precisely identified.
This leads to say that our prior information is very reliable, remembering
the fact that it has been extracted only from the images.
The drawback of this prior is the big number of false alarms, considered as
pixels not changed, and represented here in black. Considering the fact that
the prior is used to learn a transformation, a more correct consideration
may be to use only highly trustworthy pixels, even if they are a minority.
However not every class, present in the image, can be represented by highly
reliable pixels. Expressing the same concept in a more statistical sense, the
prior procedure struggles to find a bi-modal representation of the data, were
highly reliable pixels are far away from highly unreliable ones. And the fact
that not every class is surely represented in one of the two modalities can
be a weakness of the algorithm. It is noteworthy, from the visual inspec-
tion of the real histograms (not-stretched) in Figures 5.4 and 5.5 that the
Texas data set shows a slightly bimodal distribution; it means two classes
seem to be separable, changed and unchanged, and of course the changed
are represented in black, which means values towards zero, and it is well
shown in the histogram how this class is a minority. On the contrary, in the
California prior histogram, from a visual inspection is not possible to infer
the two classes, there is only a small asymmetry in the distribution towards
the unchanged side.
However, this is a really useful and powerful prior information, and it is out
of its scope to be used as a stand-alone procedure for change detection, nev-
ertheless in some cases it can be useful for an immediate and visual feedback
to locate and identify the changes.
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(a) California dataset. (b) Texas dataset.

Figure 5.3: Pixelwise prior for both datasets. Brighter pixels are less prone
to be changed from the pre-event to the post-event image. The images
were subject to histogram stretching for displaying purposes. (a) California
dataset. (b) Texas dataset.
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Figure 5.4: Histogram of the California Prior. Histogram (not-stretched) of
pixels intensity of Figure 5.3a

Figure 5.5: Histogram of the Texas Prior. Histogram (not-stretched) of
pixels intensity of Figure 5.3b
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5.4 Evaluation metric

To evaluate the performance of the proposed methods, the Cohen’s Kappa
(κ) was adopted along with other standard coefficients. The Cohen’s Kappa
κ - first used by [Cohen, 1960] -is used to measure inter-rater reliability and
it is considered more robust than a simple percent agreement calculation.
However, there are some critics about its use; the controversy is due to the
fact that is not symmetrical, and also about the difficulty of interpreting its
value in some situations.
However, the κ were adopted to measure the similarity between the retrieved
solution of the change detection process and the ground-truth. They were
considered as two distributions and compared. The comparison is done con-
sidering four classes: true positive, true negative, false positive and false neg-
ative. The correctly classified pixels belong to the first two classes, whereas
the wrongly classified fall in the two others. The confusion matrix is used
for the calculation and is constructed as shown in Figure 5.6.

Figure 5.6: Confusion matrix used to compute Cohen’s Kappa κ: the cor-
rectly classified pixels are indicated in white and black, the wrongly classified
ones in green and red. The colors show the convention used in the confusion
maps in the result section.

The κ is calculated in the following way

κ =
Pr(a) − Pr(e)

1 − Pr(e)
(5.1)
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where

Pr(a) =
TP + T N

N
Pr(e) =

(TP + FP)
N

(FN + T N)
N

and N is the total number of observations (or pixels). Thus −1 ≤ κ ≤ 1.
This coefficient tries to remove from percent agreement the agreement by
chance, assuring a more balanced judgement.

5.5 Results of the proposed DCCAE method

5.5.1 Settings

The developed architecture was composed of encoders and decoders, each
made of two hidden layers, with 100 filters each. The chosen activation func-
tion was a Leaky ReLU with a negative slope chosen to be γ = 0.3.[Maas et
al., 2013], except for the last layer of NN which was a fully convolutional layer
with a tanh(·) activation function. Furthermore, the optimisation method
chosen was batch gradient descent, with a decreasing learning rate with ex-
ponential decay. During the training, data augmentation (patch rotations
and flipping) was applied; moreover a dropout procedure was applied as well
with a dropout rate of β = 0.2, to increase generalisation capacity. During
the optimisation, gradient clipping was set to 1, in order to have always a
gradient value under a certain threshold, even if our it was quite huge.

