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Abstract

We study a design problem for an effort-maximizing principal in a two-player contest

with two dimensions of asymmetry. Players have different skill levels and an informa-

tion gap exists, as only one player knows the skill difference. The principal has two

policy instruments to redress the lack of competitive balance due to asymmetry; she

can commit to an information-revealing mechanism, and she can discriminate one of

the players by biasing his effort. We characterize the optimal level of discrimination to

maximize aggregate effort, showing how this is in turn inextricably linked to the choice

of information revelation. Applications are found in newcomer-incumbent situations

in an internal labor market, sales-force management, and research contests.

JEL Codes: D02, D72, D82

Keywords: Asymmetric contest; Information design; Discrimination.
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1 Introduction

Competition in social, political and economic spheres is often analyzed as a contest in which

resources are sunk in order to win a prize. Numerous applications of these frameworks can

be found in the literature relating to conflict and warfare, lobbying, elections, internal and

external labor markets or various types of research competition.1 A common theme in much

of the existing work is how the characteristics of the competitors and structure of the contest

affect the amount of resources or effort used in the competition, and how a contest designer

may attempt to influence this; the most usual assumption is that the designer wishes to

maximize the resources expended.2 We consider a contest between an incumbent and a

newcomer for a fixed prize. Such situations are often characterized by the newcomer having

better information than both the rival and the contest designer about attributes such as own

ability that are relevant to the playing of the contest. The difference in this attribute may be

large or small, and it is not certain that the incumbent is the superior contestant. Designing

the contest to maximize effort in this situation is not a trivial exercise for the principal

since it involves negotiating two dimensions of heterogeneity. First, hidden information

makes the return to effort uncertain for the uninformed player, discouraging effort.3 Second,

heterogeneity, as captured by a relative skill disparity, is generally acknowledged to be one

factor that limits resource use in contest settings (see Chowdhury et al., 2019). A player with

a large relative ability, or a large relative valuation of winning, may intimidate opponents

into submitting low efforts, and can hence reduce his own efforts and still win with a large

probability.4 In this paper, we set up a simple model that effectively captures the incumbent-

newcomer scenario, and in which the principal has two policy instruments at her disposal.

She can commit to a signaling mechanism which may reveal - at least partially - the hidden

information; furthermore, she can use a policy which treats one of the players preferentially by

biasing positively his effort level in the contest. We demonstrate that there is an interesting

interplay between these two policy instruments, and that the optimal level and direction of

discrimination is inextricably linked to the choice of information revelation.5

Our contribution is twofold. First, we analyze a model in which there is asymmetric

1See Konrad et al. (2009) and the references therein.
2Other aims are possible. In some contexts achieving a close contest may be the objective (Runkel,

2006), or maximizing participation (Azmat and Möller, 2009), or securing the highest quality winner (Serena,
2017b).

3Asymmetry in what the players know about the structure of the contest can generally lead to a low
effort level (Wärneryd, 2003).

4In a dynamic race setting, Konrad and Kovenock (2009) investigate the discouragement effect that arises
as one competitor nears the finishing line, causing opponents to simply give up.

5Here, the principal chooses whether and how to disclose information. Denter et al. (2020) consider a
situation where the agents themselves can choose to reveal information.
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information about the abilities of the contestants and show how the skill differential and the

existing discrimination policy affects the incentives of the principal to reveal information;

second we allow the principal to choose the optimal level of discrimination, in which she

has to take account of how this affects the optimal revelation of information. Our model

features uncertainty about the characteristics of the contestants, rather than the value of the

contested prize. Specifically, there is a skill differential between the two players in carrying

out the contest task, the relative value of which is known only to one player, the newcomer;

the skill differential can be large or small, and may positively favor either player. This

influences the effective level of contest effort which directly affects the success probabilities.

The uninformed incumbent has a prior distribution over two possible values of the relative

skill. In seeking to maximize the expected effort from the contest, the designer can commit

to a set of signals that are sent after the state is determined. Furthermore, we introduce a

discrimination parameter which changes the relative productivity of the contestants’ effort

in determining the probability of success.

When the discrimination parameter is fixed, the designer can influence effort only through

the signaling mechanism. We show that the optimal policy of information disclosure depends

upon the (fixed) discrimination parameter. When the informed newcomer is discriminated

against, it is always optimal to choose a system of signals such that the skill differential is

fully disclosed. This is because the discrimination, although it reduces the effect of the skill

differential when the uninformed incumbent is skill inferior, has little effect if information is

not disclosed: the return to the effort of the uninformed player is then uncertain, and hence

effort is risky. Information disclosure eliminates this uncertainty, encouraging the uninformed

incumbent to fight even if the opponent is very skilled. When the informed newcomer is

positively discriminated, then the magnitude of discrimination is important for the optimal

policy of information revelation. With mild positive discrimination of the newcomer, no

disclosure is optimal, whilst full disclosure is best for large positive discrimination. In the

former case, the players are treated almost the same, and the uninformed incumbent will

exert effort as if he faces an average opponent; knowing for certain that the opponent is very

skilled or little skilled is detrimental to effort since he will either be discouraged or slack off.

When the discrimination is heavily in favor of the informed newcomer, the incumbent has

low incentives to exert effort if he thinks he is facing an opponent of average ability; this

can be alleviated to some extent by fully revealing the skill differential. For intermediate

values of the discrimination parameter, partial disclosure can be optimal even for a binary

distribution of the skill differential. If the uninformed incumbent thinks it very likely that

the opponent is of low skill level, the designer will find it optimal not to reveal information

since the chance that the opponent is highly skilled incites effort. For intermediate levels of
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discrimination in favor of the informed newcomer, and when the incumbent thinks it likely

that the opponent is of high ability, partial disclosure is optimal which involves updating of

the prior belief but not full revelation of type.

Rather than just assuming that the discrimination parameter is exogenously fixed and

outside of the control of the designer, we allow her to choose this parameter in order to achieve

the maximal amount of effort possible. In this optimal choice, she must be mindful of the

fact that the choice of the magnitude and direction of discrimination affects the optimal

policy of information disclosure. We show that the designer will not want to implement

a level of discrimination that involves partial disclosure of the hidden information. She

chooses optimally between values of the discrimination parameter for which no disclosure

or full disclosure is optimal, and we show how this is connected to the prior beliefs of the

uninformed incumbent. When it is thought that the informed newcomer is very likely to

be skill-inferior then the designer does not benefit from revealing this to the uninformed

opponent, and she chooses to discriminate in favor of the informed (but likely low-skilled)

player; we show further how the magnitude of the discrimination depends on the skill level.

On the other hand, when the uninformed incumbent thinks that it is likely that the opponent

will be highly skilled, the designer must alleviate riskiness of effort for this player by revealing

the true state; she will also discriminate against the informed player to encourage effort by

both.

One can imagine several applications in which a newcomer competes against an incumbent

for a prize, and the ability of the incumbent is known by all, but the newcomer has hidden

talent.6 An internal labor market has features in common with our framework in which an

insider and an outsider to a firm compete for a position or a promotion. The outsider knows

his own skill level, but the insider is uncertain of the quality of the rival. In the context of a

tournament model, Chan (1996) analyses the preferential treatment of one type of candidate

depending on the unknown skill level of external workers. If they are expected to be highly

skilled, the performance of the firm can be improved by giving preferential treatment to

internal candidates; if external candidates are of little threat in terms of skill level, then they

can be given an advantage in the promotion contest to incentivize the internal candidates.

This is a simple mechanism for leveling the playing field. Our model develops this approach

by making manipulation of the information structure a policy instrument in the contest

design. In this case, the signaling mechanism that we consider can be likened to the use

of aptitude tests by firms to glean some information about their skill level.7 In sales-force

6Denter et al. (2020) also consider this framework, analyzing the information disclosure decisions made
by the newcomer himself by choosing to show off his talent, or lie low.

7Several large firms use aptitude tests in hiring such as Apple, Samsung, Microsoft and Nike. See
https://www.aptitude-test.com/blog/articles/10-major-companies-that-use-aptitude-testing/.
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management, an established seller may face competition from an outside challenger and

the firm may choose to disclose information about past sales performance of the challenger.

Discrimination in this case can be thought of as less administrative duties, better access

to back-office resources, more training, and better territories; see, e.g., Skiera and Albers

(1998), Farrell and Hakstian (2001), and Krishnamoorthy et al. (2005).

