

Seasonal cruise Q4 2019 Cruise Report

The Nansen Legacy Report Series 36/2022

Seasonal cruise Q4 2019

Cruise 2019711

R/V Kronprins Haakon Longyeabyen-Tromsø 28 November – 17 December 2019

Authors:

Janne E. Søreide¹, Rolf Gradinger², Marti Amargant-Arumi², Rita Amundsen³, Julie Blitz-Thorsen², Yasemin V. Bodur², Maria G. Digernes⁴, Ylva Ericson⁵, Snorre Flo^{1,2}, Christine Gawinski², Julia Giebichtenstein³, Audun Gjerland⁵, Nils Olav Handegaard⁶, Silvia Hess³, Siv Hoff³, Kristoffer Ingebrigsten Monsen⁶ Eric Jorda Molina⁷, Elizabeth Jones⁶, Konrad Karlsson¹, Amalia Keck⁵, Stephen G. Kohler⁴, Jarle Kristiansen⁶, Helene H. Lødemel⁶, Miriam Marquardt², Tore Mo-Bjørkelund⁴, Jan Vidar Nordstrand⁶, Robynne Nowicki^{1,3}, Thaise Ricardo de Freitas³, Arunima Sen^{1,7}, Hilde Stabell⁸, Angela Stippkugel⁴, Anna Vader¹, Tom van Engeland⁶, Øystein Varpe^{1,8}, Anette Wold⁵, Ruochen Yang⁴, Kasia Zamelczyk², Lise Øverås⁸

- 1: University Centre in Svalbard (UNIS)
- 2: UiT The Arctic University of Norway (UiT)
- 3: University of Oslo, Oslo, Norway (UiO)
- 4: Norwegian University of Science and Technology (NTNU)
- 5: Norwegian Polar Institute (NPI)
- 6: Institute of Marine Research (IMR)
- 7: NORD University, Bodø (NORD)
- 8: University of Bergen (UiB)

To be cited as: Søreide JE, Gradinger R, Amargant-Arumi A, Amundsen R, Blitz-Thorsen J, Bodur YV, Digernes MG, Ericson Y, Flo S, Gawinski C, Giebichtenstein J, Gjerland A, Handegaard NO, Hess S, Hoff S, Ingebrigsten Monsen K, Jorda Molina E, Jones E, Karlsson K, Keck A, Kohler S, Kristiansen J, Lødemel HH, Marquardt M, Mo-Bjørkelund T, Nordstrand JV, Nowicki R, Ricardo de Freitas T, Sen A, Stabell H, Stippkugel S, Vader A, Van Engeland T, Varpe Ø, Wold A, Yang R, Zamelczyk K, Øvreås L (2022). Seaonsal cruise Q4 2019: Cruise report. *The Nansen Legacy Report Series* 36/2022. DOI: https://doi.org/10.7557/nlrs.6750

© The authors. This report is licensed under the <u>Creative Commons Attribution 4.0</u> <u>International</u> licence

ISSN 2703-7525 Publisher: Septentrio Academic Publishing, Tromsø, Norway

CONTENTS

SUMMARY	.5
INTRODUCTION	.5
Scientific goals and achievements	.5
Brief description of the activities	.6
ALONG TRACK MEASUREMENTS CARRIED OUT DURING THE CRUISE	.7
Meteorological measurements from Vaisala AWS430 weather station	.7
Thermosalinograph	.8
pCO2 measurements	.8
Ocean current measurements from ADCP 150 kHz	.8
Acoustic measurements of zooplankton and fish with the vessel's EK80	.8
Sea ice observations (T1-1.2)	.8
STATION-BASED WORK	.9
NLEG STATIONS	.9
RESEARCH FOCUS 1 (RF1): NATURAL DRIVERS	.9
RESEARCH FOCUS 2 (RF2): HUMAN IMPACTS	10
RF2 T2-1.1 Current variability and drivers of ocean acidification	10
RF2 T2-1.2. Ocean acidification effects on the mobility of particulate and dissolved organic carbon (POC, DOC), essential trace elements (micro-nutrients) and heavy metals	13
RF2 T2-1.4. Ocean acidification effects on planktonic calcifiers and biological pump efficien	су 15
RF2 T2-2.1. Effects of changes in species composition and distribution on contaminant in food web accumulation	15
RF2 T2-2.5. Critical seasonal windows of responses to multiple stressors on key organisms in a pelagic food chain	า 17
RF2 - T2-3.1. Climate change and fisheries: Spatial environmental variables and genomics	18
RESEARCH FOCUS 3 (RF3): THE LIVING BARENTS SEA	20
RF3 - T3-1.1. Characterize biological phytoplankton/ protist communities and seasonality in terms of biodiversity, abundance, biomass and distribution patterns	20
RF3. T3-1.1 & 2.1 Mesozooplankton taxonomy, abundance, biomass and genomics	21
RF3 - T3-1.1; 2.1. Macrozooplankton	24
RF3 T3-1.3 Stable isotopes, fatty acids & HBIs of POM, zooplankton & fish	37

RF3 - T3-2.2. Measure how current environmental settings drive the phenology of primary and secondary production, and test how changing conditions may affect these seasonal patterns
RF3 - T3-3.1; 4.2. Estimate ranges of annual production along environmental and latitudinal gradients (3.1) and Trophic ecology of key zooplankton (4.2)
T3-1; T3-2 Timing of critical biological processes and phenology of life cycles (3-1), Estimate ranges of annual production along environmental and latitudinal gradients (3.1)
RF3, T4-4.1, Molecular characterization of diets of small invertebrates42
RF3 - T3-2.2; 4.4. Measure how current environmental settings drive the phenology of primary and secondary production, and test how changing conditions may affect these seasonal patterns (2.2) and Sympagic-pelagic-benthic coupling (4.4)
RF3 - T3-1.1; 1.2; 4.3; 4.4. Characterize and quantify biota in the seasonal ice zone (1.1), relate environmental conditions to biological communities (1.2), and explore the sympagic-pelagic-benthic coupling and trophic ecology of benthos (4.4)
RA-C
AUV operations and risk in the Arctic57
LOGISTICS
COMMUNICATION AND OUTREACH
REFERENCES
APPENDIX

SUMMARY

This cruise was the second of in total four seasonal cruises with RV Kronprins Haakon in 2019/20 focusing on biology in the project Arven etter Nansen (AeN). This seasonal cruise was named Q4 (Q4= 4th quarter of the year) investigating in total 17 stations of the established AeN transect along 34 E in the Northern Barents Sea and adjacent Arctic Basin from 76 to 82°N (see Fig. 1 below). The cruise addressed objectives of the research foci in RF1 on Physical drivers, RF2 on Human drivers, RF3 on the living Barents Sea and RA-C Technology and method development, and collected a multitude of data along the Nansen Legacy transect which was ice covered except the southernmost station P1. In addition to *in situ* sampling, on board experiments were conducted to quantify biological processes, rates and interactions that will also be important feeds into modeling work and projections in RF4 The future Barents Sea.

The cruise took a variety of continuous ship measurements (Weather station, EK80, EM203, ADCP, thermosalinograph, pCO2 underway) as well as station measurements such as CTD with water samples, biological sampling of the benthos (box corer, benthic trawl), water column (multinet, MIK net, macrozooplankton trawl and many other smaller nets) and sea ice (snow, ice cores, water just underneath sea ice). In addition, experimental work (respiration, grazing and egg production) was conducted in the ship's laboratories. The chemistry team onboard measured oxygen, nutrients and pH from standard depths on most CTD stations and sea ice samples.

The cruise started in Longyearbyen and ended in Tromsø (28.11.-17.12.2019). The sampling began at the deep (>3000 m) northernmost station of the transect, Stn. P7, and continued along the southward transect until station P1, in open water and Atlantic dominated water masses. During the expedition the Barents Sea was characterized by a relatively large sea ice cover with consolidated sea ice all the way from P7 to P2. The Polar Front was located just north of P1. All process stations were sampled (P7-P1) as well as two ice stations: one close to P7 ad one close to P5. At the southernmost station P1, stormy weather challenged sampling, but most tasks were in the end accomplished except of deploying the box corer, sediment trap and the AUV. These operations were considered too challenging due to strong drift and ship movement, and it was not safe to conduct small boat operations. Challenges with the box corer was also experienced at the deep station P7 due to technical issues. In the end, most work was accomplished despite challenging weather, sea ice conditions and some technical issues making this cruise successful in gaining new important knowledge about the Northern Barents Sea in the polar night season which is extremely poorly studied. The overall high biological activity and biomass at this time of the year, November-December, was surprising for most of us.

INTRODUCTION

Scientific goals and achievements

The Nansen Legacy Seasonal Q4 (Q4= 4th quarter of the year) cruise, continued the seasonal investigation of the northern Barents Sea and adjacent Arctic Basin that was initiated in August 2019 with the same ship. The seasonal cruise activities are key milestones for 2019 -2021. The cruise addressed objectives of the research foci in RF1 on Physical drivers, RF2 on Human

drivers, RF3 on the living Barents Sea and RA-C Technology and method development and collected important data along the Nansen Legacy transect within the ice and in open waters. In addition to *in situ* sampling, onboard experiments were an important component to quantify processes, rates and interactions that will also feed modeling work and projections in RF4 The future Barents Sea. Most cruise participants had joined the Q3 August cruise and were familiar with the routines for sampling, data management and data storing.

At the Q4 cruise we did not prioritize to bring on board an artist. We decided to bring two persons from RA-C instead, plus that the instrument personnel also needed to bring one more instrument technician, a new employee, on this cruise. All in all this cruise was very successful with lots of data and samples collected despite challenging weather, sea ice conditions and short cruise time. Data from November-December in the Northern Barents Sea are rare and therefore very important to get to investigate biological adaptation to the strong seasonality in the physical and biological environment.

Brief description of the activities

The Seasonal cruise Q4 (28. November to 17. December 2019) focused on the Nansen legacy transect (Figure 1) and repeated the investigations conducted during the Seasonal cruise Q3 from 5th to 27th August the same year, except that no deployment of moorings and gliders were conducted during this polar night November-December cruise. Q4 cruise was a joint physical, chemical and biological cruise, including experimental biology work and testing of new technology addressing the aims of RF1, RF2, RF3 and RA-C. All seven process stations (P7-P1) were sampled in addition to ten of the in total 24 NLEG stations. In addition, some extra CTD stations were taken across the Polar front: four CTD stations and one mini process station named P1-X where CTD with water, one phytoplankton net and one Bongonet 64 μ m and 180 μ m were collected (Appendix 1.1). The entire Nansen Legacy transect was covered by ~1 m thick sea ice except P1 south of the Polar front (Figure 1).

Figure 1. Sailing route with CTD (z) and Bongo net stations (o) shown during the Q4 cruise in November-December 2019 from Longyearbyen to Tromsø. Focus was the Nansen Legacy transect and the Process (P) stations P7 to P1 (left). Consolidated sea ice up to 1 m thickness dominated with only open water at P1.

