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Abstract

Zhang and Zhou [2016] use the concept of Bayesian persuasion due to Kamenica and Gentzkow

[2011] to analyze information disclosure in a contest with one-sided asymmetric information.

They show that an effort-maximizing designer can manipulate information disclosure to in-

crease expected efforts in the contest, but base their analysis upon active participation in the

contest by all types of the informed player. We extend their analysis to equilibria in which some

informed types exert no effort in the contest, showing how this changes the type of information

disclosure that arises.

JEL Codes: D02, D72, D82

Keywords: Contest; Information design; Bayesian persuasion
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1 Introduction

Contests in which resources are sunk to win a prize capture competition in social, political and

economic spheres. A common theme is how a designer (principal) can maximize the resources

expended in the contest. Recently Zhang and Zhou [2016] introduced information disclosure as an

instrument at the disposal of the principal, using the Bayesian Persuasion framework of Kamenica

and Gentzkow [2011]. In a two-player contest, Zhang and Zhou [2016] focus on one-sided informa-

tional asymmetry, where one player has better information than the competitor and the principal.

The effort-maximizing, but uniformed, principal initially commits to a set of state-conditional dis-

tribution of signals before realization of the state, which is the value of the prize to the player

with private information; the signals disclose all or no information at two extremes, but can also

impart a particular posterior belief to the uninformed. The optimal distribution of signals raises

the principal’s payoff to the concavification of the total expected effort function.

Zhang and Zhou [2016] show first that binary values for the state yields an expected effort

function that is either globally convex or concave; in the former case, full information disclosure

is optimal, and in the latter there is no disclosure.1 Only when there are more than two possible

valuations can partial disclosure appear, in which the signal reveals the true value of the prize

imperfectly to the uninformed player. Zhang and Zhou [2016] consider only fully internal solutions

in which all types of the informed player have an effort level above zero. Epstein and Mealem

[2013] show with two types for the informed player that an equilibrium exists in which the lower

value type will not exert effort in the contest. We extend the results of Zhang and Zhou [2016] by

considering equilibria in which some types exert no effort, showing that (i) partial disclosure can

be optimal even in the two-type case and (ii) that the results on information disclosure are not

robust to our extension when there are more than two types.

2 Analysis

In Zhang and Zhou [2016], there are two risk-neutral players, A and B. Player A’s value of

winning the contest is vA and this is common knowledge. Player B’s value vB (the state) is

private information, but it is commonly known that it takes N ≥ 2 values, v1 < v2 < .... < vN ,

with prior µ0 =
(
µ01, ....., µ

0
N

)
∈ PN =

{
(p1, . . . , pN ) : pj ≥ 0,

∑N
j=1 pj = 1

}
. Before the state is

realized, the contest designer commits to a signaling mechanism, which consists of a family of

state-conditional distributions {Pr [ms | vj ] ≥ 0 : ms ∈ S,
∑

ms∈S Pr [ms | vj ] = 1}, j ∈ {1, . . . , N}
over a finite set of messages S. We denote the Bayesian posterior after observing message ms ∈ S
by µs = (µs1, ....., µ

s
N ) ∈ PN . We use the notation µ ∈ PN to represent any generic distribution

over the state space.

In the posterior contest, players exert non-recoverable effort (xA, xB), which gives player i ∈
1This follows Kamenica and Gentzkow [2011], and is explained later.
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{A,B} a success probability of

pi (xA, xB) =
xi

xA + xB
.

Denote the pure strategy Bayes-Nash equilibrium by [x∗A, x
∗
B (vj)].

Observe that the effort of B maximizes

xB
xB + x∗A

vj − xB.

The first-order condition gives

xB (vj) =


√
vj
√
xA − xA for

√
vj −

√
xA > 0

0 for
√
vj −

√
xA ≤ 0

, (1)

from which it is apparent that some low vB types may not participate actively in the contest.

For now, fix a distribution µ ∈ PN of player B types and a set of inactive types 1, ...., k

(i.e., xB (vj) = 0 for j = 1, . . . , k), whilst k + 1, ...., N participate actively (i.e., xB (vj) > 0 for

j = k + 1, . . . , N); if k = 0, then all player B types exert effort. When k > 0, player A wins with

certainty if he meets types 1, ..., k, making his expected payoff(
k∑

h=1

µh +

N∑
m=k+1

µmxA
xA + xB (vm)

)
vA − xA.