Research contests between competing teams also fit our framework. The effort made by

each applicant can be thought of as building up the quality of the team that is competing

for a research grant; one team may already be well established whereas a challenger is

up-and-coming and not tested. In this case, the research sponsor could grant the new

team a pre-project to gather information about its relative skill level.8 Discrimination in

this case could involve preferential treatment of young researchers or aid in writing a good

proposal. Many large corporations run internal innovation competitions which see employees

(or teams of employees) compete with each other in order to achieve further funding for their

projects.9 Rathi (2014) documents that Thompson Reuters, the US Department of Health

and Human Services, Reed Elsevier and TC Transcontinental (the largest printing company

in Canada) use different forms of innovation contest, releasing information about previous

contests and findings, and using internal mentors as a way of giving an advantage in the

competition. Similarly, one may think of procurement contracting as fitting our model, in

which an incumbent entrepreneur is well known, whereas a challenger has hidden qualities.

Instructing the newcomer to develop a prototype, and revealing the results of its testing, is a

way in which information can potentially be garnered and released. Further mechanisms of

information revelation may be legally specified. Zhang and Zhou (2016) note that political

candidates in the US are required by the Federal Election Campaign Act to reveal campaign

contributions and expenditures; this provides information about the financial support base

of the candidates.

Related Literature

We draw together three strands of literature in this paper. One relates to discrimination

in contests, the second to asymmetric information structures in contests, and the third to

the use of signaling mechanisms to reveal hidden information, otherwise known as Bayesian

8Serena (2017a) mentions several research contests in which there is an initial stage in which information
on the rivals may be gathered and revealed, before final proposals are made. These include the Horizon
2020 submissions to the European Research Council and design competitions run by the Royal Australian
Institute of Architects.

9See Adamczyk et al. (2012) for a review of research on innovation contests, and Höber (2017) for internal
contests.
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persuasion (Kamenica and Gentzkow, 2011).10 Chowdhury et al. (2019) and Mealem and

Nitzan (2016) discuss different forms of discrimination (or affirmative action) that are aimed

at leveling the playing field to achieve competitive balance in asymmetric contests. Instru-

ments at the disposal of an effort-maximizing principal include among others exclusion of

strong players (Baye et al., 1993), caps on efforts (Che and Gale, 1997) or various forms of

discrimination such as differential taxation of the prize, or giving head starts or handicaps

to some players (see the survey by Mealem and Nitzan, 2016). In the latter case, one may

affect the structure of the contest environment through the probability of success by giving

a head start or biasing the efforts of one or more players. For the two-player case, Franke

(2012) shows how biasing the efforts optimally in relation to competitors’ cost of effort (or

equivalently prize valuation) leads to maximal contest effort.11 The optimal bias in this case

ensures that both players have the same probability of winning the prize in equilibrium.

When there are more than two players, it is likely that weaker ones will prefer not to enter

the contest, and this has an effect on the total effort garnered by the designer. Franke et al.

(2013) show in this case how a combination of bias affecting effort productivities and head

starts can be used to obtain maximal effort. Giving some weaker contestants an incentive

to compete means that the probabilities of winning are not equalized in equilibrium, so that

the playing field is not perfectly leveled even in the best case scenario for the principal. With

more than two players, favoring a player also affects the strategic interaction among other

players and the composite effect can be complex. Fu and Wu (2020) consider the design

problem for a principal in an n-player lottery contest with heterogeneous contestants differ-

ing in their prize valuations. The principal pursues a broad range of objectives that include

among others total effort maximization and has two policy instruments − head starts and

biases affecting effort productivities. Fu and Wu (2020) show that the multiplicative biases

outperform head starts. Furthermore, in the contest designed to obtain maximal effort, the

contestants’ winning probabilities can be non-monotone with respect to the rankings of their

prize valuations. Unlike Franke et al. (2013) and Fu and Wu (2020), we limit our attention

to two-player contest under asymmetric information and allow the principal to choose both

the extent of information disclosure and the bias affecting effort productivity.

Leaving the framework of complete information, Hurley and Shogren (1998a), Hurley and

Shogren (1998b) and Wärneryd (2003) consider how asymmetries in information can affect

contest behavior. Particularly relevant to our work is their focus on cases with one-sided

informational asymmetry, where one player has better information than the competitor.12

10Our focus is on a lottery contest, originating in Tullock (1980), rather than an all-pay auction (Hillman
and Riley, 1989). See Lu et al. (2018) for an analysis of information disclosure in an all-pay auction.

11See also Epstein et al. (2013).
12Serena (2017a) in contrast considers a model of information disclosure in a lottery contest with two-sided
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Suppose that in a two-player framework, one knows the exact value of the prize but the

other knows only the underlying distribution. The effort of the uninformed player is then

likened by Hurley and Shogren (1998a) to a risky input which tends to decrease effort in

equilibrium, a finding that is reinforced by Wärneryd (2003) who shows that the two-player

lottery contest with asymmetric information yields lower equilibrium effort than when the

players are symmetrically informed or uninformed. The two-player lottery contest that we

investigate incorporates an asymmetry between the players’ relative skill at performing the

contest task, and an informational asymmetry since the relative skill level is known by only

one player.13 Both dimensions of asymmetry lead to lower efforts in equilibrium, and the

task of leveling the playing field in order to encourage players is complex. We consider two

policy instruments: one that is directed towards the skill differential, and one that addresses

the information gap.

As noted above, in the presence of asymmetric information, the uninformed contestant’s

belief about the unknown state of skill difference affects both contestants’ effort. The designer

can improve her payoff by influencing the uninformed contestant’s belief. To this end, she

commits to a state-conditional distribution of signals before realization of the state. These

distributions of signals have the potential to reveal information with varying degrees, and

we study the designer’s preferences over her information disclosure policy in combination

with the discrimination policy. Kamenica and Gentzkow (2011) have operationalized this

method of Bayesian persuasion, and it has been applied to a lottery contest by Zhang and

Zhou (2016) and Feng and Lu (2016). This latter paper considers information revelation

about an unknown number of competitors, whilst Zhang and Zhou (2016) is more relevant

for our analysis since it is a two-player contest. The asymmetric information relates to the

value of the prize, and the effort-maximizing designer must reveal the state optimally by

committing to a signaling mechanism. Kamenica and Gentzkow (2011) show generally that

full disclosure is an optimal policy if the payoff of the sender (principal) as a function of

the belief of the receiver (uninformed contestant) is globally convex, whilst no disclosure

is best when it is globally concave; if the payoff function of the sender has concave and

convex portions, then partial disclosure is optimal. Zhang and Zhou (2016) consider first a

structure in which the hidden prize value is binary, which yields an expected effort function

that is globally convex or concave depending on the valuation by the informed player and

the two possible valuations of the uninformed; hence, a signal is optimal that gives either

full disclosure of the hidden state, or no disclosure. Only when there are more than two

possible valuations can partial disclosure appear, in which the signal reveals the true value

private information.
13Brown (2011) notes that both dimensions can be important in determining competitive incentives.
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of the prize imperfectly to the uninformed player. Our findings show that even for a binary

distribution of the skill differential, partial disclosure can be optimal for some given level

of discrimination, although the principal will not implement such discrimination level if she

can choose it.14

The paper is organized as follows. Section 2 sets up the basic contest and framework

for information disclosure, and Section 3 solves for equilibrium effort levels under different

informational assumptions. Section 4 considers the optimal information revelation policy for

a given level of discrimination, and the optimal direction and magnitude of discrimination

is calculated in Section 5. Section 6 concludes. The appendix contains proofs of our results.

2 Model

Two risk-neutral agents, N(newcomer) and I (incumbent), compete for a fixed prize of value

1 in a contest designed by the principal P . The contest score achieved by player I is simply

given by his effort eI , and the score of the newcomer is a multiple of his effort: αseN , where

α > 0 and s > 0. The parameter α measures the degree of discrimination: α > 1 (0 < α < 1)

implies that N is positively (negatively) discriminated. This parameter is chosen optimally

by the principal in the analysis below. The parameter s is one of the primitives of the model,

and measures N ’s relative skill: s > 1 (0 < s < 1) implies that N is superior (inferior) in

skill. The success probabilities of N and I, given an effort profile (eN , eI) , eN , eI > 0, are

given by a player’s score relative to the total score in the contest:

ρN =
αseN

αseN + eI
, ρI =

eI
αseN + eI

.

This contest success function is commonly used, and has been axiomatized by Clark and

Riis (1998).15 Schaller and Skaperdas (2020) suggest the multiplicative approach taken here

as a general way of capturing asymmetry in contests. The skill differential implies that the

newcomer is a certain percentage better or inferior than the incumbent at carrying out the

contest task, and it would then appear natural that the instrument of the principal should

also be multiplicative.16

14A major difference between our model and Zhang and Zhou (2016) is the fact that our use of the
discrimination parameter renders the relative asymmetry between the players a continuous variable, even
though the skill differential takes one of two values. For some of these values partial disclosure is optimal.
In Zhang and Zhou (2016), it is the relative valuation of the two players that captures the asymmetry, and
this takes a finite number of values; either full disclosure or no disclosure is optimal for all of these values in
their model.