The Nansen Legacy transect represent an environmental gradient from Atlantic water in the south to Arctic water dominance over the Northern Barents Sea shelf before Atlantic water again influence North at the shelf break to the deep Arctic Ocean. At the O4 cruise we started to sample furthest North at Process station 7 (P7) for so to work our way south to P1 and ending the cruise in Tromsø. The thick (~1 m) and extensive sea ice cover in the Northern Barents Sea made us decide to sail to P7 along the ice-free West Spitsbergen (Figure 1) to save time. Before the ship entered the pack ice NE of Svalbard, two pelagic trawls were taken since next opportunity for trawling was first in open water close to P1. The standard water and plankton community sampling was fulfilled at all seven process stations which lasted from 12-48 hrs, with the exception of P7 which due to great depths (3500 m) and some challenges with box core sampling was extended to 56 hrs. To sample in ice went well and two ice stations were also successfully accomplished (in association to P7 and P4) despite very cold weather combined with some wind. Stormy weather at P1 in open sea prevented deployments of the sediment trap and Autonomous Underwater Vehicle (AUV), and also made it also impossible to safely use the big box corer to collect sediments. Otherwise, most activities were run as planned. Two successful ice stations in association with stations P7 and P5 was also accomplished. Hydrography and water were in addition to the process stations collected on most of the 24 N-leg stations plus that a few extra was taken across the Polar front (see Appendix A1.1). In addition, a handheld CTD (SAIV model 208, Bergen) were used at most stations fixed at the phytoplankton net and lowered down to 50 m, since the large CTD rosette was deployed from the moonpool and thus the water properties it measured in the upper 10 m were questionable.

ALONG TRACK MEASUREMENTS CARRIED OUT DURING THE CRUISE

RV Kronprins Haakon is equipped with several underway measurement systems to provide data along the cruise track. Below an overview of data collected during the polar night Q4 cruise.

Meteorological measurements from Vaisala AWS430 weather station

Air and sea temperature (8 m depth), air pressure, wind speed and direction, relative humidity and solar radiation was measured continuously by a Vaisala AWS430 weather station.

Weather balloons with radiosenders attached were released daily around 10:30-11:00 UTC to record atmospheric properties (e.g. temperature and moisture vs. height). The data from the system was logged locally on the vessel and is included in the dataset from the cruise but is also reported to Norwegian meterological institute/ Deutscher Wetterdienst.

Thermosalinograph

Temperature, salinity, density and fluorescence was measured from the clean water intake at 4 m depth and continuously logged from departure Longyearbyen to arrival Tromsø.

The clean water intake is very sensitive to ice (filter get clogged) or water at freezing temperature (-1.7°C), so pumps were shut down in shorter periods (station NLEG 12, P5) for ice removal. The alternative inlet at 9 m depth is located in the sinking keel which cannot be used in ice covered waters.

pCO2 measurements

Using the 4 m sea water inlet, a pCO2 underway system for autonomous high frequency surface water measurements provides data on pCO2 in sea water and air, dissolved O2 and O2 saturation and sea water temperature during the entire cruise. The seawater intake at 4 m was sampled by the chemistry team onboard (see below) at 17 occasions for DIC, pH, TA, salinity and nutrient measurements to evaluate the underway instrumentation for autonomous high-frequency surface water measurements of partial pressure of CO₂, pCO₂ (General Oceanics). The water-intake for pCO2 and the thermosalinograph is the same and when low temperatures it was always some problems with ice in the water intake (see above).

Ocean current measurements from ADCP 150 kHz

Currents in the upper ~500 m of the water column were continuously measured during the cruise using a 150 kHz ADCP (RDI Instruments) mounted on the drop keel. The setup followed the setup in the test cruise. The instrument was synchronized with the EK80 using K-sync. The 38 kHz ADCP was not used due to interference with the 38 kHz of the EK80. The ADCP data was not processed during the cruise due to time constraints.

Acoustic measurements of zooplankton and fish with the vessel's EK80

Acoustic surveying of fish and zooplankton was conducted using the six scientific Simrad EK80 echo sounder. The flush mounted echosounders were used from the start of the survey until after P2 due to the risk of damaging the drop keel when going in sea ice. The drop keel was used at P1 until finalizing P1. The drop keel was again raised, and the flush mounted system was used while steaming from P1 to Tromsø (for more details see page 23 below).

Sea ice observations (T1-1.2)

Ship-based sea ice observations were done following the ASSIST protocol (https://icewatch.met.no/assist). A roster system established to conduct observations every few hours during daylight (which we did not have, but we also tested this out in darkness with help of the ship lights) while in se aice (paused while stationary at sea ice stations). Observations of ice concentrations, type, thickness, topography and meteorology were entered directly in a web browser-based form (own computer on the observational deck). Sea ice was assessed from the observation deck, and photos were taken pointing port, ahead and starboard. This was the first time we tried out this regular way of sea ice observations on the seasonal Q1-Q4 cruises. Rolf Gradinger (UiT) was leading this work onboard.

STATION-BASED WORK

The Nansen Legacy transect (Figure 1) provides a climatic gradient from the southern Atlantic influenced region of the Barents Sea (P1) across the more Arctic influenced northern shelf (P2-P5), and into the Arctic Basin (P7). The northern branch of the Atlantic Water current into the Arctic Basin along the shelf break, is covered by the shelf break station (P6). This transect may also represent a space-for-time gradient. On a seasonal time-scale, ice-free waters in the south can reflect a later seasonal stage compared to the ice-covered regions in the north were sea-ice cover may delay the productive onset in the water column. At the same time, this may be compensated by an early ice algal production. On a longer timescale, the climatic conditions in the Barents Sea is strongly impacted by the warm and saline Atlantic Water inflow. With increased and extended Atlantic impact further north, an "Atlantification", characteristics of the southern end of the transect may represent elements of future conditions in the north.

To increase the observational resolution along the transect, 18 additional CTD stations (NLEG1-25) reduce the gaps between the process stations (P1-P7). The overview of NLEG and P-station is given in Appendix A2. A reduced biogeochemical sampling program was carried out on the NLEG stations.

NLEG STATIONS

Ten of in total 24 NLEG stations (Stns. and 5 extra stations across the Polar Front, were covered with CTD casts, with T, S, O2, fluorescence and LADCP. CTD data can be found here <u>CTD data</u> from Nansen Legacy Cruise - Seasonal cruise O4 https://doi.org/10.21335/NMDC-301551919 At CTD station 438 the oxygen sensor froze (so no oxygen data here). The oxygen sensor was replaced, but comparison with data from the Winkler titration showed that both these oxygen sensors mounted on the CTD had drifted much more than acceptable (+2 ml/l) and the data from these two sensors should, therefore, not be used.

RESEARCH FOCUS 1 (RF1): NATURAL DRIVERS

The Barents Sea is characterized by competing influences between cold Arctic Water, and warm Atlantic Water, modulated by variability in sea-ice and atmospheric forcing. The Q4 seasonal cruise primarily focused on the biology, but since biology is closely connected to the physical environment we also collected valuable information for RF1 by a variety of along track measurements during the cruise (see above) and CTD casts on all Process stations (P1-P7) and selected NLEG stations (see Table 1 below). In addition, we did a higher resolution CTD transect between NLEG 2 and P1 (3 instead of 1 station) and additional 2 stations south of P1 (10 and 30 nm S of P1) to better capture the variability over the Polar front region.

RESEARCH FOCUS 2 (RF2): HUMAN IMPACTS

With the retreating sea ice, the direct human impacts on the ecosystem change in the northern Barents Sea increases. In AeN, we focus on three key anthropogenic pressures on the ecosystem 1) increase in atmospheric CO2

- 2) pollution
- 3) commercial fishing.

Three interrelated research questions are addressed:

Q2.1 What are the current drivers of ocean acidification and how is ocean acidification affecting marine organisms and ecological interactions in the Arctic Ocean?

Q2.2 How are changes in species distribution, trophic interactions and energy allocation affecting toxic potency and generational transfer of contaminants?

Q2.3 How may climate-driven changes in ecosystem structure and functioning lead to unanticipated effects of fishing?

RF2 T2-1.1 Current variability and drivers of ocean acidification

Helene Hodal Lødemel (IMR), Elizabeth Jones (IMR) and Ylva Ericson (NPI)

Our focus was to investigate carbonate and nutrient chemistry for the study of ocean acidification and the carbon cycle in the surface water, water column and sea ice environment (snow, ice, brine, under-ice water) in different regimes/gradients. We sampled the water column and sea ice for nutrients and oxygen isotopes (δ^{18} O) and performed instrument analyses on board for the determination of the carbonate chemistry (total alkalinity (AT), total inorganic carbon (DIC), pH) and dissolved oxygen (DO).

During Q4, we sampled seawater from Niskin bottles mounted onto a 24 bottle CTD-Rosette from a total of 17 stations (total 210 samples) for analyses of carbonate chemistry onboard and nutrients and δ^{18} O for storage and post-cruise analysis. Sampling and analysis followed the protocol described in *Nansen Legacy Sampling Protocol version 5 and Dickson et al., 2007.* The samples for carbonate chemistry were sampled first or directly after dissolved oxygen (DO) samples and analysed within 24-hours directly onboard for the determination of total alkalinity (AT), total inorganic carbon (DIC), and pH. Samples for inorganic nutrients (nitrate+nitrite, nitrite, phosphate, silicic acid) were preserved with chloroform and stored in the cool and dark for post-cruise analyses at IMR in Bergen.

DO was sampled from 11 CTD stations. On 2 CTD stations duplicate sampling was preformed to ensure that the analytical performance was acceptable. **The data from the Winkler titration**

showed that the 2 oxygen sensors mounted on the CTD had drifted much more than acceptable (+2 ml/l) and the data from these two sensors should, therefore, not be used. The last calibration for both sensors was about one year old.

At sea ice stations (P7 and P5), ice cores, brine, snow and under-ice water were sampled. A total of 6 sea ice cores with a length from 30 cm to 90 cm of first year ice were sampled. At all stations ice thickness, freeboard and snow thickness was collected for each ice core. Under ice water was sampled with a tube from a GO-FLO bottle at P7 but at P5 the sample had to be collected through the bottom opening of the GO-FLO bottle due to freezing. Ice cores were sampled and processed as described in protocol v5. Ice cores were sliced into 10-cm pieces from the sea-ice top (snow-air interface) to the base (ice-seawater interface). Sea ice samples were melted in airtight bags at laboratory temperature and analysed for AT, DIC, pH and salinity onboard. Samples for δ^{18} O and nutrients were preserved and stored cool and dark similar as for seawater samples.

Underway surface water CO₂ data.

The seawater intake at 4 m was sampled at 17 occasions for DIC, pH, TA, salinity and nutrient measurements to evaluate the underway instrumentation for autonomous high-frequency surface water measurements of partial pressure of CO_2 , pCO_2 (General Oceanics). Table 1 summarizes the sampling from water column using the CTD-Rosette.