The first-order condition is (
N∑

m=k+1

µmxB (vm)

(xA + xB (vm))2

)
vA = 1. (2)

Solving (1) and (2) gives a solution for xA when k types are inactive as

x∗A (k) =

 ∑N
m=k+1

(
µm√
vm

)
1
vA

+
∑N

m=k+1

(
µm
vm

)
2

. (3)

Replacing x∗A in (1) by (3) gives

x∗B (vj) =
√
vj

 ∑N
m=k+1

(
µm√
vm

)
1
vA

+
∑N

m=k+1

(
µm
vm

)
−

 ∑N
m=k+1

(
µm√
vm

)
1
vA

+
∑N

m=k+1

(
µm
vm

)
2

, j = k + 1, . . . , N. (4)

None of the inactive player B types will want to exert positive effort as long as
√
vk−

√
x∗A (k) ≤ 0.

Using (3) and (4) yields total effort with k inactive types, TE (µ, k), as

TE (µ, k) = x∗A (k) +

N∑
m=k+1

µmx
∗
B (vm) . (5)

3



Zhang and Zhou [2016] consider an internal solution, in which case k = 0 and the total expected

effort is

TE (µ, 0) =
Eµs

[√
vB
]
Eµs

[
1√
vB

]
1
vA

+ Eµs
[

1
vB

] . (6)

The expression in (1) makes it clear that low vB types may not find it profitable to exert effort. This

implies that participation has to be checked for player B of lowest type v1 first, given that the other

players exert positive effort. Only if type v1 makes a positive contest effort do we have the internal

equilibrium of Zhang and Zhou [2016]; if type v1 does not exert effort, then active participation is

checked for v2 given that all types with a higher valuation participate. This proceeds in sequence

until two adjacent types are identified such that x∗B (vk) = 0, x∗B (vk+1) > 0. Lemma 1 determines

the set of active types for a given µ ∈ PN .

Lemma 1. Consider µ ∈ PN . There exists thresholds θk (µ) > 0, k ∈ {1, ..., N − 1} where θk (µ) ≤
θk+1 (µ) for all k and with strict inequality if max {µk+1, . . . , µN} > 0, such that θk (µ) ≤ vA <

θk+1 (µ) yields x∗B (vj) = 0, for j ∈ {1, ..., k} and x∗B (vj) > 0, for j ∈ {k + 1, ..., N}.

Proof. Suppose that player B types j = 1, ...., k set x∗B (vj) = 0. From (1), type k will not want to

change action if
√
vk ≤

√
x∗A (k), i.e.,

√
vk ≤

∑N
m=k+1

(
µm√
vm

)
1
vA

+
∑N

m=k+1

(
µm
vm

) , (7)

which reduces to

vA ≥
√
vk∑N

m=k+1

µm(
√
vm−

√
vk)

vm

:= θk (µ) . (8)

Type k being inactive, it follows from (7) that player B types with vj < vk will not participate if

x∗B (vk) = 0. By construction, player B types with vj > vk will participate if vA < θk+1 (µ). To see

θk (µ) ≤ θk+1 (µ), note that for any m > k,

vk < vk+1 ⇒
µm
(√
vm −

√
vk+1

)
vm
√
vk+1

≤
µm
(√
vm −

√
vk
)

vm
√
vk

. (9)

Summing (9) over m ∈ {k + 1, . . . , N},

N∑
m=k+2

µm
(√
vm −

√
vk+1

)
vm
√
vk+1

≤
N∑

m=k+1

µm
(√
vm −

√
vk
)

vm
√
vk

(10)

⇒ 1

θk+1 (µ)
≤ 1

θk (µ)
⇒ θk (µ) ≤ θk+1 (µ) .

The inequality in (10) holds strictly if max {µk+1, . . . , µN} > 0, in which case, θk (µ) < θk+1 (µ).
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Setting θ0 (µ) = 0 and θN (µ) =∞, by Lemma 1, we can express the equilibrium total effort for

a given belief µ ∈ PN as

TEe (µ) = TE (µ, k) if vA ∈ [θk (µ) , θk+1 (µ)) , k = 0, 1, . . . , N − 1. (11)

For the following analysis, it will be useful to work out belief-free thresholds, which are outlined in

Lemma 2.

Lemma 2. Fix k ∈ {1, ..., N − 1}. Denote min
µ∈PN

θk (µ) by θmink . Then,

θmink = min
vm∈{vk+1,...,vN}

vm
√
vk√

vm −
√
vk
.

Further, θmink < θmink+1.