The overall network was trained for 100 epochs, where each epoch was
composed of 5 batches and each batch of 20 patches. Each square patch, in
turn, was composed of 100 pixels per side, so in total 104 pixels. All these
dimensions were fixed in order to have a right amount of pixel to compute
meaningful (and representative) sample covariances and having in mind the
machine memory size constraints. The latent space dimension was fixed
to 3, in order to be suitable for both datasets: the California data set has
an image with only 3 features; and for the Texas data set it seemed a fair
code space dimension, especially because of the Figure 5.18, which will be
explained later on.
All the others setting were manually set with a trial and error procedure,
according to both the datasets at our disposal. Recalling the loss function
4.8, the λ was defined as in Table 5.2: Regarding the last three parameters,
λregularisation1 and λregularisation2 are the CCA regularisation coefficients to
avoid zeroes in the matrices and are set as found in the literature [Wang
et al., 2015]. Furthermore, λl2 is the regularisation parameter to prevent
overfitting in the gradient descent method.
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Loss weights

λCCA 0.01

λRecon 1

λα 1

λCycle 1

Regularisation terms

λregularisation1 10−4

λregularisation2 10−2

λl2 0.5 · 10−4

Table 5.2: Network parameters set through a trial and error procedure.

5.5.2 Results

The results of our experiments are shown in the following figures and tables.
Data were taken running each experiment 100 times, it is not a huge sam-
ple, but enough to be representative. Results for the California dataset are
presented in Figures 5.8, 5.9, 5.10; whereas for the Texas dataset there are
Figures 5.11, 5.12, 5.13. More specifically, Tables 5.7a and 5.7b describe the
κ coefficient of our DCCAE compared to other networks which have been
considered as the state of the art (our implementation of the SCCN [Liu et
al., 2018] and cGAN [Niu et al., 2019]) and the two networks developed in
[Luppino et al., 2020]. The graph is in form of boxes, which contain the 25
to 75 percentiles, whiskers extend to the 5 and 95 percentiles, and remaining
data points are plotted as red +.
The two network taken as reference are the SCCN and the cGAN, a brief
description of them is here provided. The SCCN works with two CNNs
(pretrained with a deep belief network) which learn a representation for op-
tical and SAR images in terms of common pixel-wise features, and directly
comparing them obtains the change map. The cGAN, instead, is a method
based on finding a common representation for SAR and optical images with
a generative adversarial framework.
It is evident how the ACE-net reaches state-of-the-art performance, whereas
X-Net performs slightly worse, but more stably in terms of the κ variance.
The proposed DCCAE network with the affinity prior, is labeled DCCAE
and combines the best features from both the ACE-Net and the X-net,
reaching a very high κ as well as exhibiting small variance, which indicates
a stable performance. It is worth noting that the seemingly accurate per-
formance of the SCCN algorithm on the California dataset is a side-effect
of degenerate behaviour, as explained in [Luppino et al., 2020]. Summing
it up, the SCCN network - due to its simplicity (few parameters) - learns
to recognise only the background in the first image, so presenting the image
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with a big flood it detects the changes in that area.
The aim of the DCCAE network was, indeed, to achieve accurate peak per-
formances as the ACE-net, but with a smaller variance, as the X-Net. From
these two boxplots which help to summarise the behaviour of the network
it is possible to state that the self-supervised DCCAE network outperforms
the state-of-the art, achieving very accurate performances both for peak val-
ues in classification and for the stable behaviour highlighted by the small
variance.