Station Name	CTD #	# of AT/DIC/pH	# of Nutrients	# of $\delta^{18} 0$	# DO _{Winkler}
P7	425	18	18	18	36
NLeg24	427	13	13	13	
NLeg23	428	16	16	16	16
P6	431	13	13	13	
NLeg19	433	11	11	11	
NLeg15	434	11	11	11	
NLeg14	435	10	10	10	10
P5	437	9	9	9	9
NLeg12	439	10	10	10	20
P4	444	11	11	11	11
NLeg9	445	9	9	9	9
P3	447	11	11	11	11
NLeg5	448	10	10	10	
P2	450	10	10	10	13
NLeg3	451	10	10	10	
NLeg2	452	11	11	11	11
P1	454	11	11	11	11

Table 1. Seawater samples from the CTD-Niskin Rosette system.

Preliminary results of physical and chemical properties from the water column

Figure 2. Temperature (upper panel) and salinity (lower panel) of the water column from north (P7) to south (P1), including several NLEG CTD stations along the transect and additional CTD stations around the Polar Front near P1. Inserts show the upper 250 m of the water column with the 34.9 salinity contour marked in black to indicate the transition to Atlantic Water.

Figure 3. Dissolved inorganic carbon (DIC) in the water column from north (P7) to south (P1), including several NLEG CTD stations along the whole transect and some additional CTD stations around the Polar Front near P1. Inserts show the upper 250 m of the water column.

Further, a handheld CTD from UNIS (SAIV model 208, Bergen) was used on selected stations (see Figure 4 below) to measure the surface 100 m since we lost the upper 10 m of the water column when sampling with the big CTD on the rosette when deploying it in the ship moonpool.

Figure 4. Temperature (left) and salinity (right) profiles from the handheld CTD (SAIV 208) in the upper water column during the Q4 cruise.

RF2 T2-1.2. Ocean acidification effects on the mobility of particulate and dissolved organic carbon (POC, DOC), essential trace elements (micro-nutrients) and heavy metals

Stephen Kohler and Maria Digernes (NTNU)

The purpose of this task is to understand the impact of ocean acidification on the biogeochemistry (cycling and mobility) of dissolved organic carbon (DOC) and trace elements in the water column of the Northern Barents Sea. To best explore this topic, a complete survey of trace elements and heavy metals needs to be sampled along the entire transect and at various depths under clean sampling and handling conditions. In addition, the characterization of dissolved organic matter (DOM, DOC), at each station at select depths will aid in understanding the different forms and distributions of DOM and how they may interact with trace elements. As the solubility of trace metals, both essential and toxic, are dependent on its interaction with DOM, the distribution and type of both trace metals and DOM was surveyed.

Trace elements (micronutrients)

Both total (n= 56) and dissolved (n= 56) trace elements, were successfully sampled at all process stations (P1-P7) at eight depths up to 15 m above the seabed or up to 500m with GO FLO bottles with clean sampling and handling techniques. Replicate samples were collected at certain stations

Heavy metals (Hg)

Separately, samples for both total mercury (n=56) and methylmercury (n=56) were also collected at all process stations (P1-P7) at eight sampling depths up to 500m with GO FLO bottles using clean sampling and handling techniques. At stations P6 and P7, samples for total mercury and methylmercury were also collected from the deeper depths (>500m) from the CTD rosette with bottles to complete the profile. Replicate samples were collected at P1, P4, and P7. To compare the clean sampling technique to the CTD, samples were collected from the CTD at P7 at the same depth as one of the GO FLO depths. We hope to share mercury data with RF2, T2-2, and RF3, T3-4.1.

At P7 (Deep Ice) and NLEG24, four depths were selected for a stable isotope mercury methylation experiment. Briefly, stable isotopes of inorganic ¹⁹⁹Hg and ²⁰¹MeHg were spiked to filtered and unfiltered seawater incubations in triplicate and preserved at four time periods over the course of 24 hours. This data will aid in understanding both methylation and demethylation rates throughout the water column in the Arctic basin.

Dissolved organic matter (DOM) characterization, Total organic carbon (TOC), Dissolved organic carbon (DOC) and Total dissolved nitrogen (TDN)

Samples were collected for 6 depths (10m, 20m, 30m, 40m, intermediate and bottom depth) the intermediate and bottom depth was based on local station and hydrography. Process stations (P1, P2, P4, P5, P6, P7) were sampled and collected from CTD bottles. All samples were subsequently collected, filtered, and extracted for DOM to be analyzed using UPLC MS at NTNU gløshaugen. In addition, samples including replicates were collected for TOC, TDN and DOC analysis for aforementioned stations at all 6 stations and 6 depths at each station to complement DOM characterization analysis. DOC and TOC analysis will be performed using high temperature combustion TOC instrument.

Aggregation experiments (collaboration with Yasemin V. Bodur, UiT)

Samples were filtered and extracted for DOM characterization and DOC quantification for an aggregation experiment with a 24h incubation time using a rolling tank at 4C temperature. Samples for DOC/Q and DOM characterization were collected at station P1, P2 and P7 at 30m depth. POC samples were also collected and to be analyzed by Yasemin V. Bodur.

Ice work

Two ice cores were collected for trace elements at P5 ICE and P7 ICE. Cores were collected whole, and then cut and processed onboard according to AeN protocol.

Two ice cores were collected for Hg at P5 ICE and P7 DEEP ICE. Cores were collected whole, and then cut and processed onboard.

2 ice cores were collected for DOM at P7 DEEP ICE and P5 Ice. Cores were cut in the field, then filtered and extracted onboard for DOM using only the 0-20cm section of each core.

Sediment sampling

At select stations, samples of surface sediments were collected by the benthos group (UiT - Nord) for trace element analysis by sequential sediment extraction.

RF2 T2-1.4. Ocean acidification effects on planktonic calcifiers and biological pump efficiency

Kasia Zamelczyk (UiT)

To better understand the effects of ocean acidification in the Barents Sea, the abundance, carbonate contribution and the condition of shells of planktic marine calcifiers (foraminifera and pteropods) will be studied from microzooplankton net samples from all P stations (P7 to P1).

The samples have been collected using the 64 µm multinet at the standard depths: bottom - 200m, 200-100m, 100-50m, 50-20m and 20-0m. Samples from P6, P4 and P2 have been sorted into four size fractions (>500µm, 500-250µm, 250-100µm and 100-63µm) and quantitatively analyzed on board. The preliminary results have been presented during a scientific seminar during the cruise. During analyses, 238 specimens (38 foraminifera and 200 pteropods) have been picked and freezed individually at -80° C for protein extraction analysis. If available, 10 to 50 specimens of each group of organisms have been picked and placed slides for estimation of the shell conditions on shore. The remained analyzed samples have been stored in plastic bags at -80° C for further analysis on shore. Samples from station P7, P5, P3 and P1 have been put into plastic bags and stored at -80° C for analysis on shore. Samples from P7, P5, P3 and P1 have been put have not been analyzed on board.

Three phytoplankton nets (\emptyset 10 µm) have been collected through ice hole at ice stations (P7 at 0-5m and 0-30m water depth; at P6 at 0-5 m water depth). These samples have been filtered through 0,8 µm Polycarbonate filter, dried at room temperature and stored in plastic ampoules for SEM analyses on shore. In addition, at station P7, a 93 cm long ice core have been recovered for planktic foraminiferal and pteropods analyses. This ice core was put into a plastic bag and stored in -20° C. Abundances and shell condition will be compared to the ocean carbonate chemistry parameters measured from water samples collected just prior or after the multi net samples retrieval.

RF2 T2-2.1. Effects of changes in species composition and distribution on contaminant in food web accumulation

Julia Giebichenstein (UiO), Rita Amundsen (UiO), Øystein Varpe (UNIS), Robynne Nowicki (UNIS), PI: Katrine Borgå (UiO)

As changes in temperature and sea ice distribution and thickness are expected in the Barents Sea, the energy transfer processes in the food web are expected to change. The present study aims at identifying and comparing bioaccumulation and biomagnification processes of legacy and emerging contaminants (e.g. persistent organic pollutants and mercury) related to energy use and availability between an Atlantic-influenced and an Arctic marine pelagic food web in the Barents Sea throughout the year. Zooplankton and fish samples will be collected during the process study cruises. From these, chemicals representing lipid-soluble and protein associated contaminants will be analyzed, in addition to dietary descriptors to trace energy source (stable isotopes and lipid analyses). Model predictions of climate change effect on food web accumulation of contaminants include reduced accumulation due to predicted reduction in lipid storage. Bioaccumulation changes due to altered dietary composition is predicted to have less influence than the predicted lower lipid content. These predictions will be tested in the present task.

Sampling approach

During this cruise we have collected water, zooplankton and fish samples for legacy and emerging contaminants, mercury, stable isotope and fatty acid analyses. Doreen Kohlbach (NPI) will analyze the fatty acid samples and the stable isotope and mercury samples will be analyzed at UiO, contaminant samples will be analyzed at NILU in Tromsø. We hope to share mercury data with T2-1.2 and zooplankton community data with Tom from IMR.

Water samples for legacy persistent organic pollutant (POP) analyses were collected with an in-situ filtration pump (see Figure 5) at the process stations P7, P4, P3 and P1. The sampling at P6 failed due to freezing of the gear. To compare the influence of warmer, more saline Atlantic water on contaminant levels with the cold, fresher Arctic water we tried to target both water masses, if applicable. Due to harsh weather conditions and limited time, it was not always possible to deploy both pumps at the same time. Sampling at P6 failed due to freezing of the gear. In addition, we

took water samples from the CTD rosette in triplicates for PFAS

Figure 5. In-situ filtration pump

Bongo.

analyses at P1, 5 and 7. Meso- and macrozooplankton samples

of key food web species were collected at each process station. Mesozooplankton (primarily Copepod stages CIV and CV) were sampled with either WP3 or

Figure 6. Zooplankton sample from P5. Photo credit: Øystein Varpe

Macrozooplankton (mainly euphasiids, amphipods and juvenile fishes) samples were collected from the MIK net or from the macrozooplankton trawl (see Figure 6 for an example from the MIK net). All zooplankton samples were sorted and grouped by family and by species, if possible. Samples for contaminants were handled as little as possible and frozen as quickly as

possible to avoid cross-contamination. We sampled for POPs, mercury, stable isotope and fatty acid analyses.

Fish tissue and whole fish were sampled via bottom trawl for POPs, mercury, stable isotope and fatty acid analyses at P1 and between P2/P1. We attempted a trawl at the Ntrawl station north of Svalbard, but it was cancelled due to inappropriate bottom condition. Sea ice prevented us from trawling earlier than P2/P1. The of sampled fishes stomach was frozen for microplastic analyses and otoliths for age determination were dissected. The target species relevant to the pelagic Barents Sea food web included Polar cod (*Boreogadus saida*), Atlantic cod (*Gadus morhua*) and Capelin (*Mallotus villosus*) and were below 25 cm in total length (see Table 2). Other dominant fish species (like *Leptoclinus spp.* at P2/P1) were sampled opportunistically and frozen whole. (see part T2-3-1 in this report for detailed information on the trawls).