Proof. θk is minimized by identifying the largest value of
(
√
vm−

√
vk)

vm
for m = k + 1, ..., N , and

attaching belief 1 to this particular vm and zero to all others. To show that θmink < θmink+1, first note

that
vm
√
vk√

vm−
√
vk

is increasing in vk. Therefore, for any m ∈ {k + 2, ...., N}, vm
√
vk+1√

vm−
√
vk+1

>
vm
√
vk√

vm−
√
vk

for a common vm. Suppose that vM ∈ {vk+2, ..., vN} minimizes θmink+1 =
vM
√
vk+1√

vM−
√
vk+1

. Then it is

possible to choose the same vM and reach a lower value of θmink . Hence θmink < θmink+1 for k ∈
{1, ..., N − 1}.

Note that if vA < θmin1 , then for any posterior belief µs, all player B types participate actively in

the contest and the internal solution of Zhang and Zhou [2016] is valid. In general, for vA < θmink ,

there will be no set of beliefs such that all player B types 1, ....., k will be inactive simultaneously.

Following Kamenica and Gentzkow [2011], we can determine the optimal information disclosure

from the concave closure of TEe (µ). The principal increases her expected payoff to the concavifi-

cation of TEe (µ) by optimally choosing a distribution of Bayes-plausible posteriors generated from

the signaling distributions {Pr [ms | vj ] ,ms ∈ S}, j ∈ {1, . . . , N}. If TEe (µ) is globally concave

(convex), then no- (full-) information disclosure yields the principal a payoff same as the concavifi-

cation of TEe (µ). The principal’s preferred signaling mechanism can partially disclose information

only if TEe (µ) has both concave or convex parts. To highlight the role of information disclosure in

the case of k = 0 (all types participate actively), and k > 0 (some inactive types), we first present

the binary-type case and then look at the case of more types.

2.1 N = 2

Consider a posterior µ = (µ1, µ2) ∈ P 2 over player B types (v1, v2). Since N = 2, the posterior

µ can be identified with a scaler µ2 = Pr [vB = v2] ∈ [0, 1]. Both types exert effort in the contest

for any µ2 if vA < θmin1 =
v2
√
v1

(
√
v2−
√
v1)

. Zhang and Zhou [2016, Lemma 1 and Proposition 3] show

that the total effort TE (µ, 0) with both player B types active is strictly concave in µ2 ∈ [0, 1] for

vA <
√
v2v1 and therefore no disclosure is optimal; and TE (µ, 0) is strictly convex in µ2 ∈ [0, 1]
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for vA >
√
v2v1 and therefore full disclosure is optimal.2 Note that θmin1 >

√
v2v1, and so the

full-information disclosure finding of Zhang and Zhou [2016] holds for
√
v2v1 < vA < θmin1 .

Fact 1. [Zhang and Zhou [2016, Proposition 3, modified]] For N = 2, consider vA < θmin1 . Then,

both types of player B exert non-zero effort in the contest under asymmetric information for any

posterior µ. Further, for vA <
√
v2v1, no disclosure is optimal and for

√
v2v1 < vA < θmin1 , full

disclosure is optimal.

This is an important result since Zhang and Zhou [2016] show that the general case with N > 2

can be reduced to that of N = 2. For our extended parameter space, even the case N = 2 is not so

clear cut; we show below that partial information disclosure can be optimal.

Consider vA ≥ θmin1 . By Lemma 1 and the fact that θ1 (µ2) is decreasing in µ2, there exists

a unique µ̃2 satisfying vA = θ1 (µ̃2) such that both types exert effort for µ2 ∈ [0, µ̃2). Direct

calculation gives

µ̃2 =
v2
√
v1

vA
(√
v2 −

√
v1
) .

For µ2 ∈ [µ̃2, 1], type 1 is inactive and TEe (µ2) = TE (µ2, 1). We can calculate the derivatives as

∂TE (µ2, 1)

∂µ2
=

2µ2vAv
2
2 (vA + v2)

(µ2vA + v2)
3 > 0, (12)

∂2TE (µ2, 1)

∂µ22
=

2vAv
2
2 (v2 − 2vAµ2)

(µ2vA + v2)
4 . (13)

Define µ̂2 := v2
2vA

. From (12) and (13), it follows that TE (µ2, 1) is always increasing in µ2, strictly

concave (convex) for µ2 > (<) µ̂2. When µ̂2 ≥ 1, which occurs if vA ≤ v2
2 , the total expected effort

is piecewise convex in µ2. Lemma 3 shows that full information disclosure remains optimal.

Lemma 3. Suppose θmin1 < v2
2 and consider vA ∈

[
θmin1 , v22

]
. Then, full information disclosure is

optimal.