15If αseA+eB = 0, we assume that the prize is not awarded. This does not occur in equilibrium, however.
16Modeling the skill differential as an additive head start is also a possibility. However, it is widely

acknowledged that head starts tend to dampen contest effort in two-player contests (Franke et al., 2013).
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We assume that the relative skill s is the source of information asymmetry at the begin-

ning of the game and is referred to as the state of the game. Player N knows the state. Player

I and the principal do not know the state, but know that N is fully informed. For simplicity,

we assume that there are two possible states, one in which N is superior and the other in

which N is inferior. Specifically, s can take only two values in S :=
{
x, 1

x

}
, x ∈ (0, 1),

with prior probabilities q ∈ (0, 1) and (1− q), respectively. Since S contains only two val-

ues, a distribution over the state space can be expressed with a scaler p ∈ [0, 1] such that

p = Pr [s = x]. We will follow this convention, unless stated otherwise. In addition, we use

the notation p to denote a generic distribution wherever needed, while q always refers to the

prior, which is a parameter of the model.

2.1 Information disclosure

Before the state is realized, the principal commits to and publicly discloses a pair of state-

conditional signal distributions
{
π (· | x) , π

(
· | 1

x

)}
such that π (· | s) ∈ 4 (M), where M is

a finite set of signals and 4 (M) is the set of all probability distributions over M . Once the

state s is realized and revealed to N , nature draws a signal m ∈ M from the distribution

π (· | s). Both agents observe the signal and the uninformed agent I updates his belief.

We let qm denote I’s posterior belief that N is inferior, after observing a signal m, i.e.,

qm = Pr [s = x | m]. Note that since N also observes the signal, N can infer qm.

The contest then takes places with agents exerting effort simultaneously. The cost of

effort is linear and identical for each agent, with a constant marginal cost of one. The

agent i ∈ {N, I} chooses effort ei ≥ 0 to maximize his expected payoff, denoted by vi. The

principal’s payoff is given by the total expected efforts and is denoted by VP .

The timing of the game is as follows:

1. P chooses the degree of discrimination α > 0, which is common knowledge;

2. P commits to and publicly discloses a set of distributions
{
π (· | x) , π

(
· | 1

x

)}
where

π (· | s) ∈ 4 (M), the set of all probability distributions over the signal space M ;

3. Nature draws a realization of the state s ∈ S, which is revealed to player N . Next,

nature draws a signal m ∈M from π (· | s). The signal m is publicly observed, leading

to a posterior belief distribution for I;

With several players they can, however, be a useful tool for encouraging the participation of desirable players
(with a high prize valuation for example), and excluding others. With complete information, Franke et al.
(2013) show that an effort-maximizing principal can use head starts to limit the set of active players, then
employing a multiplicative bias to extract as much surplus as possible from each player. In addition, we show
in Section 5 that addressing the asymmetry arising from a multiplicative skill differential with an additive
discrimination policy can also be suboptimal.
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4. The contest takes place with N and I choosing effort simultaneously.

We study the perfect Bayesian equilibrium of the game.

We make certain assumptions in our model for analytical tractability. First, we consider

only two possible states. When there are more than two states, the analysis of optimal

information disclosure requires analyzing the convexity property of a function with a multi-

dimensional domain. Since we characterize the information disclosure policy for all possible

levels of discrimination, this analysis becomes quite intractable. In order to focus on the key

issue of the optimal discrimination, we restrict the state space. Further, if both state values

have been above (below) one, then the principal can infer that the uninformed player I is

always inferior (superior), and the result on the direction of discrimination is straightforward.

The more interesting case is the one in which the uninformed player can be either superior

or inferior to the informed player. Our assumption that the two state values are reciprocal

to each other allows us to analyze this interesting case. The assumption also implies that the

relative skill ratio is the same in both states. An undesired consequence of this assumption

is that the aggregate effort is independent of the uninformed player’s belief if there is no

discrimination in favor of any player. The assumption, however, does not limit our analysis

in any significant way; this is because discrimination is endogenous in our model and we have

demonstrated that the principal never chooses a policy of no discrimination in equilibrium.

Our results would be qualitatively unchanged if we consider an alternative specification of

the state space: S = {x, y} , 0 < x < 1 < y. However, by considering y = 1/x, we are able to

save a parameter and analyze the interplay of skill differential and information disclosure in

a tractable manner. Furthermore, note that the principal chooses the discrimination policy

at the beginning of the game, so that it is not conditioned on any information that might

be revealed about the state. Knowing the possible states of the world, the principal sets

the policy in advance, regulating effort through the signaling mechanism; the principal only

observes the state if the signal is fully revealing, and we show below that this is not always

an optimal choice. We think of the policy choice as being an overarching principle that does

not change according to the skill of the player that competes.

3 Contest

We begin at stage 4. At the final stage, the contest can take place under two possible

information structures: i) full information and ii) asymmetric information.
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3.1 Full information

Suppose both agents know the value of s. Agent i chooses effort to maximize his expected

payoff vi = ρi − ei. The following lemma documents the principal’s expected payoff in the

Nash equilibrium of the game. We use the notation Ep [f (s)] to denote the expected value

of f (s) given that p = Pr [s = x]; therefore, Ep [f (s)] := pf (x) + (1− p) f
(
1
x

)
.

Lemma 1. In the Nash equilibrium of the full information contest, the principal’s ex ante

expected payoff is

V F
P (α, q) = Eq

[
2αs

(1 + αs)2

]
. (1)

3.2 Asymmetric information

Suppose agents are asymmetrically informed. Agent N knows the true value of s. Agent

I knows that the opponent is fully informed about the state, but does not know its value

himself. Suppose I’s belief is given by some p ∈ [0, 1], where p = Pr [s = x]. Agents choose

effort to maximize their expected payoffs: vN = ρN−eN , and vI = Ep (ρI)−eI . The following

lemma documents the principal’s expected payoff in the Nash equilibrium of the game.

Lemma 2. In the Nash equilibrium of the asymmetric information contest, the principal’s

expected payoff is

V A
P (α, p) = 2α

 Ep
[

1√
s

]
α + Ep

[
1
s

]
2

. (2)

4 Information disclosure with discrimination

4.1 The posterior belief

At stage 3, nature draws a realization of the state s ∈ S and subsequently, a signal m ∈ M
from π (· | s) , which leads I to update his belief from the prior q to a posterior qm ∈ [0, 1]:

qm = Pr [s = x | m] =
Pr [m | s = x] Pr [s = x]∑

s π (m | s) Pr (s)
=

π (m | x) q

π (m | x) q + π
(
m | 1

x

)
(1− q)

. (3)

Observe that a posterior qm is a random draw from a distribution of π (m | s) given some

state s, which is stochastically drawn from a binary distribution over the state space S ={
x, 1

x

}
. Therefore, any set of signal distributions

{
π (· | x) , π

(
· | 1

x

)}
generates a distribution

of posteriors {qm}m∈M with probabilities
∑

s∈S π (m | s) Pr (s). The principal’s expected

11



payoff, given the signal distributions
{
π (· | x) , π

(
· | 1

x

)}
, is∑

s∈S

∑
m∈M

V A
P (α, qm) π (m | s) Pr (s) . (4)

4.2 Optimal information disclosure

At stage 2, the principal’s information disclosure policy therefore solves the following prob-

lem:

max
π(·|x)∈4(M),π(·| 1x)∈4(M)

∑
s∈S

∑
m∈M

V A
P (α, qm) π (m | s) Pr (s) subject to (3). (5)

Following Kamenica and Gentzkow (2011), we reformulate (5) as a constrained optimiza-

tion problem of choice over posteriors and derive the signal distributions from the optimal

posteriors. While this technique is quite general, we illustrate it with an abridged proof,

by constructing the signal distributions specific to our context, and it is included in the

appendix.

Lemma 3. The indirect value function of (5) is the same as the indirect value function of

the following optimization problem:

max
{qm∈[0,1],βm∈[0,1]}m∈M

∑
m∈M

βmV
A
P (α, qm) (6)

subject to
∑
m∈M

βm = 1 and
∑
m∈M

βmqm = q.