Process station	P1	P2/P1
Atlantic cod (Gadus morhua)	1	3
Polar cod (<i>Boreogadus saida</i>)	7	3
Capelin (Mallotus villosus)	6	4

Table 2. Overview of the number of dissected fishes at the process stations.

Part of the sampled fishes were shared with subtasks T2-3.1 for further ecotoxicological analyses.

RF2 T2-2.5. Critical seasonal windows of responses to multiple stressors on key organisms in a pelagic food chain

Robynne Nowicki (UNIS/UiO), Supervisors: Øystein Varpe (UNIS), Geir Wing Gabrielsen (NPI), Katrine Borgå (UiO)

Purpose

The samples taken on this cruise will be used in T2-2.5 "Critical seasonal windows of responses to multiple stressors on key organisms in a pelagic food chain". Macrozooplankton and fish samples will be taken on all four seasonal cruises (Q1-4) for bioenergetics, protein, lipid and pollutant remobilization analysis. The samples taken will be used to assess seasonal fluctuations in energy content of key organisms in the pelagic food web of the Barents Sea. This data will be used to expose annual critical windows in which organisms may be of weakened body condition and predators may have a low-quality food supply. Thus these organisms may be more susceptible to stressors such as persistent organic pollutants and climate change parameters, during this critical period. I also took samples of macrozooplankton to assess sexual maturity and life history stages, in order to allow for a more trait-based approach to seasonal

energy variation. As well as this, polar cod brains were collected (to be used in conjunction with brains collected from kittiwakes from Svalbard in future) for organ specific analysis of seasonal pollutant remobilization. Samples were taken at each process station (excluding P3), allowing for additional comparison of southern (Atlantic) and northern (Arctic) species, as well as regional differences in individuals of the same species.

Sampling approach

Macrozooplankton: Due to ice conditions, with stations P7- P2 being ice covered, macrozooplankton were predominantly sampled using MIK-net 1500um vertical hauls. Macrozooplankton trawls were taken at an additional "N. Trawl" station and at P2 and P1. The multiple MIK nets were taken at some stations to provide substantial biomass. The bulk samples were sorted into major zooplankton groups, with this work focusing on krill, amphipods and pteropods, with 2-3 species selected for each. Individuals were selected and measured, with an aim to collect a range of size classes, in order to assess the relationship between body size and energy content. This cruise also saw *Themisto libellula* in a range of life history stages with males, and females with and without eggs present. For each sample, organisms were wrapped in aluminium foil, placed in a labelled Ziploc bag and frozen at -20°C. Large organisms were stored individually, whilst smaller organisms were pooled per sample, with the aim of each sample weighing between 1-2g. Samples were taken opportunistically, with not all species being collected from each station.

Fish: Fish were collected using campelen trawl at stations P2/1 (an opportunistic station between P2 and P1) and P1. Atlantic cod (*Gadus morhua*), capelin (*Mallotus villosus*) and polar cod (*Boreogadus saida*) were the target species collected. Some small polar cod were also caught in the macrozooplankton trawl at station N. trawl. However Atlantic cod were only available from P1 and capelin from P2/1 and P1, whilst polar cod were taken from all sampled stations. The fish were taken whole from the trawl (roughly 10-25 individuals per species per station where abundance allowed), weighed and measured for total length. Individuals were then wrapped in aluminium foil and frozen at -20°C. Polar cod that were dissected for other simultaneous sampling onboard had their brains removed for remobilization studies, with weight and total length of the sample fish being noted.

RF2 - T2-3.1. Climate change and fisheries: Spatial environmental variables and genomics

Siv Hoff (UiO), Julie Bitz-Thorsen (UiT) and PI Leif Christian Stige (UiO)

The aim of this task is to investigate the roles of spatiotemporal population structure and possible local adaptations in three key fish species in the northern Barents Sea ecosystem: The Northeast Arctic population of the Atlantic cod (*Gadus morhua*), capelin (*Mallotus villosus*) and polar cod (*Boreogadus saida*). If local adaptations are important for population dynamics and responses to climate change, it may be necessary to revisit the management of fisheries in order to maintain intact spatial and genetic structure. For this purpose, individual samples of these

species will be collected at transect cruises in summer (2 years) and winter (1 year) for wholegenome sequencing. We will also include samples of the same species collected in associated projects at other locations, such as at their spawning grounds. From these data we aim to characterize the population sub-structure(s) for each of the species, as well as identify signatures of directional selection, for instance as a result of temperature adaptations. In addition to spatial structure, we will assess possible temporal structure, linked to seasonal partitioning of habitat use.

During this winter cruise we have collected tissue samples of the Northeast Arctic cod, polar cod and capelin from process station P1x, and multiple trawl locations which was not part of specific process stations. These trawl locations include one on the northwest of Svalbard, named N_trawl, and one located between NLEG2 and NLEG3. This sums up to three trawling locations in all (Table 3). Trawling was generally limited during this cruise, due to ice and weather conditions.

At the location between NLEG2 and NLEG3, and at P1x demersal (Campelen) fish trawl was taken. In addition, macrozooplankton trawl was taken at N_trawl, the location between NLEG2 and NLEG3, and P1x.

Station/ Species	N_trawl	between NLEG2 & NLEG3	P1x
Northeast Arctic cod	-	14	21
capelin	4	35	30
Ogroup capelin	27	20	10
Polar cod	29	47	30

Table 3. Number of fish sampled at each of the stations where trawling was conducted during SSQ4

In concordance to last year sampling (JC1/2: 6-23 Aug. 2018) and SSQ3 August cruise 2019, the Northeast Arctic cod was observed at the two most southern stations P1 and between NLEG2 & NLEG3.

The Atlantic cod caught during this cruise were generally small to medium in size (range between < 20 and 2240 grams), and < 4 in maturation (the range is 1-7, where 6 is ready to spawn). Adult capelin was mainly caught in bottom trawls, and Ogroup capelin caught in macrozooplankton trawls at three locations. Polar cod were caught in all trawls taken. Polar cod caught in the macrozooplankton trawls were generally of a small size, between 5 and 7cm, and are likely 0 yearlings.

For all sampled fish, a total of three tissue samples were taken, two for whole-genome DNA sequencing (aprox. 20x coverage), and one for RNA sequencing. Additionally, otoliths were collected for all fish sampled, in order to determine age.

Metadata was recorded for all fishes sampled, and includes the following parameters: fork length, total length, total weight, sex, maturation stage and presence of ecto/endoparasites. In addition, for the Northeast Arctic cod and a subset of the sampled polar cod at each station liver, gonad and somatic weight was also recorded.

RESEARCH FOCUS 3 (RF3): THE LIVING BARENTS SEA

The ecosystems of the northern (Arctic-influenced) Barents Sea and adjacent slope and basin areas function fundamentally differently from the southern (Atlantic-influenced) region. In RF3 we focus on quantifying the structure and function of the poorly described ecosystems of the northern Barents Sea and adjacent slope and basin and compare them with the much better-known ecosystems of the central and southern Barents Sea and contrast them with the historic baseline data. Unique to this effort and unprecedented for the region is the synoptic study of microbes to mammals, and the all-seasons approach. The main research questions are:

Q3.1 What are unique characteristics of the marine life in the marginal ice zone of the northern Barents Sea and adjacent basin, compared to the much better understood southern Barents Sea?

Q3.2 How do environmental conditions impact the timing of biological processes across marine ecosystem realms?

Q3.3 What is the magnitude, range, and variability of production across trophic levels?

Q3.4 How and at what rate do carbon and nutrients cycle through the food web, and what is determining the rate of the processes involved?

RF3 - T3-1.1. Characterize biological phytoplankton/ protist communities and seasonality in terms of biodiversity, abundance, biomass and distribution patterns *Anna Vader (UNIS), Miriam Marquardt (UiT), Rita Amundsen (UiO)*

The main aim of our sampling during the AeN2018711 cruise was to collect material which will be used to study diversity, distribution and ecology of microalgae and other protists along the Barents Sea to Arctic Ocean transect. Our sampling also focused on Sea ice communities, and we collected material from ice cores and under-ice.

For the **molecular analysis** of diversity (metabarcoding) and function (metatranscriptomics) of phytoplankton and protist communities along the transect we collected samples together with

Anna Vader (UNIS). We took part in collection and filtration of the molecular samples as well as sampling and processing of ice-cores and sea water on ice. A complete list of which microbial parameters were collected at which depth and stations is presented elsewhere in the report.

For the **analysis of phytoplankton** abundance we collected the samples. These samples were collected from CTD Niskin bottles at all planned depths at station P1-P7. All stations were taken in the moonpool. Sample depth 5m was changed to 10m, due to sampling through the moonpool. Samples where fixed in Glutaraldehyde and formalin solution for further light microscopy analysis in the lab. They will provide quantitative and qualitative information about phytoplankton abundance and diversity along the transect.

Morphological analysis of phytoplankton diversity and isolation of cultures of Arctic microalgae. We also collected samples for the scanning electron microscopy (SEM) analysis of small phytoplankton and groups which are not well preserved in quantitative samples fixed in Lugol's solution. This includes primarily calcifying microalgae (coccolithophores) which are an important part of the Barents Sea phytoplankton. The samples for quantitative and qualitative SEM analysis were taken at each station at four depths which corresponded to depths sampled for molecular metabarcoding and metatranscriptomics.

A plankton net (mesh size 10µm) was deployed at each station to obtain a concentrated phytoplankton vertical sample. The collected material was divided in five parts. To part was fixed in 2% formalin and one in 1% Lugol's for light microscopy to be used together with the quantitative samples above. Another part was fixed in 1% glutaraldehyde and these will be used for studying diversity of protists using scanning and transmission electron microscopy at UiO. At sea ice stations, we sampled water from 0.5m below ice and 5m, 50m below ice and concentrated it using 10µm bottle-net. Part of material was fixed for SEM, TEM and LM for later analysis. The ice-cores were divided in to 0-3 cm, 3-10cm, 10-20cm, 20-30cm. One part for meiofauna and one part was fixed for microscopy.

RF3. T3-1.1 & 2.1 Mesozooplankton taxonomy, abundance, biomass and genomics *Anette Wold (NPI) and Amalia Keck (NPI)*

The main objective was to describe the mesozooplankton taxonomic composition, abundance and biomass along the transect going from open Atlantic water (P1) to ice covered Arctic water (P7). We expect to see a gradient in the presence of Atlantic and Arctic species.

The data obtained during this cruise (Q4) are part of the seasonal investigation of zooplankton communities with data collected in Aug 2019 (Q3) as well as in March (Q1) and April/May (Q2).