Moving on to another evaluation method adopted to assess the perfor-
mances of the DCCAE network, confusion maps were built for both datasets
as an immediate tool to visually evaluate the performances of the method.
Recalling the legend of the confusion maps: true positives (white), true neg-
atives (black), false positives (green) and false negatives (red).
Figure 5.8b shows the result obtained on the California dataset, which
presents some false positives, especially around the contours, thus suggest-
ing that a ’thinner’ filter may lead to a further improvement in the results.
The other confusion map, relative to the Texas dataset 5.11b, highlights an
excellent localisation of the changes, and very little impact of false nega-
tives, which are only on the contours of the changed area. An explanation
takes into account the fact that the prior is calculated with a kernel which
extrapolates a spatial context: on an edge, it is not obvious its response
and its behaviour cannot be as thin as a pixel. Especially because natural
damages and effects are not bounded by sharp line on the ground which
divides burnt vegetation not-burnt.
It is also interesting to note how here the algorithm found two preserved
areas inside the fire scar, and a line (bottom left of the scar) which can
be a street or a small river. The linear CCA was not able to detect these
unchanged zones, but the nonlinear method succeed to extract them.

For what concerns the false positives, we also recall that the ground
truth of each data set is focused on the ground changes due the correspond-
ing major event (a flood and a forest fire) that happened in between the
two acquisitions, but does not acknowledge the possible presence of fur-
ther changes (maybe a farmer mowed the lawn or did some agricultural
job). These further changes, if present, could be detected by the considered
methods and, if so, they would erroneously be considered false positives as
compared to the ground truth map

In order to explore the results more in depth, Table 5.3 is proposed.It
is worth mentioning the difference between the overall accuracy (OA) calcu-
lated as the number of pixels correctly classified over their total number and
the κ coefficient. This highlights also the fact that in the California dataset
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California

κ OA Time

mean 0.45 0.91 9 [min]

standard deviation 0.04 0.01 3 [s]

max 0.51 0.93 9.17 [min]

Texas

κ OA Time

mean 0.83 0.97 18 [min]

standard deviation 0.12 0.02 3 [s]

max 0.91 0.98 18.4 [min]

Table 5.3: Performances of the proposed method with both datasets. Each
column represents a performance parameter, Cohen’s Kappa κ, Overall Ac-
curacy (OA), and the time elapsed to obtain a result on the dataset are
listed.

we have a medium κ, however a big percentage of pixels are correctly clas-
sified.

Let us move on discussing the intermediate results, that are the repre-
sentations in the latent space and after the CCA correlation. The images
are at the end of this section, and are shown in false colour because pixel
intensities have no physical meanings in this domain.
It is interesting to note how images in the latent spaceZ - labelled as XCODE

and YCODE - are very well aligned and differences between images are signifi-
cant also here. The alignment information is inferred looking at the colours,
equal colour palette suggest the same domain of the images. These images
were fed to the decoder to retrieve the final result.
Moving towards the CCA domain, we can appreciate the XCCA and YCCA

representations. They are not used inside the process, but only retrieved to
check the behaviour of the network. Surely, they are more similar to each
other than the Z representation. Maybe it is not significant here because
we have taken the last iteration of the network; however, during the train-
ing, the evolution of the CCA space is far more aligned than the Z space,
especially in the first 10, 20 epochs. Even if, as already mentioned, the CCA
space can change abruptly its representation, this is not a drawback because
the network takes into account only the maximisation of the correlation in-
formation, which increases despite this nonlinear behaviour.

We consider now the last representation used in the network, which is
also the core of its image differencing part: X̃, X̂, Ỹ, Ŷ . These representations
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are explained in the previous chapter lay in the X or Y domain.
The interesting thing of these representations is that the changes are clearly
visible in X̃ and Ŷ . This false asymmetry is easily understandable using the
schemes provided in Section 4.5.2; X̃ is the reconstruction of X , which is
the image before the event, so it is the pre-event reconstruction, while X̂
is the post-event image coming from the Y domain and transformed in the
X domain. In a parallel way, the method works for Y , the only difference
is that Ỹ, Ŷ exchanges their roles, because the Y domain contains the post-
event image.