Kamenica and Gentzkow (2011) establish that the indirect value function of (6) is well

defined and given by the concave closure of the principal’s expected payoff under asymmetric

information. The concave closure denoted by Cav (α, q) is the smallest concave function

that is everywhere weakly greater than V A
P (α, q).17 Whether or not V A

P (α, q) is strictly

less than Cav (α, q) for q ∈ (0, 1), has implication for how information is disclosed. If

V A
P (α, q) = Cav (α, q), then the maximum payoff the principal can achieve by committing

to some state-conditional signal distributions is exactly the same as what she gets with no

information disclosure. If instead V A
P (α, q) < Cav (α, q), then the principal can manipulate

I’s belief by choosing the signal distributions suitably and improve her expected payoff from

V A
P (α, q) to Cav (α, q). The following proposition documents the above findings. The proof

17The concave closure is formally defined as follows. Fix α. Let co
(
V AP (α, q)

)
be the convex hull

of the graph of V AP (α, q) as a function of q. Then, the concave closure is given by Cav (α, q) =
sup

{
p | (p, q) ∈ co

(
V AP (α, q)

)}
.
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is omitted; see Kamenica and Gentzkow (2011, Proposition 1, Corollaries 1 and 2.) for a

general analysis.

Proposition 1 (Kamenica and Gentzkow 2011). The indirect value of (6), as a function of

the prior q, is given by Cav (α, q), the concave closure of V A
P (α, q). The principal benefits

from adjusting I’s belief by disclosing information if and only if V A
P (α, q) < Cav (α, q).

We determine the principal’s preferred information disclosure policy from the shape of

V A
P (α, q) with respect to q, which is summed up in the following Lemma.

Lemma 4. Define α := 3 + 2x and α := 3 + (2/x). The following characterizes the shape of

V A
P (α, q):

(a) If 0 < α < 1, then V A
P (α, q) is decreasing and convex in q.

(b) If α = 1, then V A
P (α, q) is independent of q.

(c) If 1 < α ≤ α, then V A
P (α, q) is increasing and concave in q.

(d) If α < α < α, then V A
P (α, q) is increasing and convex in q for q ∈ (0, q̂), and increasing

and concave in q for q ∈ (q̂, 1) where q̂ := (α− α) / (α− α).

(e) If α ≤ α, then V A
P (α, q) is increasing and convex in q.

Figure 1 plots V A
P (α, q) against q for various values of α. Depending on the curvature

of V A
P (α, q), it follows from Lemma 4 that the principal may choose one of the following

three information disclosure policy in equilibrium − (i) Full information disclosure, (ii) No

information disclosure, and (iii) Partial information disclosure. Below we describe the signal

distributions associated with various information disclosure regimes.

Figure 1: Plot of V A
P (α, q) against q for various values of α

13



First, consider Lemma 4, cases (a) and (e), drawn in the first and fourth panels of

Figure 1. Since V A
P (α, q) is convex for all values of q ∈ (0, 1), Cav (α, q) is a straight line

joining V A
P (α, 0) and V A

P (α, 1) and V A
P (α, q) < Cav (α, q) except for q = 0, 1. The principal

benefits from full information disclosure for any q ∈ (0, 1) and the solution of (6) is given by

β1 = q, β2 = 1 − q; q1 = 1, q2 = 0. The principal implements full information disclosure by

generating a unique signal in each state so that I perfectly infers the state from observing

the signal. Specifically, fix a pair of signals m1,m2 ∈M,m1 6= m2, and consider the following

signal distributions, which generate posteriors qm1 = 1 and qm2 = 0:

π (m | x) =

1 if m = m1

0 if m 6= m1

and π

(
m | 1

x

)
=

1 if m = m2

0 if m 6= m2

. (7)

Next, consider Lemma 4, case (c), drawn in the second panel of Figure 1. Since V A
P (α, q)

is concave for all values of q ∈ (0, 1), V A
P (α, q) = Cav (α, q) for all q. No information

disclosure is optimal and the solution of (6) is given by β1 = 1; q1 = q. The principal

implements no information disclosure by generating one and the same signal in every state

so that I finds the signal uninformative. Specifically, fix some m1 ∈ M and consider the

following signal distributions, which generate posterior qm1 = q:

π (m | x) =

1 if m = m1

0 if m 6= m1

and π

(
m | 1

x

)
=

1 if m = m1

0 if m 6= m1

. (8)

Next, consider Lemma 4, case (d), depicted in the third panel of Figure 1. In this case,

V A
P (α, q) is partly convex and partly concave for q ∈ (0, 1). There exists a posterior µ ∈[q̂, 1]

such that V A
P (α, q) < Cav (α, q) for q ∈ (0, µ) and V A

P (α, q) = Cav (α, q) for q ∈ (µ, 1).18

Definition 1. Formally, for any α > α, µ (α) is defined as

µ (α) :=

p ∈ (0, 1) : V A
P (α, p)− V A

P (α, 0) = p
dV AP (α,p)

dp
if V A

P (α, p)− V A
P (α, 0) >

dV AP (α,1)

dp

1 if V A
P (α, p)− V A

P (α, 0) ≤ dV AP (α,1)

dp

.

Direct calculation gives

µ (α) = min

{
x (α− α) (x+ α)

(1− x2) (1 + 2x+ α)
, 1

}
. (9)

18It is possible that µ = 1 so that V IP (α, q) is always strictly less than Cav (α, q), except for q = 0, 1, so
that full information disclosure is optimal.
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The principal implements partial information disclosure for q ∈ (0, µ (α)) and no information

disclosure for q ∈ (µ (α) , 1) and the solution of (6) is given by β1 = q
µ(α)

, β2 = 1− q
µ(α)

; q1 =

µ (α) , q2 = 0 for q ∈ (0, µ) and β1 = 1; q1 = q for q ∈ (µ (α) , 1).

The principal implements partial information disclosure for q ∈ (0, µ) by generating a

common signal in both states, while randomizing with another signal in one of the two states.

Specifically, fix a pair of signals m1,m2 ∈ M,m1 6= m2, and consider the following signal

distributions, which generate posteriors qm1 = µ and qm2 = 0:

π (m | x) =

1 if m = m1

0 if m 6= m1

and π

(
m | 1

x

)
=


q

µ(α)(1−q) if m = m1

1− q
µ(α)(1−q) if m = m2

0 if m /∈ {m1,m2}

.

(10)

Finally, consider Lemma 4, case (b). Since V A
P (α, q) is independent of q, any information

disclosure policy yields the same payoff.

The following proposition characterizes the equilibrium information disclosure policy for a

given degree of discrimination α. The proof follows from Lemma 4 and the above discussion.

Proposition 2. Fix α > 0, x ∈ (0, 1), and q ∈ (0, 1). The equilibrium information disclosure

policy is characterized as follows:

1. Suppose I is positively discriminated, i.e., α < 1. Then, the principal implements full

information disclosure with the signal distributions (7).

2. Suppose N is positively discriminated, i.e., α > 1.

(a) If α ≤ α, then the principal implements no information disclosure with the signal

distributions (8),

(b) If α < α < α, then the principal implements partial information disclosure with

the signal distributions (10) for q ∈ (0, µ (α)), and implements no information

disclosure with the signal distributions (8) for q ∈ (µ (α) , 1),

(c) If α ≤ α, then the principal implements full information disclosure with the signal

distributions (7).

3. Suppose no player is positively discriminated, i.e., α = 1. Then, the principal’s expected

payoff is invariant to any information disclosure policy.
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Proposition 2 illustrates the interplay between the information advantage and positive

discrimination. First, the information advantage and positive discrimination create parallel

effects. If the principal gives a candidate preferential treatment, then it is counterproductive

to give his competitor an information advantage.19 Second, the principal’s benefits from

having a contestant with an information advantage are regressive with respect to the degree of

positive discrimination. The second effect arises as both information advantage and positive

discrimination create an imbalance among contestants, which has a dampening effect on

their contest efforts. The principal can, however, manipulate these two factors of imbalance

to address the adverse effect of the inherent disparity in skill.

When the informed newcomer is discriminated against (α < 1), it is always optimal to

choose a system of signals such that the skill differential is fully disclosed. This is because

the discrimination, although it reduces the effect of the skill differential when the uninformed

incumbent is skill inferior, has little effect if information is not disclosed: the return to the

effort of the uninformed player is then uncertain, and hence effort is risky. Information

disclosure eliminates this uncertainty, encouraging the uninformed incumbent to fight even

if the opponent is very skilled. When the informed newcomer is positively discriminated,

then the magnitude of discrimination is important for the optimal policy of information

revelation. With mild positive discrimination of the newcomer (1 < α ≤ α), no disclosure

is optimal, whilst full disclosure is best for large positive discrimination (α ≤ α). In the

former case, the players are treated almost the same, and the uninformed incumbent will

exert effort as if he faces an average opponent; knowing for certain that the opponent is very

skilled or little skilled is detrimental to effort since he will either be discouraged or slack off.