Description of work

We have sampled with Multinets Midi (HydroBios, opening: $0.25m^2$, net length: 250 cm) and Bongonets (HydroBios, opening: 2 x $0.2827m^2$, net lengths: 250 cm): For both nets we have been using both 180 µm and 64 µm mesh nets in order to cover all size groups. We refer to the samples from the two mesh sizes as "mesozooplankton" and "small mesozooplankton" respectively.

Taxonomy and abundance were sampled at 5 standard depth intervals using the Multinet. The depths were from the bottom-200, 200-100, 100-50, 50-20 and 20-0 m. At the deep stations, the sampling depths were from 1000-600, 600-200, 200-50, 50-20 and 20-0 m. All samples were preserved in 4 % formaldehyde free from acid.

Total biomass (dry weight) and metabarcoding were sampled using Bongonets from the bottomsurface and from 1000 m to the surface at the deep stations. Each Bongonet were split in two, net 1 was used for metabarcoding and taxonomy with ½ of the sample for each. Net 2 was used for biomass and fatty acid, or experimental work if needed, with ½ of the sample for each. The biomass samples were dried and measured onboard. Genetic samples for metabarcoding were preserved in ice cold 96 % ethanol. Taxonomy samples were stained with Neutral red and preserved in 4 % buffered formaldehyde in order to distinguish between dead and alive specimens. The taxonomy samples will be used to support the metabarcoding samples.

Gelatinous zooplankton were picked out from MIK net at all stations as well as from Bongonet 180 μ m at P1 and Macroplankton trawl at NLEG3. One picture was taken of each taxa including all individuals. Individuals in good conditions were stored individually with ice cold 96 % ethanol. It would improve the sampling of gelatinous zooplankton to use a light-board or external light sources and have a dedicated camera.

Purpose	Gear	Station	N samples	Task
Mesozooplankton	Multinet 180 µm	P1, P2, P3, P4, P5, P6, P7	35	T3-1.1 & 1.2
taxonomy				T3-2.1 & 2.2
Small	Multinet 64 µm	P1, P2, P3, P4, P5, P6, P7	35	T3-1.1 & 1.2
mesozooplankton				T3-2.1 & 2.2
taxonomy				
Mesozooplankton	Bongonet 180 µm	P1, P2, P3, P4, P5, P6, P7	7	T3-1.1 & 1.2
biomass				T3-2.1 & 2.2
Small	Bongonet 64 µm	P1, P2, P4, P5, P6, P7	7	T3-1.1 & 1.2
mesozooplankton				T3-2.1 & 2.2
biomass				
Mesozooplankton	Bongonet 180 µm	P1, P2, P3, P4, P5, P6, P7	12*	T3-1.1
metabarcoding				
Small	Bongonet 64 µm	P1, P2, P3, P4, P5, P6, P7	7	T3-1.1
mesozooplankton				
metabarcoding				
Mesozooplankton	Bongonet 180 µm	P1, P2, P3, P4, P5, P6, P7	7	T3-1.1 & 1.2
taxonomy				T3-2.1 & 2.2
(alive/dead)				
Small	Bongonet 64 µm	P1, P2, P3, P4, P5, P6, P7	7	T3-1.1 & 1.2

Table 4. Overview of mesozooplankton sampling

mesozooplankton				T3-2.1 & 2.2
taxonomy				
(alive/dead)				
Mesozooplankton	Bongonet 180 µm	P1, P2, P3, P4, P5, P6, P7	7	T3-1.1 & 1.2
fatty acid (total				T3-2.1 & 2.2
community)				
Gelatinous	MIK net 1500 µm,	P1, P2, P3, P4, P5, P6, P7	149 ind.	T3-1.1 & 1.2
zooplankton	Bongonet 180 µm,			T3-2.1 & 2.2
	Macroplankton			
	trawl			

*We took one Multinet sample for metabarcoding at DEEP-ICE station (5 extra samples)

 Table 5. Overview of gear deployment

Gear	Sampling depth	Hauling speed (m/s)		
	Shallow	Deep	lowering	heaving
Multinet 180 µm	Bot-200-100-50-20-0m	Bot-600-50-20-0m	0.5	0.5
Multinet 64 µm	Bot-200-100-50-20-0m	Bot-600-50-20-0m	0.5	0.3
Bongonet 180 µm	Bottom-0m	1000-0m	0.5	0.5
Bongonet 64 µm	Bottom-0m	1000-0m	0.5	0.3
MIK 1500 µm	Bottom-0m	Bottom-0m	0.3*	1.5

*If lowering to fast the net-bucket might flip into the net since the ring is much heavier than the bucket even when added weight to the bucket. The net bucket should be improved in order to attach heavier weights.

Table 6. Overview of gelatinous	zooplankton	samples
---------------------------------	-------------	---------

Gear type	Station	Depth	Taxon
MIK 1500 µm	Deep-ice/P7	1000-0m	Aglanta digitale
			Mertensia ovum
			<i>Beroe</i> sp.
			<i>Atolla</i> sp.
			Unknown 1
			Unknown 2
MIK 1500 µm	P6	800-0m	Aglanta digitale
			Mertensia ovum
			<i>Beroe</i> sp.
			Unknown 1
MIK 1500 µm	P5	120-0m	Aglanta digitale
			Euphysa flammea
			Sarsia (with Thermisto inside)
			Catablema vesicarium/Halitholus
			cirratus
			Unknown
MIK 1500 µm	P4	300-0m	Beroe sp.

			Euphysa flammea
			Unknown
MIK 1500 µm	P3	280-0m	Aglanta digitale
			Mertensia ovum
			Beroe sp.
MIK 1500 µm	P2	170-0m	Mertensia ovum
			Beroe sp.
			Ptychogena lacteal
			Euphysa flammea
Bongonet 180 µm		180-0m	Beroe sp.
			Dryodora glandiformis
Macrozooplankton	NLEG3	100-0 0m	Cyanea capilata
trawl			
MIK 1500 µm	P1	300-0m	Aglanta digitale
			<i>Beroe</i> sp.

RF3 - T3-1.1; 2.1. Macrozooplankton

Tom van Engeland (IMR) and Nils Olav Hanegard (IMR), (PI Randi Ingvaldsen, IMR)

Macrozooplankton consists mainly of larger planktonic organisms such as krill, amphipods, arrowworms, jellyfish, fish larvae and shrimps. This document reports on the macrozooplankton sampling activities, that were performed on the Nansen Legacy seasonal cruise Q4 (cruise number 2019711). The aim of this sampling was two-fold: (1) assessment of the community composition in terms of size distributions and relative abundance, and (2) obtaining ground-truthing data for comparison with signals from the ship's echosounders and the TS (target strength) probe. For the latter, the focus was mainly put on the euphausiids and amphipods, which are key prey species for many economically and ecologically important fish species in the Barents Sea.

The cruise started in Longyearbyen on November 28 and ended in Tromsø on 17 December 2019. Most of this macrozooplankton sampling was done with the MIK net (midwater ring-trawl; d=2m; mesh = 1.5mm). On all process stations, a vertical haul was taken from a depth of 1000m, or from 30m above the bottom at shallower stations.

Figure 7. Overview of the transect that was sampled from north to south. Process stations are indicated with 'P'. Open squares in between are stations where CTD casts and TS Probe casts were performed. At NLEG 3, P1, and N_Trawl, a macroplankton trawl was taken.

Acoustics measurements of zooplankton and fish with EK80

The objective is to get a measure of acoustic backscatter associated to each process station and NLEG station. This will be combined in later analysis to the sample data and the TS probe data, providing a vertical resolution of the main scatterers in the area (Figure 8).

Figure 8. Example echogram from the ship based echosounder for the P7 station. The echogram show the 70kHz echosounder. The vertical range is depth from surface to 500 m. The horizontal axis is time.

The standard IMR settings were used for the echosounder. The flush mounted echosounders were used from the start of the survey until after P2 due to the risk of damaging the drop keel. The drop keel was used at P1 until finalizing P1. The drop keel was raised, and the flush mounted system was used while steaming to Tromsø.

The data were preprocessed using the LSSS system (Marec, Norway). Since we are mainly using the acoustics on or near stations, we cannot use the normal distance-based interpretation. The data is interpreted time based and the portion of the data where the transducers are covered with ice or when moving in ice are excluded. On station, there are also several cases where the data is corrupted due to CTD casts or TS probe casts etc. These data are removed using the LSSS exclude region or delete functions. The delete and exclude functions are typically applied to all frequencies, but in some cases, e.g. when where there is noise on one frequency only, the deletion is applied to that frequency only.

It is not possible to trawl under the ice, and the categorization is therefore uncertain. A very simplified approach is taken where all "clean" backscatter is allocated to the "PLANKTON" class for all frequencies. An integration threshold of -90 dB is used to capture the weak targets under the ice. In some cases, this leads to elevated noise levels, but, at least on the lower frequencies, the sensitivity to the threshold is relatively low.

The standard grid for IMR surveys is 10 m channels and 0.1 nm. Assuming standard survey speed of 10 knots, this would correspond to 1/100th hour or 36 s. The grid in the LSSS data base and in subsequent reports are 10 m and 36 s in depth and time, respectively. The standard reports are exported from LSSS and are available on request.

Data availability

The raw EK80 data are stored in the (internal) IMR survey folder. These can be accessed from within IMR under "" and the sub folders "Drop Keel" and "Flush Mount", respectively.

The interpreted data are placed under "\<u>\ces.imr.no\cruise\2019\2019 Tokt Kronprins</u> <u>Haakon\S2019711 PKRONPRINSHAAKON 9566\ACOUSTIC\LSSS\</u>",

where the LSSS project and reports are found under "LSSS_FILES" and "REPORTS" folders, respectively.

The TS probe

The probe system consists of a steel frame that is equipped with an echo sounder system (EK80) with four split-beam transducers: (38, 70, 120, 200 kHz), that are mounted to "look" horizontally (Figure 9). The system also has a 333 kHz, but the 38kHz was used instead as there are only 4 transceivers. The TS probe deployments covers station P7 to P1 (in descending order) including a subset of the NLEG (CTD) stations. A probe cast consisted of a down- and up-cast at each station.

Different settings were used for the "downcast" and "upcast" probing. For the downcast we used the echosounders in continuous wave mode (CW) and 512 ms pulse length for all transducers. For the upcast, the FM mode with sequential pinging was used, except for the 38kHz transducer that use the same configuration as for the downcast. Range was set to 50 m. All the settings are found in the files "AeN_CW_downcast.set" and "AeN_FM_upcast.set" files (see the "Data availability" section for location).

Figure 9. Tom Van Engeland with the TS probe.

Figure 10. The 70 kHz data from the probe at P7. The horizontal axis is the depth ranging from 5 to 1000 m. The vertical axis is the range in meters horizontally.

There are one LSSS project for each downcast and upcast, see Table 1. The integration interval is set to 10 m to 50 m, and the first noisy part close to the vessel is excluded. All frequencies are stored and the grid is set to 2 pings by 1 m. All energy is allocated to "PLANKTON" with a lower integration threshold of -90dB. The side lobes near the surface and bottom is removed for all frequencies using the LSSS erase function.