5.5. RESULTS OF THE PROPOSED DCCAE METHOD 53

(a) California dataset.

(b) Texas dataset.

Figure 5.7: Comparison of Cohen’s κ for the proposed method (DCCAE, on
the right) and the state of the art (SCCN, cGan and the [Luppino et al.,
2020] models XNET, ACENET). The boxes contain the 25th to 75th per-
centiles, whiskers extend to the 5th and 95th percentiles, and the remaining
data points are plotted as red +. (a) California dataset. (b) Texas dataset.
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(a) Difference image (b) Confusion map

Figure 5.8: California datatset. κ = 0.51. (a) Gaussian filtered difference im-
age: black/darker pixels are expected to be unchanged; white(ish) pixels are
likely changed. (b) Confusion Map: black and white are correctly classified
not-changed and changed pixels; green are not-changed pixels wrongly clas-
sified as changed; red are changed pixels wrongly classified as not-changed.
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(a) XCCA (b) YCCA (c) XCODE (d) YCODE

Figure 5.9: California dataset. (a)(b) representation of X and Y in the CCA
aligned space, internal representation of the CCA, displayed only for investi-
gation purposes. (c)(d)Code space representation of X and Y , representation
of the latent space of the network.

(a) X̂ (b) X̃ (c) Ŷ (d) Ỹ

Figure 5.10: California dataset. Representation of the various output of the
network. The difference image comes out from the mean of X̂− X̃ with Ŷ −Ỹ .
(a)X̂ output of the prior weighted similarity, derives from Y . (b)X̃ output
of the reconstruction of the input, derives from X. (c)Ŷ output of the prior
weighted similarity, derives from X. (d)Ỹ output of the reconstruction of the
input, derives from Y .
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(a) Filtered difference image (b) Confusion Map

Figure 5.11: Texas dataset. κ = 0.90. (a) Gaussian filtered difference image:
black/darker pixels are expected to be unchanged; white(ish) pixels are likely
changed. (b) Confusion Map: black and white are correctly classified not-
changed and changed pixels; green are not-changed pixels wrongly classified
as changed; red are changed pixels wrongly classified as not-changed.
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(a) XCCA (b) YCCA (c) XCODE (d) YCODE

Figure 5.12: Texas dataset. (a)(b) representation of X and Y in the CCA
aligned space, internal representation of the CCA, displayed only for investi-
gation purposes. (c)(d)Code space representation of X and Y , representation
of the latent space of the network.

(a) X̂ (b) X̃ (c) Ŷ (d) Ỹ

Figure 5.13: Texas dataset. Representation of the various output of the
network. The difference image comes out from the mean of X̂ − X̃ with
Ŷ − Ỹ . (a)X̂ output of the prior weighted similarity, derives from Y . (b)X̃
output of the reconstruction of the input, derives from X. (c)Ŷ output of the
prior weighted similarity, derives from X. (d)Ỹ output of the reconstruction
of the input, derives from Y .
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5.5.3 Comments

Some comments on our results and some proposal of improvement are here
presented.
First of all the alternative implementation called DCCAE with latent space
differentiation is not feasible due to the non-perfect alignment of the Z and
CCA domains. This can take the reader to doubt also about the alignment
needed to achieve good results in the DCCAE network, however the mis-
alignment is not big enough to be an obstacle for the training of the couple
of autoencoders. To demonstrate this statement, Figure 5.14, which illus-
trates a DCCAE result on the Texas dataset, is taken as an example; the
change detection objective is reached, indeed, the confusion map is almost
perfect. But, if it had been computed in the latent space, it would not have
been as good; and it is possible to see it by a visual inspection of the im-
ages extracted from the latent space Z. It is clear how Figures 5.14b and
5.14c, representing the exit of the encoders, are not aligned at all (the colour
palette is different), and a subtraction between the two can not lead to a
good result.