When the discrimination is heavily in favor of the informed newcomer, the incumbent has

low incentives to exert effort if he thinks he is facing an opponent of average ability; this

can be alleviated to some extent by fully revealing the skill differential. For intermediate

values of the discrimination parameter (α < α < α), these concerns need to be balanced,

and partial disclosure is optimal. If the uninformed incumbent thinks it very likely that

the opponent is of low skill level (q ∈ (µ (α) , 1)), the designer will find it optimal not to

reveal information since the chance that the opponent is highly skilled incites effort. When

the incumbent thinks it likely that the opponent is of high ability (q ∈ (0, µ (α))), partial

disclosure is optimal which involves updating of the prior belief but not full revelation of

type.

For a given α, the principal’s expected payoff from the optimal information disclosure is

Cav (α, q). We let FD, ND, and PD denote the sets of values of α, for which the principal

19In fact, when the principal positively discriminates I, she would benefit from I having an information
advantage − a possibility that our model with one-sided information advantage rules out.
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implements full-, no-, and partial-information disclosure in equilibrium, respectively. Then,

Cav (α, q) =



V F
P (α, q) if α ∈ FD

V A
P (α, q) if α ∈ ND
q

µ(α)
V A
P (α, µ (α)) +

(
1− q

µ(α)

)
V A
P (α, 0) if α ∈ PD

Eq
[

2s
(1+s)2

]
if α = 1

(11)

Figure 2: Cav (α, q), V F
P (α, q), and V A

P (α, q) against α (q = 0.5 and x = 0.2)

In Figure 2, panel a and panel b, we plot Cav (α, q), V F
P (α, q), and V A

P (α, q) against

α, for q = 0.5 and x = 0.2. In these plots, the continuous curve represents Cav (α, q),

the dashed curve represents V F
P (α, q), and the dotted curve represents V A

P (α, q). Observe

that, in panel a, Cav (α, q) lies weakly above V F
P (α, q) and V A

P (α, q). Cav (α, q) can also be

strictly higher than V F
P (α, q) and V A

P (α, q), in which case, partial information disclosure is

optimal. This can be seen in Panel b, which is an expansion of the inset box of Panel a and

it considers a sub-range of α, in which Cav (α, q) > max
{
V F
P (α, q) , V A

P (α, q)
}

for some α.

5 Optimal discrimination

At stage 1, the principal’s discrimination policy solves the following problem:

max
α>0

Cav (α, q). (12)

Denote the solution by α̂. We begin with a set of lemmas that will be useful in characterizing

α̂.
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The first lemma establishes an important link between the discrimination policy and the

disparity in skill. Discrimination has two effects. On the one hand, it is costly to the principal

due to its asymmetric treatment of the contestants which discourages effort. On the other

hand, it benefits the principal by adjusting the disparity in skill, leveling the playing field

and encouraging effort. Had there been no uncertainty, the principal could perfectly mitigate

the adverse effect of the skill disparity by setting α = 1/s. In the presence of uncertainty,

discrimination is always costly in one state and can possibly benefit in the other. This

fact restricts the magnitude of discrimination employed by the principal, since setting it

too high or too low would be costly in both states. The following lemma delineates the

optimal discrimination policy, showing that the principal’s preferred choice of discrimination

is always bounded by the range of the set containing reciprocals of the possible state values,

which in our framework is the state space itself.

Lemma 5. For any q ∈ (0, 1), α̂ ∈
[
x, 1

x

]
.

A direct implication of Lemma 5 is that the principal will not choose α > α, a situation

described in Lemma 4, case (e).

Further, if 1
x
≤ α, the principal will also not consider the possibility of partial information

disclosure, a situation described in Lemma 4, case (d). However, out next result suggests

that even if α < 1
x
, the principal does not implement partial information disclosure in

equilibrium. Specifically, the following lemma shows that the principal’s expected payoff in

the partial information disclosure regime, given by q
µ(α)

V A
P (α, µ (α)) +

(
1− q

µ(α)

)
V A
P (α, 0),

is decreasing in α.

Lemma 6. Consider α < 1
x

and α ∈ PD
⋂(

α, 1
x

]
. Then, the principal’s expected payoff

from partial information disclosure is decreasing in α.

From Lemma 6, it immediately follows that if the principal chooses a discrimination

policy in
(
α, 1

x

]
in equilibrium, then it must be associated with no information disclosure;

otherwise, the principal can improve her payoff by reducing the discrimination level. The

above observation and Proposition 2 together imply that whenever α̂ ∈
(
1, 1

x

]
, the principal

implements no information disclosure. This finding is documented in the following corollary.

It is worth noting that this result does not imply that the principal’s optimal choice of

discrimination is always below α. It can be shown that if, for some q, the principal’s expected

payoff from no information disclosure reaches its maximum at some α ∈
(
α, 1

x

]
, then µ (α) ≤

q. By Proposition 2, it then follows that the principal’s payoff from no information disclosure

dominates her payoff from partial information disclosure.

Corollary 1. If α̂ ∈
(
1, 1

x

]
, then the principal implements no information disclosure.
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Whilst in the previous section we demonstrated that partial disclosure can be optimal

for some given level of the discrimination parameter, this result shows that the principal will

not choose this as part of an optimal policy. She prefers either to remove all uncertainty

relating to the state, or to keep the initial level of uncertainty in combination with an optimal

discrimination parameter. Simply using the signaling mechanism to change the prior is sub-

optimal when the level of discrimination can be chosen.

We denote the principal’s optimal choice of discrimination under full and no information

disclosure by αFD and αND, respectively. Formally,

Definition 2. αFD := arg max
α>0

V F
P (α, q) and αND := arg max

α>0
V A
P (α, q).

The following lemmas characterize properties of αFD and αND.

Lemma 7. αFD solves Eq
[
s(1−αs)
(1+αs)3

]
= 0. Further, αFD S 1⇔ q S 1

2
.

Lemma 8. αND = Eq
[
1
s

]
. Further, αND S 1⇔ q S x

1+x
.

We now state the main proposition, which describes the equilibrium discrimination policy.

Proposition 3. Fix x ∈ (0, 1) and q ∈ (0, 1). There exists a threshold q ∈
[

x
1+x

, 1
2

]
such that

1. If q < q, then the principal’s choice of discrimination is α̂ = αFD < 1 and there is full

information disclosure in equilibrium.

2. If q > q, then the principal’s choice of discrimination is α̂ = αND > 1 and there is no

information disclosure in equilibrium.

3. If q = q, then the principal is indifferent between choosing α = αFD < 1 along with

full information disclosure and choosing α = αND > 1 along with no information

disclosure.

Proposition 3 makes several important observations. Consider the principal’s preference

for information disclosure when she can choose the level of discrimination. Figure 3 plots

the equilibrium information disclosure policy in (q, x) space. The asymmetry in information

between the players can be both costly and beneficial to the principal. In the presence of

asymmetric information, the return to the effort of the uninformed player I is uncertain,

which dampens I’s incentive to raise effort. By disclosing information, the principal elim-

inates this uncertainty and encourages I to fight. However, when information is revealed,

I comes to know the level of skill disparity in both states. A state-independent choice of

discrimination has limited ability to eliminate this disparity; while discrimination may help
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in leveling the playing field in one state, it makes it more uneven in the other. The disparity

in skill discourages I (after becoming informed) to raise effort if he faces a stronger opponent.

In such a situation, the principal benefits from not disclosing information.

NDFD

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

q

x

Figure 3: The equilibrium information disclosure policy in (q, x) space

Recall from Corollary 1 that the benefits of not disclosing information outweigh the costs

if the informed player N is positively discriminated (i.e., 1 < α < 1
x
). The principal can

pursue a positive discrimination policy in favor of N to her own advantage if N is more

likely to be skill inferior (i.e., q > 1/2). Therefore, for q > 1/2, the principal commits not

to disclose information and positively discriminates N ; if I knew that he was facing a low

skilled opponent he will slack off, and the principal needs to discriminate N positively to

encourage the opponent. If I knew that the opponent is of high skill, then both this and

the positive discrimination of N affects contest effort negatively. Hence, the principal does

not reveal the state when it is likely that the informed player has low skill. As q decreases

further from 1/2, N becomes more likely to be skill superior. Positive discrimination in favor

of N becomes increasingly costly to the principal as I reduces effort anticipating that he is

more likely to be facing a stronger and positively discriminated opponent. To counter her

disincentive, for sufficiently low values of q, the principal commits to reveal information and

positively discriminate I to benefit her in the unfavorable state. However, as is clear from

Figure 3, when a low value of q coincides with a low value of x, the policy of no disclosure is

optimal; here it is highly likely that the informed player has a very high skill level. Knowing

this would dampen I’s willingness to exert effort, and then N will also slack-off.
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α = α F
D

α = 1

q
=
q

α
=
α
ND
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α

Figure 4: The equilibrium discrimination policy α̂ against q (for x = 0.3)

Next, consider the principal’s choice of discrimination in equilibrium. Figure 4 plots the

equilibrium discrimination α̂ against q, for given x = 0.3. If the principal does not disclose

information, her optimal choice of discrimination is Eq
[
1
s

]
= αND. In the Appendix, (A.5)

shows that the slope of N ’s reaction function in equilibrium is positive (negative) when

α > (<)αND, so that effort is a strategic complement (substitute) for this player, making

him the favorite (underdog).20 The optimal level of discrimination with no disclosure thus

evens the contest, so that the marginal product of N ’s effort is not affected by I’s effort.