Cast	Туре	LSSSproject	Station	Parent event UUID
			Name	
				1fed2e92-1351-11ea-a5f2-
1	downcast	NA	N_Trawl	000c29fb4a96
				b57af9de-138e-11ea-a5f2-
2	downcast	NA	N_Trawl	000c29fb4a96
		S7111_PKronprins		8cce0102-14bc-11ea-a5f2-
3	downcast	Haakon[9566]	DEEP-ICE	000c29fb4a96
				8cce0102-14bc-11ea-a5f2-
3	upcast	NA	DEEP-ICE	000c29fb4a96
		S7113_PKronprins		daOffe41-161d-11ea-a5f2-
4	downcast	Haakon[9566]	NLEG24	000c29fb4a96
				da0ffe41-161d-11ea-a5f2-
4	upcast	NA	NLEG24	000c29fb4a96
		S7115_PKronprins		c9fb4f21-16c8-11ea-a5f2-
5	downcast	Haakon[9566]	P6	000c29fb4a96
				c9fb4f21-16c8-11ea-a5f2-
5	upcast	NA	P6	000c29fb4a96
		S7117_PKronprins		9feaee09-17d0-11ea-a5f2-
6	downcast	Haakon[9566]	NLEG15	000c29fb4a96
				9feaee09-17d0-11ea-a5f2-
6	upcast	NA	NLEG15	000c29fb4a96
		S7119_PKronprins		9feaee0b-17d0-11ea-a5f2-
7	downcast	Haakon[9566]	NLEG14	000c29fb4a96
				9feaee0b-17d0-11ea-a5f2-
7	upcast	NA	NLEG14	000c29fb4a96
		S7121_PKronprins		e04512f2-1885-11ea-a5f2-
8	downcast	Haakon[9566]	P5	000c29fb4a96
				e04512f2-1885-11ea-a5f2-
8	upcast	NA	P5	000c29fb4a96
		S7123_PKronprins		bacce506-1923-11ea-a5f2-
9	downcast	Haakon[9566]	NLEG12	000c29fb4a96
				bacce506-1923-11ea-a5f2-
9	upcast	NA	NLEG12	000c29fb4a96
		S/125_PKronprins	- /	bacce508-1923-11ea-a5f2-
10	downcast	Haakon[9566]	P4	000c29fb4a96
			- /	bacce508-1923-11ea-a5f2-
10	upcast		P4	000c29fb4a96
		S/12/_PKronprins		84d4t25d-1a33-11ea-a5t2-
11	downcast	наакоп[9566]	NLEG9	
4.4		N14		84041250-1a55-11ea-a5t2-
11	upcast		NLEG9	
4.2		S/129_PKronprins	D7	еуе/уее2-1аар-11еа-а5т2-
12	downcast	наакоп[9566]	P3	000c29fb4a96

Table 7. A list of probe casts. A complete list of metadata is found in the "TSprobeMetadata.xlsx" (see the section "Data availability" for location).

				e9e79ee2-1aab-11ea-a5f2-
12	upcast	NA	P3	000c29fb4a96
		S7131_PKronprins		23ea582d-1af8-11ea-a5f2-
13	downcast	Haakon[9566]	NLEG5	000c29fb4a96
				23ea582d-1af8-11ea-a5f2-
13	upcast	NA	NLEG5	000c29fb4a96
		S7133_PKronprins		23ea582f-1af8-11ea-a5f2-
14	downcast	Haakon[9566]	P2	000c29fb4a96
				23ea582f-1af8-11ea-a5f2-
14	upcast	NA	P2	000c29fb4a96
		S7135_PKronprins		32ce3c7c-1bfd-11ea-a5f2-
15	downcast	Haakon[9566]	NLEG3	000c29fb4a96
				32ce3c7c-1bfd-11ea-a5f2-
15	upcast	NA	NLEG3	000c29fb4a96
		S7137_PKronprins		66fd2a8c-1c4b-11ea-a5f2-
16	downcast	Haakon[9566]	NLEG2	000c29fb4a96
				66fd2a8c-1c4b-11ea-a5f2-
16	upcast	NA	NLEG2	000c29fb4a96
		S7139_PKronprins		e259cde6-1d35-11ea-a5f2-
17	downcast	Haakon[9566]	P1	000c29fb4a96
				e259cde6-1d35-11ea-a5f2-
17	upcast	NA	P1	000c29fb4a96

Data availability

- The data are stored in the (internal) IMR survey folder. These can be accessed via <u>"\\ces.imr.no\cruise\2019\2019 Tokt Kronprins</u> <u>Haakon\\$2019711 PKRONPRINSHAAKON 9566\</u>"
- The EK80 raw data are placed in "\OBSERVATION_PLATFORMS\TS_PROBE\TS_PROBE_EK80_RAWDATA\"+ Cast+"_"+GUID+"downcast" and "\OBSERVATION_PLATFORMS\TS_PROBE\TS_PROBE_EK80_RAWDATA\"+ Cast+"_"+GUID+"upcast" for the downcast and upcast, respectively, where Cast and GUID are strings as defined in table 1.
 The metadata and EK80 settings files are located under
- "\OBSERVATION_PLATFORMS\TS_PROBE\".
 The processed data are organized in LSSS projects under "\OBSERVATION_PLATFORMS\TS_PROBE\LSSS\"+LSSSproject where "LSSSproject" is the the lsss subdirectory used for the .lsss project files (c.f. Table 1). The LSSS db is placed in "\OBSERVATION PLATFORMS\TS_PROBE\LSSS\LSSS_DB\lsss_DB"

Macroplankton trawling was limited to areas with open water because of safety reasons. Three trawls were eventually taken (Tab. 8). One initial trawl was taken at the beginning of the cruise

before entering the ice-covered part of the arctic ocean. Two additional trawls were taken in the southern part of the transect at stations NLEG 3 (CTD/TS probe station) and at station P1.

Station	Sampling date	Latitude (°N)	Longitude (°E)	Sampling gear
N_Trawl	2019-11-30	80.9880	20.0090	Macroplanktontrawl
P7	2019-12-02	82.0494	28.5958	MIK
P6	2019-12-05	81.5342	30.9438	MIK
P5	2019-12-06	80.5317	34.3821	MIK
P4	2019-12-08	79.8370	34.2088	MIK
P3	2019-12-09	78.7490	33.9987	MIK
P2	2019-12-10	77.5000	34.0019	MIK
NLEG3	2019-12-11	77.0094	34.0649	Macroplanktontrawl
P1	2019-12-13	75.9996	31.2190	MIK
		76.0014	31.2028	Macroplanktontrawl

Table 8. Overview of the sampling efforts with the MIK net and the macroplankton trawl.

During this cruise, version 5 of the Nansen legacy protocol was followed for sampling and processing the trawl and MIK catches. This protocol differs from the previous version in that the MIK net is the preferred sampling gear and that vertical hauls were taken with it instead of V-hauls. This change was made in an attempt to standardize the results and make them more comparable between stations (both within and outside the ice). The disadvantage of the MIK net is that it tends to under-sample larger, more mobile, species. To overcome this problem, the heaving speed was kept high (1.5 m/s instead of 0.7 in earlier versions of the protocol). In addition, the macrozooplankton trawl was used when possible, to assess the potential for under-sampling by the MIK and to get a more complete overview of the species present. Although the protocol also prescribes that all larger and rare (only a few in the sample) specimens should be removed from the sample and stored separately for later analysis, it was decided to share the fish specimens with colleagues for genetic studies (this is a deviation from protocol version 5). Subsamples of the community and the gelatinous fraction were taken for collaboration with colleagues at UiT.

Figure 11. Deployment of the MIK net (midwater ring-trawl) at the A-frame of RV Kronprins Haakon.

Observed general trends

No clear north-to-south gradient was found for the total biomass caught by the MIK net (Fig. 12 A). This is not surprising since the sampling effort (depth of the haul) differed per station. Figure 12B shows that after normalizing for the volume filtered by the net, the biomass concentration in the relevant volume was much lower at P7 (arctic ocean) and P6 (continental slope) than on the continental shelf. However, again these data do not reveal the entire picture. Observations of the echosounder signals during the survey showed that most of the biomass was found in the shallow layer above and around the thermocline. If most of the biomass was concentrated in the upper layer of the water column, increasing the depth of the MIK hauls dilutes this signal. This illustrates the added value of acoustic data to characterize zooplankton abundance. The MIK and trawl sample from P1 had unexpectedly low biomass (based on indications from the TS probe and ship's echosounder). However, a substantial part of the backscatter in the ship's echosounder may have been caused by fish, which may under-sampled by the MIK net. Still, this does not explain the low yield in the macroplankton trawl.

Figure 12. A: Total mass of the biomass caught and the corresponding depth of the vertical haul with the MIK net per station. B: The biomass concentration per sampling event with the MIK net. Volumes were calculated from the surface area of the ring of the net and the sampling depth as indicated by the red line in panel A.

Chaetognaths (arrow worms) were abundantly present at all station. At station P7, they were particularly large and were identified as *Sagitta maxima*. Krill was found at all stations, but their relative abundance in the MIK samples varied considerably throughout the transect. The most northern and most southern stations were influenced by Atlantic water and contained *Meganyctiphanes norvegica*. *Thyssanoessa sp.* were found in all samples and were the most dominant krill taxa at the stations on the continental shelf, apart from P1. Regarding amphipods, the samples were dominated by *Themisto libellula in Arctic waters, whereas Themisto abyssorum* seemed more dominant in waters with an Atlantic influence. Another species that was found at most stations was *Clione limacina*.

Chronological overview per station

The N_Trawl station

An initial macrozooplankton trawl was taken north of Svalbard as far to the east as sea ice conditions permitted (no sea ice). This means that a strong Atlantic signal was to be expected in the trawl catch, since this region is strongly influenced by a branch of the Atlantic current turns East around Svalbard at its northern continental slope north. The ad hoc trawl station was called N_trawl.

Fish was collected from the trawl following the methodology as stipulated in the Nansen Legacy protocols v.5.0. No gelatinous zooplankton was found. Larger Cnidaria were not present, and smaller taxa, such as Ctenophora are often heavily damaged and pushed through the meshes of the macroplankton trawl. No particularly rare species were found, and a large fraction of the recovered biomass consisted of krill, chaetognaths and small fish larvae, especially capelin (*Mallotus villosus*). The larger juvenile fish were separated from the bulk, weighed and length measured. Three species of juveniles were identified as *Sebastes sp., Mallotus villosus* (Figure 13), and *Boreogadus saida*. The *Sebastes* specimens were frozen, while the other two species were shared with a colleague for genetic analyses.

*Figure 13. Juvenile capelin (*Mallotus villosus) *from N_trawl station.*

As can be expected from Atlantic waters, *Meganyctiphanes norvegica* was fond in the sample. The exact species composition will be determined from a subsample that was fixed with buffered formalin 4%.