(a) Confusion map (b) XCODE (c) YCODE

Figure 5.14: California dataset. κ = 0.91. (a) Confusion map with κ = 0.91.
(b)(c) are an example of failure of perfect alignment in the Z or CODE
domain, it is evident from the different palette of colour in use.

The second point to be highlighted of the method results is the presence,
in Figure 5.7b, of many outliers, one which has a κ ' 0. In these cases, it is
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common that the algorithms does not learn how to reconstruct X̂ from the
change image Y , even if it is able to retrieve Ŷ from X. This fact influences
the cycle reconstruction and the network cannot learn a proper reconstruc-
tion. It is possible to see a small anomalies in the loss Lα, and then the
network fatigue to recover or cannot recover at all. To better understand
the problem it is possible to refer to the Figure 5.15, where 5.15b and 5.15c
are the two components of the Lα loss (see 4.11). It is possible to see the
mentioned anomaly, which happens at epoch number 7. Moreover, looking
for a similar pattern in the LCycle, it has been found in epoch number 8
and 9, proving the fact that this small misalignment transverses the network
invalidating the training process.
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(a) κ coefficient

(b) Cross-x loss function (c) Cross-y loss function

Figure 5.15: Texas dataset. Behavior of the proposed DCCAE method as a
function of the number of epochs. The three plots illustrate the training of
the network along the epochs (on the x-axis). The abnormality peak in plots
(b) and (c) is well evident. (a)κ coefficient along the epochs. (b) Cross-x
loss function, which is the prior weighted similarity from X to Y . (c) Cross-x
loss function, which is the prior weighted similarity from Y to X.

At last, a comment on a good property of the DCCAE: even if the train-
ing goes on for many epochs, more than necessary, it does not need any early
stopping criterion. Thus, highlighting the optimal stability gained through
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the cross balancing of the losses. When it reaches good performances, it is
very unlikely it can decrease. Figure 5.16 provides an example, which shows
the good learning capability in the first twenty-thirty epochs, and them it
remain stable, without overfitting.

(a) κ coefficient (b) Loss function

Figure 5.16: Texas dataset. Plots of the behavior of κ and the overall loss
function of the proposed DCCAE method against the number of epochs.
(a)κ coefficient. (b)Total Loss function.

5.6 Linear CCA

This section provides result for the problem applying only the linear Canoni-
cal Correlation Analysis on the datasets as a benchmark result. It is obvious
to foresee better result for the Texas dataset. This is expected because the
Texas has data acquired with the same modality (optical), even if in differ-
ent frequencies. This results in a heterogeneous change detection problem,
but in a relatively simple version. The results for this dataset are shown in
figures below, Figure 5.17.

The transformation is performed calculating all the correlations between

features, and taking the more correlated feature for each choice, as also dis-
played in the graph of Figure 5.19. It highlights that the first feature alone
contain 50% of the total correlation, and the subsequent three the remaining
part; the last three instead, does not contain any correlation information.
The different experiments shown in Figure 5.17 are performed giving as in-
put the dimension of the transformed space. Thus, canonical correlation
analysis was performed, and the two input images were projected in the
space defined by the most correlated features. At last, the change map is
retrieved by subtracting the two images (as in standard procedures) and
thresholding the result.



62 CHAPTER 5. EXPERIMENTAL RESULTS

It is worth noting how the performances increase by increasing the dimen-
sion of the space of projection. In theory, a feature space of dimension 1, as
illustrated in the Figure 5.17a is enough to represent two classes, but not to
extract the information for the classification, even if it is the one presenting
the more correlation. In fact, from the table in Figure 5.18 we can see the
κ ' 0, which indicates a nearly chance-equivalent. Instead, after using more
than 3 features (the more correlated of the 7), the κ value becomes ' 0.9.