Similarly, when information is fully disclosed, the principal sets αFD; when the choice of

discrimination parameter is made, the state is not known and this level of the discrimination

parameter ensures that Eq
[

∂2vN
∂eI∂eN

]
= 0, measured in equilibrium.21 Hence, neither N nor I

is the ex ante favorite when αFD is chosen and there is full information disclosure, implying

that the contest is expected to be balanced.

In terms of the incumbent-newcomer scenario, we consider that the newcomer (player

N) is better informed of relative ability than the incumbent (I). Through previous play, the

incumbent is likely to reveal its technological capability, physical and intellectual capacity,

resource base or other attributes depending on the application. A newcomer is by definition

comparatively unknown. In an innovation contest, the relative capability of a newcomer may

20See Hurley and Shogren (1998b). The slope of N ’s reaction function follows the sign of ∂2vN
∂eI∂eN

, the effect
that I’s effort has on the marginal product of N ’s own effort. If this is positive then effort is a strategic
complement for N .

21We have that ∂2vN
∂eI∂eN

= αs
[

αseN−eI
(αseN+eI)

3

]
. When the discrimination is set, the state is not known,

so taking the expectation of this and evaluating at the symmetric equilibrium gives sign Eq
[
∂2vN
∂eI∂eN

]
=

sign Eq
[
s(αs−1)

(αs+1)3

]
. By Lemma 7, αFD is such that this value is zero.
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be determined by undisclosed results of trials or prototype testing, or whether the team is

suffering from innovation fatigue or burnout. In a sales contest, the leads that a salesperson

has in a certain territory can contribute to relative strength; a worker external to a firm will

possess qualities that are initially hidden from a potential employer compared with internal

candidates.

In our model, this uncertainty is described by the two parameters (q, x) capturing the

likelihood that the newcomer is inferior/superior to the incumbent, and by how much. The

principal prefers to fully disclose the hidden information for many parameter combinations

where q < 1
2

so that the newcomer is most likely to be the superior player. Full disclosure

can be a requirement to make trial or testing results publicly available in an innovation

contest, or to publish territorial leads in a sales contest. Prospective external employees can

be subjected to aptitude testing with results that are revealed to all. As we have seen, this

policy will be combined with favorable discrimination of the incumbent in the contest. In

a sales contest, the incumbent may be given better territories, less administrative duties or

other resources in the contest that can boost effective effort. A newcomer in an innovation

contest may be required to use administrative resources to prove that its laboratory fulfills

certain requirements, provide proof of concept and/or evidence that ethical guidelines are

followed. This can reduce effective effort by the newcomer in the contest. An external worker

may be required to acquire knowledge of the corporate culture or business practice of the

hiring firm, detracting effective effort in the contest. When the incumbent is likely to be

inferior (i.e. high values of q), the principal prefers to not reveal information about relative

ability, discriminating in favor of the newcomer.

In our model, a multiplicative discrimination policy seems a natural instrument to mit-

igate the effect of a multiplicative skill differential. However, it can also be shown that a

multiplicative discrimination policy is better than an additive discrimination policy from

the principal’s perspective. To see this, consider the following modification of the game in

which the principal chooses an additive discrimination policy: At stage 1 of the game, the

principal chooses head starts βN and βI so that the respective scores of N and I are given

by seN + βN and eI + βI . Then, the success probabilities of N and I are ρN = seN+βN
seN+eI+βN+βI

and ρI = eI+βI
seN+eI+βN+βI

. In this modified version of the model, the Nash equilibrium of the

asymmetric information contest, given the head starts βN and βI , provides the principal with

an expected payoff of

V A
P (βN , βI , q) = 2

 Eq
[

1√
s

]
1 + Eq

[
1
s

]
2

− βI − βNEq
[

1

s

]
.
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It can be shown that the expected payoff is linear in q. Therefore, the principal’s expected

payoff is invariant to the information structure and her optimal choices of head starts are

βN = βI = 0. Further, her maximum expected payoff is 2

(
Eq

[
1√
s

]
1+Eq[ 1s ]

)2

, which coincides with

her expected payoff from a multiplicative discriminative policy with α = 1. Our analysis

of the multiplicative discrimination policy shows that the principal’s optimal multiplicative

discrimination strategy involves either a positive (α > 1) or a negative (α < 1) discrimina-

tion policy in favor of the newcomer and so any additive discrimination strategy is always

suboptimal.

6 Concluding remarks

Competition between an incumbent and a newcomer has several defining features which we

have captured in a simple model. First, the players have different levels of skills; second they

have different information about the skill levels. This affects the contest success function

directly, in contrast with previous literature in which the rivals have asymmetric information

about the value of the prize. The difference in relative skill level can be large or small, and

in favor of the incumbent or the newcomer. Designing the contest to maximize effort is

a challenge for the principal, which we have solved by using a combination of two policy

instruments. First, she can commit to a signaling mechanism which may reveal - at least

partially - the hidden information; second she can use a discrimination policy which treats

one of the players preferentially by biasing positively his effort level in the contest. We show

that the optimal level and direction of discrimination is linked to the choice of information

revelation in a non-trivial way. Further, we show how this is connected to the prior beliefs

of the uninformed player. When the uninformed player believes that the informed player is

very likely to be skill-inferior, then the designer does not benefit from revealing this to the

uninformed opponent, and she chooses to discriminate in favor of the informed (but likely

low-skilled) player. On the other hand, when the uninformed player thinks that it is likely

that the opponent will be highly skilled, the designer must alleviate riskiness of effort for this

player by revealing the true state; she will also discriminate against the informed player to

encourage effort by both. The partial disclosure of the hidden information is never optimal

when the discriminatory bias can be chosen optimally by the principal. Making the prior

more precise is a second-best substitute for optimal discrimination. However, we show that

this policy can be optimal for some given levels of the discrimination parameter when this

is not under the control of the principal.

Our model captures situations in which a newcomer competes against an incumbent for a
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prize, and the ability of the incumbent is known by all, but the newcomer has hidden talent.

The findings from our analysis can provide insights on how to design information structure

to incentivize efforts in these situations. In order to get closed form solutions that allow

comparison of effort levels across the whole range of the discrimination parameter, we have

made some simplifying assumptions that naturally affect the generality of our results. First,

we have assumed that only two players compete; this is, however, an often used construct in

contest models. Second, the assumption of a two-point ability distribution is limiting, also

due to the fact that the skill levels that can be realized lie either side of the ability of the

uniformed player. Hence he knows that he is either facing a superior or an inferior opponent.

Nevertheless, we believe that our structure is a useful first step in analyzing the potentially

complex interplay between information revelation and other policies designed to level the

playing field in contest games.

Appendix

The Appendix contains the proofs.

Proof of Lemma 1:

Proof. Solving the first-order payoff-maximizing conditions of both agents simultaneously.

we find that the equilibrium effort under full information is symmetric:

eFN = eFI =
αs

(1 + αs)2
,

and the expected payoffs of N and I are:

vFN =

[
αs

1 + αs

]2
, vFI =

[
1

1 + αs

]2
. (A.1)

The principal’s payoff, expressed as a function of α and q, is given by

V F
P (α, q) = Eq

[
2αs

(1 + αs)2

]
. (A.2)

Proof of Lemma 2:

Proof. The optimal effort of N will be a function of the true value of s, whilst the effort of I

will be conditioned upon his belief. Equating the marginal benefits of effort for each agent
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(which equal the common marginal cost of 1) reveals that equilibrium efforts, eAN(s), eAI ,

satisfy

αseAI

(αseAN(s) + eAI )
2 = 1 = Ep

[
αseAN(s)

(αseAN(s) + eAI )
2

]
. (A.3)

Then for any value of s,

αseAI =
(
αseAN(s) + eAI

)2
,

which further implies that

Ep
[
αseAN(s)

αseAI

]
= 1⇒ eAI = Ep

[
eAN(s)

]
. (A.4)

The first part of (A.3) implies that

eAN(s) =

√
αseAI − eAI
αs

,

whereupon taking the expectation gives

Ep
[
eAN(s)

]
=
√
eAI Ep

[√
1

αs

]
− eAI Ep

[
1

αs

]
. (A.5)

Using the equality in (A.4) to solve (A.5) gives the final expression for the expected efforts

as

eAI = α

 Ep
[

1√
s

]
α + Ep

[
1
s

]
2

= Ep
[
eAN(s)

]
.