Proof. Note that TEe (µ2) is given by TE (µ2, 0) for µ2 ∈ [0, µ̃2), and TE (µ2, 1) otherwise; both

functions are convex in µ2 and TEe (µ2) is continuous at µ̃2. Therefore, TEe (µ2) is continuous

and piecewise convex in µ2 ∈ [0, 1]. Further,

TEe (µ̃2) = TE (µ̃2, k = 0) ≤ (1− µ̃2)TE (µ2 = 0, k = 0) + µ̃2TE (µ2 = 1, k = 0)

= (1− µ̃2)TE (µ2 = 0, k = 0) + µ̃2TE (µ2 = 1, k = 1)

= (1− µ̃2)TEe (0) + µ̃2TE
e (1) ,

which follows from convexity of TE (µ2, 0) and the fact that TE (µ2 = 1, k = 0) = TE (µ2 = 1, k = 1) =
vAv2
vA+v2

. Therefore, the graph of TEe (µ2) will always be lower than the straight line joining TEe (0)

and TEe (1), implying that full disclosure is optimal.

2Unlike us, Zhang and Zhou [2016] describe concavity/convexity property of (6) in terms of µ1 = Pr [vB = v1].
However, the findings are comparable since the second-order derivatives of TEe with respect to µ1 and µ2 = (1− µ1)
have the same sign.
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When µ̂2 < 1, which occurs if vA >
v2
2 , total expected effort is concave for for µ2 ≥ max {µ̂2, µ̃2}

and either convex or piecewise convex for µ2 < max {µ̂2, µ̃2}. Proposition 1 shows that the partial

information disclosure is optimal for sufficiently large values of vA.

Proposition 1. Consider vA > max
{
θmin1 , v22

}
. Then, there exists vA > max

{
θmin1 , v22

}
such

that max
{
θmin1 , v22

}
< vA < vA, full information disclosure is optimal and for vA ≤ vA, partial

information disclosure is optimal.

Proof. TEe (µ2) is given by TE (µ2, 0) for µ2 ∈ [0, µ̃2), and TE (µ2, 1) for µ2 ∈ [µ̃2, 1]; the former

is convex, whilst the latter is either concave for µ2 ∈ [µ̃2, 1] if µ̂2 ≤ µ̃2, or, first convex for µ2 ∈
[µ̃2, µ̂2] and then concave for µ2 ∈ [µ̂2, 1] if µ̃2 < µ̂2. Full information disclosure is optimal if

(1− µ2)TEe (0) + µ2TE
e (1) = (1− µ2) vAv1

vA+v1
+ µ2

vAv2
vA+v2

> TEe (µ2) for all µ2 ∈ (0, 1); necessary

and sufficient for that is the slope of the straight line is greater than the slope of TEe (µ2) measured

at µ2 = 1, which requires

vAv2
vA + v2

− vAv1
vA + v1

>
2vAv

2
2

(vA + v2)
2 ⇔ v2A (v2 − v1)− vAv2 (v1 + v2)− 2v1v

2
2 < 0⇔ vA < vA,

where vA = v2
2

[
v1+v2+

√
v22+10v1v2−7v21
v2−v1

]
. When vA > vA, define µ2 that solves TE(µ2,1)−TE(0,0)

µ2
=

∂TE(µ2,1)
∂µ2

|µ2 . The concavification of TEe (µ2) consists of the line
(
µ2−µ2
µ2

)
TE (0, 0) + µ2

µ2
TE (µ2, 1)

for µ2 ∈ [0, µ2] and TE (µ2, 1) for µ2 ∈ [µ2, 1]. Then the principal uses partial information disclosure

for µ2 ∈ [0, µ2] and no disclosure otherwise.

Example 1 illustrates partial information disclosure.

μ0μ1 μ2

β
1
T
E
μ
1
)
+
β
2
T
E
(μ
2
)

0.2 0.4 0.6 0.8 1.0
μ2

0.5

1.0

1.5

2.0

2.5

3.0

TE
e

Figure 1: TEe against µ2, N = 2

Example 1. Consider N = 2, v1 = 1, v2 = 4, and vA = 16. In this case, θmin1 =
v2
√
v1√

v2−
√
v1

= 4 < vA,

and µ̂2 = v2
2vA

= 0.125 < µ̃2 =
v2
√
v1

vA(
√
v2−
√
v1)

= 0.25. Therefore, for µ2 < µ̃2, both types are active

and TEe (µ) is convex; For µ2 ≥ µ̃2, only type v2 is active and TEe (µ) is concave. Figure 1

plots TEe (µ) against µ2 ∈ [0, 1]. For µ2 = 0.3, the principal’s payoffs from no disclosure and

from full disclosure are 1.4876 and 1.61882, respectively. Consider a distribution of Bayes-plausible
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posteriors: µ1 = (1, 0), µ2 = (0.4, 0.6) with probabilities β1 = 0.5, β2 = 0.5, which can be generated

with two messages m1 and m2 and the signal distributions matrix:

S =

[
5/7 2/7

0 1

]
,

where S(ij) denotes Pr [mj | vi] , i ∈ {1, 2} , j ∈ {1, 2}. From Kamenica and Gentzkow [2011],

we know that the principal’s payoff from partial disclosure of the above kind is β1TE
(
µ1
)

+

β2TE
(
µ2
)

= 1.71626, which is higher than her payoffs from full or no disclosure.