(a) Dimension 1 (b) Dimension 4 (c) Dimension 7

Figure 5.17: Texas dataset. Confusion maps result of linear CCA performed
with a different number of eigenvectors, so with transformed spaces of dif-
ferent dimensions. (a) Only one eigenvector is used for the correlation cal-
culation and for the transformation, i.e., one transformed feature. (b) Four
eigenvectors are used to compute the correlation and for the projection, i.e.,
four transformed features. (c) All the seven feature are used to compute the
correlation and project into the space with seven features.
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Figure 5.18: Texas dataset. Curve indicating the K values
against CCA methods applied with different dimensions of
the transformed space (on the x-axis). With a projection to
one or two transformed features the results are poor, with
three features or more the results are quite accurate and sta-
ble.
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Figure 5.19: Texas dataset. CCA performed in a 7-
dimensional space. On the y-axis and x-axis the cumulative
sum of the eigenvalues and the number of features used are
shown. The Texas dataset can be projected at most to seven
transformed features (maximally correlated space), in fact
the correlation saturates to 1 with seven features.

On the California dataset, which is more ”difficult”, and expected to be
not solvable with a linear transformation, the linear CCA does not obtain
anything more than κ ' 0, so we preferred to omit figures for brevity. In
the following, where CCA will be mentioned, its behaviour is the same as
explained here, because the same functional block is nested in the DCCAE
architecture.

5.7 DCCA

The DCCA framework was explored and obtained rather accurate results
up to applying an appropriate mechanism of early stopping. Only for com-
pleteness, the result on the Texas dataset in term of κ is reported in Figure
5.20a. As it is possible to see, after 20 epochs the performances start to de-
crease. Furthermore, looking at the loss, the moment when the network is
learning is easily visible, but going on with the learning leads to overfitting
and can be identified quite precisely in the Cohen’s Kappa graph.
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(a) κ coefficient (b) Loss function

Figure 5.20: Texas dataset. DCCA method. The plots show the behavior of
κ and the overall loss function against the number of epochs. Large values
of both κ and the loss are obtained after few epochs. Then, around epoch
30, both abruptly decrease due to overfitting. (a) κ coefficient with a peak
of 0.84 at epoch 15. (b) Loss function.
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Chapter 6

Conclusion

In the present thesis, the challenging problem of unsupervised change detec-
tion with heterogenous remotes sensing images has been addressed. After a
first phase of detailed study of the related scientific literature, a novel ap-
proach rooted in deep learning has been developed. The proposed DCCAE
network has been successfully implemented, and alternative configurations
have been studied as well. Experimental results with two heterogeneous
data sets involving three optical and one radar sensor have pointed out the
capability of the method to achieve accurate detection of the changes regard-
less of the fundamentally different nature of the considered multitemporal
acquisitions.

In particular, the goal to achieve accurate peak performances and small
accuracy variance within the random ensemble of the output results, was
achieved thanks to the proposed network topology in which the CCA acts
as an alignment block for the training of a pair of autoencoders. The prior
information, extracted through local affinity matrices and incorporated into
the method, has revealed itself vital in order to formulate an unsupervised
technique.

The results of the experiments are fully satisfactory, and the proposed
method outperforms the state-of-the-art, which is based on deep architec-
tures using generative adversarial and stacked autoencoder components, in
the illustrated cases. It is worth recalling that these results were obtained
consistently within the validation with two very different dataset, with dif-
ferent features and complexity, thus suggesting the flexibility of the proposed
approach.

Some points of weakness of the developed methodological solution are
the always present objections to deep neural networks: they require time to

67
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be fine-tuned, their behaviour generally depends on several hyper-parameters;
we do not completely know how they work on a purely methodological stand-
point, and this partial knowledge limits the protection capacity against a
possible misbehaving. Furthermore, the computational power needed to
train a deep network is quite big, yet nowadays easy affordable.

Further works should address an improvement of the prior information,
in order to assure a bimodal distribution also with difficult datasets, as the
California dataset proposed.
Moreover, another problem to address is the the presence of many outliers
in the presented experiment on the Texas dataset, whose cause is not fully
understood.