The principal’s payoff, expressed as a function of α and p, is given by

V A
P (α, p) = Ep

[
eAN(s)

]
+ eAI = 2α

 Ep
[

1√
s

]
α + Ep

[
1
s

]
2

. (A.6)

Proof of Lemma (3):

Proof. A distribution of posteriors {qm}m∈M with probabilities βm is Bayes plausible if the

expected value of the posterior equals the prior, i.e.,
∑

m∈M βmqm = q. From (3), it follows

that any set of state-conditional signal distributions generate a Bayes plausible distribution
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of posteriors:

∑
m∈M

qm

(∑
s∈S

π (m | s) Pr (s)

)
=
∑
m∈M

π (m | x) q = q. (A.7)

The converse is also true − any Bayes plausible distributions of posteriors can be generated

from some state-conditional signal distributions. To see this, consider a set of distributions

{qm}m∈M with probabilities βm such that
∑

m∈M βm = 1 and
∑

m∈M βmqm = q. Construct

the state-conditional signal distributions as follows: for any given m ∈M , define

π (m | x) :=
βmqm
q

and π

(
m | 1

x

)
:=

βm (1− qm)

1− q
.

Then, for any s ∈ S,
∑

m∈M π (m | s) = 1. Further, these constructed conditional signal

distributions generate a set of posteriors, which is the same as {qm}m∈M :

Pr [x | m] =
Pr [m | s = x] Pr [s = x]

Pr [m | s = x] Pr [s = x] + Pr
[
m | s = 1

x

]
Pr
[
s = 1

x

]
=

βmqm
q
· q

βmqm
q
· q + βm(1−qm)

1−q · (1− q)
= qm.

Therefore, the indirect value function of (5), in which P maximizes her expected payoff over

all possible state-conditional signal distributions, is the same as the indirect value function

of the following optimization problem, in which P maximizes her expected payoff over all

Bayes plausible distribution of posteriors:

max
{qm∈[0,1],βm∈[0,1]}m∈M

∑
m∈M

βmV
A
P (α, qm) (A.8)

subject to
∑
m∈M

βm = 1 and
∑
m∈M

βmqm = q.

Proof of Lemma 4:

Proof. From (2), we write V A
P (α, q) = 2α

(
Eq

[
1√
s

]
α+Eq[ 1s ]

)2

. Consider the first- and the second-
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order derivatives of V A
P (α, q) with respect to q:

dV A
P (α, q)

dq
=

4α (α− 1)
(

1√
x
−
√
x
)
Eq
[

1√
s

]
(
α + Eq

[
1
s

])3 , (A.9)

d2V A
P (α, q)

dq2
=

4α (α− 1)
(

1√
x
−
√
x
)2 (

α− 3− 2x− 2q
(
1
x
− x
))

(
α + Eq

[
1
s

])4 . (A.10)

From (A.9), it follows that V A
P (α, q) is increasing, decreasing, and invariant with respect

to α if α is greater than, less than, and equal to 1, respectively.

Consider α < 1. From (A.10), we find that
d2V AP (α,q)

dq2
> 0 for all q ∈ (0, 1), implying that

V A
P (α, q) is convex.

Next, consider α > 1. From (A.10), we find that
d2V AP (α,q)

dq2
< 0 for all q ∈ (0, 1) if

α ≤ 3 + 2x,
d2V AP (α,q)

dq2
> 0 for all q ∈ (0, 1) if α ≥ 3 + 2

x
, and

d2V AP (α,q)

dq2
T 0 for all q S α−3−2x

2( 1
x
−x)

if

3+2x < α < 3+ 2
x
. Therefore, V A

P (α, q) is concave if α ≤ α = 3+2x, convex if α ≥ α = 3+ 2
x
,

and convex (concave) in q for q ∈ (0, q̂) (for q ∈ (q̂, 1)) where q̂ = α−3−2x
2( 1

x
−x)

= α−α
α−α .

Proof of Lemma 5:

Proof. Recall that Cav (α, q) is the indirect value function of (A.8). Applying the envelope

theorem, we get that

dCav (α, q)

dα
=
∑
m∈M

β̂m
∂V A

P (α, q̂m)

∂α
, (A.11)

where β̂m ∈ [0, 1] and q̂m ∈ [0, 1] are solutions of (A.8). Further, for any arbitrary distribution

p ∈ [0, 1],

∂V A
P (α, p)

∂α
=
∂

∂α
2α

 Ep
[

1√
s

]
α + Ep

[
1
s

]
2

= 2E2
p

[
1√
s

]
∂

∂α

[
α(

α + Ep
[
1
s

])2
]

=
2E2

p

[
1√
s

] [
Ep
[
1
s

]
− α

]
(
α + Ep

[
1
s

])3 ,

(A.12)

which is strictly positive for α < Ep
[
1
s

]
and strictly negative for α > Ep

[
1
s

]
. Since, for any

q̂m ∈ [0, 1], Eq̂m
[
1
s

]
∈
[
x, 1

x

]
, (A.11) is strictly positive for α < x and strictly negative for

α > 1
x
. Hence, the solution of (12) lies in

[
x, 1

x

]
.

Proof of Lemma 6:
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Proof. Fix x ∈ (0, 1) and q ∈ (0, 1). Observe that, from Proposition 2, PD = {α > α : q < µ (α)}.
Since µ (α) = min

{
x(α−α)(x+α)

(1−x2)(1+2x+α)
, 1
}

is weakly increasing in α, PD is an interval. Further,

it can be shown that µ
(
1
x

)
< 1, which implies that for all α ∈ PD

⋂(
α, 1

x

]
, µ (α) =

x(α−α)(x+α)
(1−x2)(1+2x+α)

.

We consider α ∈ PD
⋂(

α, 1
x

]
and q ∈ (0, 1), and let V PD

P (α, q) denote the principal’s

expected payoff under partial information disclosure. Further, by Proposition 2, for all

α ∈ PD,

V PD
P (α, q) = Cav (α, q) .

Since Cav (α, q) is the indirect value function of (A.8), we apply the envelope theorem to get

dCav (α, q)

dα
=
∑
m∈M

β̂m
∂V A

P (α, q̂m)

∂α
,

where β̂m ∈ [0, 1] and q̂m ∈ [0, 1] are solutions of (A.8). Note that for all α ∈ PD, these

solutions are given by: β̂1 = q
µ(α)

, β̂2 = 1 − q
µ(α)

; q̂1 = µ (α) , q̂2 = 0 (see the discussion of

Lemma 1, case (d), preceding Proposition 2). Therefore, for α ∈ PD, we have

dV PD
P (α, q)

dα
=
dCav (α, q)

dα
= β̂1

∂V A
P (α, q̂1)

∂α
+ β̂2

∂V A
P (α, q̂2)

∂α

=
q

µ (α)

∂V A
P (α, µ (α))

∂α
+

(
1− q

µ (α)

)
∂V A

P (α, 0)

∂α
. (A.13)

We show that both
∂V AP (α,µ(α))

∂α
and

∂V AP (α,0)

∂α
are negative for α ∈ PD

⋂(
α, 1

x

]
.

From (A.12),
∂V AP (α,0)

∂α
=

2E2
p=0

[
1√
s

]
[x−α]

(α+Ep=0[ 1s ])
3 < 0, since x < α < α.

Further, from (A.12),
∂V AP (α,µ(α))

∂α
=

2E2
µ(α)

[
1√
s

]
[Eµ(α)[ 1s ]−α]

(α+Eµ(α)[ 1s ])
3 , which is negative if and only if[

Eµ(α)
[
1
s

]
− α

]
is negative. Note that

Eµ(α)
[

1

s

]
− α = x+ µ (α)

(
1

x
− x
)
− α = x+

(α− α) (x+ α)

(1 + 2x+ α)
− α

=
(x+ α) (x− α) + (1 + x) (x− α)

(1 + 2x+ α)
,

which is negative since x < α < α.