2.2 N ≥ 3

For N ≥ 3, Zhang and Zhou [2016, Corollary 2] show that full disclosure is optimal for sufficiently

high vA (i.e., vA ≥
√
vN−1vN ), and partial disclosure can arise otherwise. For our extended pa-

rameter space, partial disclosure can be optimal even for high values of vA. To understand why,

recall the underlying mechanism in Zhang and Zhou [2016]: For µ ∈ int
(
PN
)
, there always exists a

direction along which TE (µ, 0) is convex, and therefore, the principal can obtain a higher expected

payoff from a distribution over two Bayes-plausible posteriors on Edge
(
PN
)

where the directional

vector intersects Edge
(
PN
)
. This reduces dimension of the problem by one, and gradually opti-

mal posteriors can be found on pairwise edges. The analysis of N = 2 case shows that these edges

are fully convex (concave) for high (low) values of vA when only interior solutions are considered.

However, as we have shown, the possibility of corner solution implies that pairwise edges will not

always be convex for high vA, because of which the findings of Zhang and Zhou [2016] will not

hold.3 Example 2 illustrates how partial disclosure can dominate full or no disclosure.

Figure 2: TEe against (µ2, µ3), N = 3
3In addition, we conjecture that the finding that TEe is convex along “some” directional vector for µ ∈ int

(
PN

)
,

which holds when all types are active, is not robust when some types choose to remain inactive. Therefore, the
optimal posteriors may not necessarily be found on Edge

(
PN

)
.
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Example 2. Consider N = 3, v1 = 1, v2 = 4, v3 = 9, and vA = 16. We have θmin1 =

min
{

v2
√
v1√

v2−
√
v1
,

v3
√
v1√

v3−
√
v1

}
= 4, θmin2 =

v3
√
v2√

v3−
√
v2

= 18, and θmin1 < vA < θmin2 . Further, θ1 (µ) =
36

9µ2+8µ3
and vA < θ1 (µ) ⇔ 36µ2 + 32µ3 < 9. Therefore, for prior µ0 with 36µ02 + 32µ03 < 9, all

three types are active and for µ0 with 36µ02 + 32µ03 ≥ 9, the type v1 will be inactive. Figure 2

plots TEe against (µ2, µ3) , 0 ≤ µ2 + µ3 ≤ 1. TEe is neither globally concave or convex. The

darker region on top of the graph represents the area where the principal’s payoffs from no disclo-

sure is higher than that from full disclosure. For µ0 = (0.3, 0.3, 0.4), her payoffs from full and no

disclosure are 3.54635 and 3.53056, respectively. Consider a distribution of Bayes-plausible poste-

riors: µ1 = (0.5, 0.4, 0.1), µ2 = (0.2, 0.7, 0.1), µ3 = (0.2, 0, 0.8) with probabilities β1 = 0.333333,

β2 = 0.238095, β3 = 0.428571, which can be generated with three messages m1, m2, m3, and the

signal distributions matrix:

S =

 0.555556 0.15873 0.285714

0.444444 0.555556 0

0.083333 0.059524 0.857143

 ,
where S(i,j) = Pr [mj | vi]. The principal’s payoff from partial disclosure is β1TE

(
µ1
)
+β2TE

(
µ2
)
+

β3TE
(
µ3
)

= 3.60892, which is higher than her payoffs from full or no disclosure. Although the

posteriors considered here are not necessarily optimal, the exercise shows that the payoff from

partial disclosure can dominate that from full or no disclosure.

References

Gil S Epstein and Yosef Mealem. Who gains from information asymmetry? Theory and decision,

75(3):305–337, 2013. DOI: https://doi.org/10.1007/s11238-013-9351-x.

Emir Kamenica and Matthew Gentzkow. Bayesian persuasion. American Economic Review, 101

(6):2590–2615, 2011. DOI: https://doi.org/10.1257/aer.101.6.2590.

Jun Zhang and Junjie Zhou. Information disclosure in contests: A bayesian per-

suasion approach. The Economic Journal, 126(597):2197–2217, 2016. DOI:

https://doi.org/10.1111/ecoj.12277.

9


	First page 02 21
	title page 02 21
	ContestPD_UIT_WP