One final comment it about the training policy of the proposed method:
for its formulation, there is the necessity to train the network every time a
pair of images need to be used; it is not meant as a a network you can pre-
train and use again and again. On one hand, this allows to have a network
trained only for the specific task at hand and consistently optimized for it.
On the other hand, the need for training on every input multitemporal pair
of images may be inconvenient. Yet, the possible integration with incremen-
tal learning or with further domain adaptation concepts may reduce this
training requirement in future extensions of the method.
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[Krähenbühl et al. 2011] Krähenbühl, Philipp ; Koltun ; Vladlen:
Efficient Inference in Fully Connected CRFs with Gaussian Edge Poten-
tials. In: Shawe-Taylor, J. (Hrsg.) ; Zemel, R. S. (Hrsg.) ; Bartlett,
P. L. (Hrsg.) ; Pereira, F. (Hrsg.) ; Weinberger, K. Q. (Hrsg.): Ad-
vances in Neural Information Processing Systems 24. Curran Associates,
Inc., 2011, S. 109–117

[Lavigne 1976] Lavigne, D. M.: Counting Harp Seals with ultra-violet
photography. In: Polar Record 18 (1976), Nr. 114, S. 269–277

[Liu et al. 2018] Liu, J. ; Gong, M. ; Qin, K. ; Zhang, P.: A Deep
Convolutional Coupling Network for Change Detection Based on Hetero-
geneous Optical and Radar Images. In: IEEE Trans. Neural Netw. Learn.
Syst. 29 (2018), March, Nr. 3, S. 545–559

[Lu et al. 2017] Lu, Zhou ; Pu, Hongming ; Wang, Feicheng ; Hu,
Zhiqiang ; Wang, Liwei: The Expressive Power of Neural Networks: A
View from the Width. In: Guyon, I. (Hrsg.) ; Luxburg, U. V. (Hrsg.) ;

http://www.deeplearningbook.org
http://www.deeplearningbook.org


BIBLIOGRAPHY 71

Bengio, S. (Hrsg.) ; Wallach, H. (Hrsg.) ; Fergus, R. (Hrsg.) ; Vish-
wanathan, S. (Hrsg.) ; Garnett, R. (Hrsg.): Advances in Neural In-
formation Processing Systems 30. Curran Associates, Inc., 2017, S. 6231–
6239

[Luppino et al. 2019] Luppino, Luigi T. ; Bianchi, Filippo M. ; Moser,
Gabriele ; Anfinsen, Stian N.: Unsupervised Image Regression for Het-
erogeneous Change Detection. In: IEEE Trans. Geosci. Remote Sens. 57
(2019), Nr. 12, S. 9960–9975

[Luppino et al. 2020] Luppino, Luigi T. ; Kampffmeyer, Michael C. ;
Bianchi, Filippo M. ; Jenssen, Robert ; Moser, Gabriele ; Serpico,
Sebastiano B. ; Anfinsen, Stian N.: Deep image translation with an
affinity-based change prior for unsupervised multimodal change detection.
Oct 2020. – arXiv:2001.04271

[Maas et al. 2013] Maas, Andrew L. ; Hannun, Awni Y. ; Ng, An-
drew Y.: Rectifier nonlinearities improve neural network acoustic models.
In: Proc. icml Bd. 30, 2013, S. 3

[Mardia et al. 1979] Mardia, Kantilal Varichand ; Kent, John T. ;
Bibby, John M.: Multivariate analysis. London [u.a.] : Acad. Press,
1979 (Probability and mathematical statistics). – ISBN 0124712509

[Mercier et al. 2008] Mercier, G. ; Moser, G. ; Serpico, S. B.: Con-
ditional Copulas for Change Detection in Heterogeneous Remote Sensing
Images. In: IEEE Transactions on Geoscience and Remote Sensing 46
(2008), May, Nr. 5, S. 1428–1441. – ISSN 1558-0644

[Minnett et al. 2019] Minnett, P.J. ; Alvera-Azcárate, A. ; Chin,
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