Process station P7 (Arctic Ocean)

Process station P7 had sea ice with thickness varying between 95 and 120 cm. The MIK net was deployed from the A-frame just after the deployment of the TS probe for acoustic measurements. It was lowered to 1000m depth at a descent speed of 0.3 m/s to avoid that the net would turn inside out or coil up. To reduce the effects of net avoidance behaviour the net was pulled up at a speed of 1.5 m/s. Considering that a heavy weight (~15-20 kg; shackle) was

attached to the cod-end, the ascent was initiated at a lower speed which built up to the final 1.5 m/s in 1-2 minutes. Filtered volumes were calculated based on the wire length.

Figure 14. Size determination of specimens picked out from the MIK sample at P6.

The biomass that was retrieved from the net consisted for a considerable part of chaetognaths, krill, amphipods (*Themisto sp.* and deep sea species that will be identified later), and gelatinous zooplankton. The gelatinous zooplankton, and rare and large specimens were picked out from the sample to be weighed and measured separately. Among the pickouts were *Sagitta maxima* (large chaetognath), *Himenodora sp.*, isopods that need further identification, and a few specimens of *Clione limacina* (Figure 14). Apart from a surprised *Sebastes* of ~700g, no fish or fish larvae were found in the sample. The *Sebastes* specimen was shared with a colleague. The total biomass without the fish amounted to ~200g. Apart from the gelatinous zooplankton, all pickouts were frozen. The reason that the gelatinous zooplankton was not preserved, is that it was too much damaged by handeling it. For the other stations the net content was put in water after collection, to avoid this damage and to facilitate isolation of the gelatinous fraction.

Process station P6 (slope)

The MIK sample from P6 (800-0 meters sampling depth) contained *Thysanoessa* species as dominant krill taxa, although some *Meganyctiphanes norvegica* specimens were picked out as well. *Themisto abyssorum* was the dominant amphipod. Among the isolated specimens were *Hymenodora sp., Aucerius holmii, Clione limacina, Cyclocaris guilemi, Euchaeta barbata* (to be confirmed), and one *Sebastes* specimen. Gelatinous zooplankton was isolated from this MIK as well. Among the identified species were *Aglantha digitale* and *Mertensia ovum*. Species identification of the gelatinous fraction was done by Anette Wold and Amalie Keck.

Figure 15. Selection of Ctenophora from the MIK sample at station P6.

Process station P5 (continental edge)

At station P5, krill consisted largely of *Thysanoessa inermis*. Presence and contribution of *Thysanoessa longicaudata* (and potentially *Thysanoessa raschii*) will be investigated later on a subsample fixed with buffered formalin. A few Themisto abyssorum specimens were isolated from the sample. The bulk of the amphipods in this sample was *Themisto libellula*. Among the isolates were also two fish larvae that need further identification, *Calanus hyperboreus*, one *Apherusa glacialis* individual, *Euchaeta barbata, Paraeuchaeta sp.*, an ostracod, and a number of Ctenophora among which *Aglantha digitale* and *Sarsia* sp. (Wold and Keck, pers. comm.).

Process station P4

The MIK sample of this station showed a high biomass fraction of *Calanus hyperboreus*, *Themisto libellula*, and *Thysanoessa inermis*. It also contained a number of *Clione limacina* specimens. Apart from the gelatinous zooplankton, that is isolated for genetic analyses, no specimens were isolated from this sample, given that all were in sufficient quantities present to take representative subsamples for metabarcoding and fixation in buffered formalin (later species identification). The gelatinous zooplankton represented 8% of the biomass at station 4, and

consisted of *Euphysa sp.*, *Beroe sp.* and species that need further identification.

Figure 16. The complete MIK sample from station P4. The dominant pink colour is caused by Calanus hyperboreus and to a lesser extent by Thysanoessa inermis. The larger amphipods are all Themisto libellula.

Process station P3

Themisto libellula was by far the largest biomass fraction at this station. Quite some individuals were carrying eggs. A smaller biomass fraction consisted of different species of copepods, *Thysanoessa inermis* and *Clione limacina*.

Process station P2

Process station P2 was similar to P3 in the sense that *Themisto libellula* represented the bulk of the biomass. Within the krill fraction *Thysanoessa inermis* and *T. longicaudata* were identified. In addition, *T. raschii* may have been present, since the typical spine on the tail of *T. inermis* and the longer final tail segment of *T. longicaudata* were not visible in these individuals. Further identification is necessary.

Figure 17. Thysanoessa spp. isolated from the P2 MIK sample.

Macroplankton trawl at NLEG 3

At CTD / TS probe station NLEG 3 a macroplankton trawl was taken in the scattering layer at ~100 m. The sample weighed ~5.3 kg and contained among others *Cyanea capillata*, capelin larvae, a number of amphipods that need further identification, and a large fraction of krill (mainly *Thysanoessa sp.*), *Themisto libellula*, *Clione limacina* etc. Gelatinous zooplankton was also isolated from this sample but considering the amount, it was difficult to obtain a qualitative estimate of the weight (difficult to remove all the water).

Figure 18. Largest Cyanea capillata specimen from the macroplankton trawl at NLEG 3.

Process station P1 (trawl and MIK)

Station P1 was in Atlantic water masses. In contrast to what the echosounder signals suggested, the MIK and trawl catches were modest. *Themisto abyssorum* dominated over *T. libellula*. Both *Meganyctiphanes* and *Thysanoessa* species were present but in low abundance. Among the isolated specimens were two *Pasiphaea* individuals. One of them carried eggs but seemed to be in a bad shape. This will be verified later in the lab. From the trawl, small jellies were isolated which represented 4% of the total weight.

Figure 19. Pasiphaea sp. with eggs. The eggs seem to suffer from a fungal infection.
RF3 T3-1.3 Stable isotopes, fatty acids & HBIs of POM, zooplankton & fish *Anette Wold (NPI), Amalia Keck (NPI), Julia Giebichenstein (UiO) and Robynne Nowicki (UNIS)*

Purpose

Stable isotopes, fatty acids, and HBIs of POM and main zooplankton taxa will be used to study coupling/de-coupling of sympagic and pelagic primary and secondary producers. In addition, fatty acids (together with C/N ratios) will be used as a measure of food quality for the planktonic grazer communities and will be linked to on board grazing experiment.

Description of work

POM

Stable isotopes, fatty acid, and HBI samples have been taken for POM from the Chl max from stations P1, P2, P4, P5, P6 & P7 and from the bottom 10 cm of the ice core at two ice stations (DEEP ICE & P5 ICE). We filtered between 2-3L from Chl max in order to get enough material, three replicates were taken for each sample type. For the ice core we were restricted to one replicate due to very little biological material.

Zooplankton

Samples for all three parameters were also sampled from the main macro- and mesozooplankton taxa using MIK net 1500 μ m and Bongonet 180 μ m. This work was done in collaboration with the Ecotox group (Julia Giebichenstein and Robynne Nowicki). Stable isotopes will be analysed by Julia Giebichenstein, UiO while fatty acids and HBI will be analysed by Doreen Kohlbach, NPI. The water mass was quite homogenous at all stations and samples were taken from the bottom to the surface. At some stations additional samples were taken from surface waters if time permitted.

Gear Type	Station	Depth	Taxon
Macroplankton		95m	Thyssanoessa spp.
trawl			Themisto libellula
			Sagitta elegans
MIK-net 1500 µm	DEEP-ICE	1000-0m	Calanus finmarchicus
Bongonet 180	/ P7	500-0m	Calanus hyperboreus
μm		100-0m	Paraeuchaeta glacialis
			Cyclocaris guilelmi
			Themisto abyssorum
			Themisto libellula
			Thysanoessa spp.
			Clione limacina
			Sagitta elegans
			Aglanta digitale
MIK-net 1500 µm	P6	800-0m	Calanus finmarchicus
			Calanus glacialis
			Calanus hyperboreus
			Paraeuchaeta norvegica

Table 9. Overview of fatty acid & HBI samples (overview of the stable isotope samples is in the Ecotox section).

			Hymenodora glacialis
			Themisto abyssorum
			Themisto libellula
			Thysanoessa spp.
			Clione limacina
			Sagitta elegans
			Mertensia ovum
			Ostracodes
			Eusirius holmii
MIK-net 1500 µm	P5	120-0m	Calanus glacialis
			Calanus hyperboreus
			Themisto libellula
			Clione limacina
			Sagitta elegans
MIK-net 1500 µm	P4	236-0m	Calanus glacialis
			Calanus hyperboreus
			Themisto libellula
			Thysanoessa spp.
			Clione limacina
			Sagitta elegans
MIK-net 1500 µm	P2	160-0m	Themisto libellula
Macroplankton	NLEG3	100-0m	Themisto libellula
trawl			Clione limacina
MIK-net 1500 µm	P1	300-0m	Aglanta digitale
Bongonet 180		300-0m	Paraeuchaeta glacialis
μm			Thyssanoessa spp.
			Sagitta elegans
			Meganyotiphanus norvegia
			Themisto abyssorum
			Calanus finmarchicus
			Metridia longa

RF3 - T3-2.2. Measure how current environmental settings drive the phenology of primary and secondary production, and test how changing conditions may affect these seasonal patterns

Christine Gawinski (UiT) (PI Camilla Svensen, UiT)

The goal of this task is to characterize how current environmental settings drive the seasonality of copepod production. To meet this goal mesozooplankton productivity will be determined experimentally for selected key-species through egg-production/egg-hatching incubations in different seasons, representing species with contrasting life-history traits and reproductive strategies in open and ice-covered waters. Assuming that female copepods allocate their

ingested carbon into egg production rather than into growth, the specific egg production rate can be used as an estimate of the production of the population. The focus during the cruise in November/December 2019 was on *Calanus hyperboreus*, *Calanus glacialis*, *Oithona similis*, *Oncea borealis* and *Metridia longa*. To assess how population dynamics vary across space, egg incubation experiments were set up at three stations, namely P7, representing Arctic conditions (for *C. hyperboreus* and *C. glacialis*), P4, based on the shelf (for *Oithona similis and Oncea borealis*) and P7, representing Atlantic conditions (for *Metridia longa*).

30 female *Calanus hyperboreus* were collected with a Bongo 64 μ m net at station P7 and were incubated separately in 15 ml sterile filtered sea water in small petri dishes at -1.5 °C in situ water temperature. The animals were incubated for a total of 288 hours. Every 24 h the produced eggs were counted and transferred to a new petri dish to check for hatching success. In addition, 20 *C. hyperboreus* and 18 *C. glacialis* of Konrad Karlson's respiration experiment were incubated over 77 hours for egg production. *C. glacialis* was incubated in 70 ml 64 μ m screened sea water in spawning chambers equipped with a screened partition that allows the eggs to sink away from the female. After the incubation time, the produced eggs were counted.