Hence, we conclude that
dV PDP (α,q)

dα
is negative for α ∈ PD

⋂(
α, 1

x

]
.

Below we state and prove a result that will be used in the proof of Lemma 7. This result

compares the principal’s payoffs under full information disclosure from two discrimination

policies that are reciprocal to each other.
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Lemma A.1. V F
P (α, q) T V F

P

(
1
α
, q
)
⇔
(
q − 1

2

)
(α− 1) T 0.

Proof of Lemma A.1:

Proof. The following two claims are useful in proving the result.

Claim 1. V F
P (α, q) = V F

P

(
1
α
, 1− q

)
.

Proof of Claim 1. From (1),

V F
P

(
1

α
, 1− q

)
= E1−q

[
2 s
α(

1 + s
α

)2
]

= E1−q

[
2α
s(

α
s

+ 1
)2
]

= (1− q)

[
2α
x(

α
x

+ 1
)2
]

+ q

[
2αx

(αx+ 1)2

]
= Eq

[
2αs

(1 + αs)2

]
= V F

P (α, q) .

Claim 2. V F
P (α, q) T V F

P (α, 1− q)⇔ (2q − 1) (α2 − 1) T 0.

Proof of Claim 2: From (1),

V F
P (α, q)− V F

P (α, 1− q)

= Eq
[

2αs

(1 + αs)2

]
− E1−q

[
2αs

(1 + αs)2

]
= q

[
2αx

(αx+ 1)2

]
+ (1− q)

[
2α
x(

α
x

+ 1
)2
]
− (1− q)

[
2αx

(αx+ 1)2

]
− q

[
2α
x(

α
x

+ 1
)2
]

= (1− 2q)

[
2α
x(

α
x

+ 1
)2 − 2αx

(αx+ 1)2

]
= (1− 2q)

[
2αx

(α + x)2
− 2αx

(αx+ 1)2

]
=

2αx (1− 2q)

(α + x)2 (αx+ 1)2
[
(αx+ 1)2 − (α + x)2

]
=

2αx (1− 2q) (1− α2) (1− x2)
(α + x)2 (αx+ 1)2

.

Since x ∈ (0, 1), V F
P (α, q) T V F

P (α, 1− q) ⇔ (1− 2q) (1− α2) T 0. This completes the

proof of Claim 2.

From Claim 2, replacing α by 1
α

and q by 1− q, we get

V F
P

(
1

α
, 1− q

)
T V F

P

(
1

α
, q

)
⇔ (2q − 1)

(
α2 − 1

)
T 0.

By Claim 1, it follows then

V F
P (α, q) T V F

P

(
1

α
, q

)
⇔ (2q − 1)

(
α2 − 1

)
T 0⇔

(
q − 1

2

)
(α− 1) T 0.

This completes the proof.
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Proof of Lemma 7:

Proof. Consider the derivative of V F
P (α, q) with respect to α:

dV F
P (α, q)

dα
=
d

dα
Eq
[

2αs

(1 + αs)2

]
= Eq

[
d

dα

2αs

(1 + αs)2

]
= Eq

[
2s (1− αs)
(1 + αs)3

]
. (A.14)

Therefore, αFD solves (A.14). By definition of αFD, V F
P

(
αFD, q

)
≥ V F

P

(
1

αFD
, q
)
. It follows

from Lemma A.1 that
(
q − 1

2

) (
αFD − 1

)
≥ 0. Therefore, αFD S 1⇔ q S 1

2
.

Proof of Lemma 8:

Proof. Consider the derivative of V A
P (α, q) with respect to α:

dV A
P (α, q)

dα
=2E2

q

[
1√
s

]
d

dα

[
α(

α + Eq
[
1
s

])2
]

=
2E2

q

[
1√
s

] [
Eq
[
1
s

]
− α

]
(
α + Eq

[
1
s

])3 . (A.15)

Setting the derivative to zero, we get a local optimum at α = Eq
[
1
s

]
. It follows from (A.15)

that V A
P (α, q) is increasing for α < Eq

[
1
s

]
and decreasing for α > Eq

[
1
s

]
, implying implying

that Eq
[
1
s

]
is a global maximum. Further, Eq

[
1
s

]
S 1⇔ x+ q

(
1
x
− x
)
S 1⇔ q S x

1+x
.

Proof of Proposition 3:

Proof. First, note that Proposition 2, Lemma 5, and Corollary 1 together imply that the

principal either chooses α̂ ∈ [x, 1] and implements full information disclosure, or chooses α̂ ∈[
1, 1

x

]
and implements no information disclosure. The following claims, which characterize

the principal’s optimal choice in various ranges of q, together prove the proposition.

Claim 3. Consider q > 1
2
. Then, α̂ = αND > 1 .

Proof of Claim 3: If α̂ < 1, by Proposition 2, Cav (α̂, q) = V F
P (α̂, q). Since, q > 1

2
⇒ q >

x
1+x

, by Lemma 7 and Lemma 8, we have αFD > 1 and αND > 1, respectively. Therefore,

max
α<1

Cav (α, q) < max
α>1

Cav (α, q), which proves that α̂ ≮ 1. Further, α̂ 6= 1, since αFD > 1

and αND > 1 and Cav (α, q) is continuous at α = 1 by the Maximum theorem. Therefore,

α̂ > 1. It follows from Corollary 1 that α̂ = αND > 1.

Claim 4. Consider q < x
1+x

. Then, α̂ = αFD < 1 .

Proof of Claim 4: If α̂ > 1, by Corollary 1, Cav (α̂, q) = V A
P (α̂, q). Further, q < x

1+x
⇒

q < 1
2
, and therefore, by Lemma 7 and Lemma 8, we have αFD < 1 and αND < 1, respectively.

Therefore, max
α>1

Cav (α, q) < max
α<1

Cav (α, q), which proves that α̂ ≯ 1. Further, α̂ 6= 1, since

αFD < 1 and αND < 1 and Cav (α, q) is continuous at α = 1 by the Maximum theorem.

Therefore, α̂ < 1. It follows from Proposition 2 that α̂ = αFD < 1.
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Claim 5. For x
1+x
≤ q ≤ 1

2
, there exists q such that α̂ =

αFD < 1 if q < q

αND > 1 if q > q
. Further, the

principal is indifferent between choosing α = αFD and choosing α = αND if q = q.

Proof of Claim 5: If x
1+x
≤ q ≤ 1

2
, by Lemma 7 and Lemma 8, we have αFD ≤ 1 ≤ αND.

Since V F
P

(
αFD, q

)
= max

α>0
V F
P (α, q), we apply the envelope theorem to get

dV F
P

(
αFD, q

)
dq

=
∂V F

P (α, q)

∂q

∣∣∣∣
α=αFD

=
∂

∂q
Eq
[

2αs

(1 + αs)2

]∣∣∣∣
α=αFD

=
2αFDx

(1 + αFDx)2
− 2αFDx

(x+ αFD)2

=
2αFDx (1− x2)

(
αFD + 1

) (
αFD − 1

)
(1 + αFDx)2 (x+ αFD)2

,

which is negative since αFD ≤ 1.

Similarly, V A
P

(
αND, q

)
= max

α>0
V A
P (α, q), and applying the envelope theorem, we get

dV A
P

(
αND, q

)
dq

=
∂V A

P (α, q)

∂q

∣∣∣∣
α=αND

=
4αND

(
αND − 1

) (
1√
x
−
√
x
)
Eq
[

1√
s

]
(
αND + Eq

[
1
s

])3 by (A.9)

=
Eq
[

1√
s

] (
1√
x
−
√
x
) (
αND − 1

)
2E2

q

[
1
s

] ,

which is positive since 1 ≤ αND.

The above two observations together imply that d
dq

[
V A
P

(
αND, q

)
− V F

P

(
αFD, q

)]
is posi-

tive and therefore V A
P

(
αND, q

)
−V F

P

(
αFD, q

)
is increasing in q. Since V F

P (α, q) and V A
P (α, q)

are continuous in q, by the Maximum theorem, V A
P

(
αND, q

)
−V F

P

(
αFD, q

)
is also continuous

in q.

Further, V A
P

(
αND, q

)
−V F

P

(
αFD, q

)
> 0 at q > 1

2
and V A

P

(
αND, q

)
−V F

P

(
αFD, q

)
< 0 at

q < x
1+x

by Claims 3 and 4, respectively. Hence, there must exist a threshold q ∈
[

x
1+x

, 1
2

]
such that V A

P

(
αND, q

)
− V F

P

(
αFD, q

)
S 0 if and only if q S q, which proves Claim 5.

Claims 3, 4, and 5 together prove the proposition.
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