30 female *Oithona similis* were collected with a Bongo 64 µm net at P4 and were incubated in 12-well culture plates at -1.5 °C in situ water temperature. At P7 and P1 no females with eggs were found. The experimental animals were photographed in the first 48 h, to determine the prosome length and clutch size of each female. The incubation chambers were checked every 12 h for newly hatched nauplii. In case of a hatching event the exact hatching time and number of hatchlings was noted and the nauplii were removed from the incubation chambers. The duration of the experiment was 156 h. Station P4 was the only station were 16 female *Oncea borealis* with egg sacks were found. These individuals were incubated following the protocol for egg-carrying copepods for 156 h. At station P1 30 *Metridia longa* were collected and incubated at 2 °C in situ water temperature for 72 h following the protocol for free-spawning copepods. In addition, community samples were taken with a Bongo 64 µm net at station P7, P6, P5, P4 and P1 and fixed in Ethanol to later analyse female-egg ratio. At station P6 numerous nauplii and "sphere"-shaped green balls were found in the water. Samples for DNA analyses were taken and stored in Ethanol.

Preliminary results

At station P7 a total of 70 nauplii hatched from 12 of the 30 female *Oithona* (40 % hatching rate). The maximum number of nauplii per hatching event was 16 nauplii. The earliest hatching event occurred after 12 h and the last hatching event after 156 h.

Calanus hyperboreus showed a hatching success between 33 – 99 %, the average hatching success was 53.5 %. The minimum number produced per female were 84, the maximum 334, with an average of 190 eggs per female. Overall,20 of the 30 females produced 3450 eggs, with one of the copepods producing twice after a period of 10 days. Every day of the 12 days incubation at least one copepod produced eggs. The average hatching time was 8 days, in total 913 nauplii hatched.

All *Oncea borealis* had all their eggs intact after the incubation period of 156 h, without any hatching event occurring.

Metridia longa and Calanus glacialis did not reproduce.

The *Oithona similis* and *Oncea borealis* incubations will be transferred to UiT to continue the experiment over Christmas.

The timing of the reproductive cycle will be determined across the annual cycle based on the set of four seasonal cruises, one already conducted in August and two more to come.

Food web interactions

To investigate *Oithona*'s position in the food web, samples for stable isotope and fatty acid analyses were taken at each of the three process stations. At station P7, P4 and P1 three times 50 *Oithona* were picked for stable isotopes and fatty acid analyses and frozen at -80 °C. To investigate a possible top down control of *Oithona* on the microbial food web, a grazing experiment was conducted in collaboration with Lise and Hilde from the University Bergen. In addition to their incubations of 0.8 μ m, 3 μ m and 90 μ m filtered sea water, 20 *Oithona* were added in three replicates to 1 l of 90 μ m filtered sea water. To compare the feeding strategies of *Oithona* with that of larger copepods, a treatment with three *Calanus sp.* was added in three replicates. All *Calanus* at station P4 were males. Samples were incubated for 6 days, after which each copepod was removed from the sample to be photographed (size and developmental stage determination, dead/alive). The grazing experiment was performed at two stations, namely P7 and P4, at the same temperatures as the egg incubation experiments (-1.5 °C).

Due to troubles with the incubator that froze half of the samples at station P7, the first grazing experiment failed. Furthermore, the door of another incubator broke off during the cruise but was repaired by the crew. It is to note that the door of the third incubator opens by itself easily and should be secured with tape.

At stations P7 and P6 a grazing experiment on nauplii was set up. In total the grazing impact of 7 potential predators, namely *Metridia longa*, *Oithona similis*, *C. hyperboreus*, *C. glacialis*, *Themisto sp.*, arrow worms and *Paraeuchaeta sp.* on copepod nauplii were evaluated. To do so 3 times 50 nauplii were picked, transferred into 100 ml sterile FSW and one predator (exception 5 *Oithona*) was added. The grazing experiment was run for 48 h and fixed in formaldehyde.

A trial to measure *Oithona similis* respiration was performed together with Konrad, but the animals were too small to see any difference from the control, even when adding 7 animals.

RF3 - T3-3.1; 4.2. Estimate ranges of annual production along environmental and latitudinal gradients (3.1) and Trophic ecology of key zooplankton (4.2)

Angela Stippkugel (NTNU)

Experiments for selective grazing of micro- and mesozooplankton were conducted on board RV Kronsprins Haakon along a south-north gradient in the Barents Sea at three process stations

(P1, P4 and P7) that were assigned as experimental stations. Contrary to the cruise in August 2019 (AeN2019706, SSQ3), the transect was processed from the most northern station P7 to the most southern station P1 due to the final destination Tromsø.

To set up experiments one to two CTD casts were taken from 20 meter depth that was assigned as deep chlorophyll maximum (DCM) alternative: i) 20 liters of seawater were collected for the dilution treatment either from a first CTD cast to prepare 0.2 µm filtered seawater or from seawater that wsa processed by Anna Vader through 0.2 µm filters for metabarcoding and ii) up to 50 liters of seawater were collected from a second CTD cast for four seawater treatments. To prevent delicate organisms from damages seawater was sampled from the CTD by means of the funnel-transfer technique (Loeder et al., 2010) and meanwhile pre-screened through a 180 µm sieve to exclude mesozooplankton. Filtered and unfiltered seawater was stored in ambient temperature until use. In addition, a Bongo net with two times 64 µm mesh sized nets was taken to sample mesozooplankton from the integrated water body (0-100 m) at P7 as well as P4. Due to bad weather conditions, organisms were sampled with a Multinet through the moon pool of KH at P1. The water was sampled for organisms from the bottom to the surface. Due to low catch densities, all depth were pooled except for the upper 50 m, because of contaminations from the vessel. Cyclopoid copepods Oithona spp. (mixture of O. similis and O. atlantica) and calanoid copepods Calanus spp. (mixture of C. glacialis and C. finmarchicus) were selected using a dissecting microscope (Leica M205C) in the chilled room 301 and stored in filtered seawater of ambient temperature thereafter.

Two-point dilution experiments (Morison and Menden-Deuer, 2017) modified after Landry and Hassett (1982) were set-up using the collected seawater from the CTD casts. By means of dilution experiments, the phytoplankton net growth rate μ and the instantaneous growth rate μ_0 excluding the grazing impact of micro- and mesozooplankton can be calculated. As microzooplankton grazing pressure can have a strong influence on the phytoplankton standing stocks (Irigoien et al., 2005), effects obscured by grazing pressure are likely to become visible in μ_0 .

Dilutions of 20% were set-up in 2.5 liter carboys that contained a mixture of unfiltered to sterile filtered seawater in a 2:10 ratio. 100% treatments contained undiluted seawater with natural phyto- and microzooplankton communities. In addition, two treatments using 100% unfiltered seawater with i) around 50 *Oithona* spp. and ii) 4 *Calanus* spp. were added as mesozooplankton grazer treatments. The 20% dilution served as a control for phytoplankton growth since the number of grazers is considered as neglectable. A control treatment was added with extra nutrients (f2 medium) to account for nutrient depletion in natural seawater in different seasons.

Incubation bottles were set up in triplicates and placed in a dark cold room adjusted to *in-situ* light and temperatures conditions (between -1.5 to 2 °C). Squared and transparent 2.5 litre plastic bottles were used for the incubations and placed horizontally in a shelve at all stations. Manual rotations from time to time prevented the cells from settling to the bottom. Bottles were incubated for up to 56 hours to account for slow metabolic processes during the polar night season.

Growth rates of phytoplankton will be obtained using pigment measurements and phytoplankton counts. The phytoplankton net growth rate μ will be calculated using an

exponential growth model (Landry and Hassett, 1982). To account for total grazing and selective grazing patterns of micro- and mesozooplankton, pigment samples before and after the incubations will be compared and phytoplankton and microzooplankton cell counts obtained using Uthermöhl sedimentation and inverted microscope techniques. Nutrient concentrations before and after incubations will be measured. In addition to the quantification of prey items and biomass, stoichiometry (C:N:P) will be measured.

T3-1; T3-2 Timing of critical biological processes and phenology of life cycles (3-1), Estimate ranges of annual production along environmental and latitudinal gradients (3.1)

Konrad Karlsson (UNIS) and Janne E. Søreide (PI, UNIS)

Respiration is an important estimate of biological activity and closely connected to the organisms' life history. This experiment is aimed to measure respiration and the main factors that affect respiration on an individual level.

Copepods were sampled from different depths, and with different nets in an unstructured manner (bongo, MIK, multinet, and WP3) to get sufficient number of zooplankton in good health to measure their respiration to estimate their metabolism (activity) and carbon need in winter. Measurements were taken on individual level of five different species of three different life stages: *Calanus finmarchicus*, *C. glacialis*, *C. hyperboreus*, *Metridia longa*, *Paraeuchaeta* spp., and C4, C5 and C6. The copepods were sampled at stations P1, P3, P4, P5, P6, and P7, but most of the measurements were based on individuals from P7. A picture was taken of each individual used for single-individual respiration. From the pictures morphological measurements of prosome length, prosome area, and lipid sac area, will be taken later on. The majority of the individuals were, after the photography, placed in tin cups for later measurements on dry weight and C/N ratio. In addition, individuals were incubated to measure their fecal pellet production, by putting one individual in a flask with seawater. Initially it was planned to measure pellet production on all the individuals that had their respiration measured. However, this experiment was excluded after a while, because, of the 60 first incubated individuals, none of them produced any pellets.

The data analysis will take place during December and January. Here, the aim is to see which covariate that best explains respiration, out of prosome length, prosome area, lipid sac area, species, life stage, station, depth, C/N ratio and dry weight.

RF3, T4-4.1, Molecular characterization of diets of small invertebrates

Snorre Flo (UNIS) with supervisors Anna Vader (UNIS), Bodil Bluhm (UiT), Camilla Svensen (UiT) and Kim Præbel (UiT)

The main objective of the PhD-project is to describe the diets of small meiofauna and mesozooplankton by use of metabarcoding. Since most of the work will be conducted in a laboratory, this report covers only the sampling procedures and some of the rationale behind.

Summary

Sediment samples with benthic meiofauna were obtained from P6, P4 and P2. Sea ice meiofauna were obtained from P7 and P5. Mesozooplankton were obtained from all process stations (P1-P7). Sampled animals were fixed in ethanol and kept cold (-20°C). In contrast to sampling during SSQ3, the pelagic mesozooplankton sample was split in two halves. One half was fixed immediately, and the other was exposed to a 48 h incubation in filtered sea-water to provide a subsample of animals without gut-content. The starved animals are to be used as a control for DNA molecules that are derived from the environment (eDNA) and symbiotic parasites and mutualists.

Targeted organisms

Small copepods such as the cyclopoid *Oithona similis*, harpacticoid *Microsetella norvegica* and calanoid *Microcalanus pusillus* have been identified as candidate species. They occur frequently and abundantly in relevant literature, have different feeding strategies (herbivory, carnivory, detritivory), feeding modes (filter feeding, ambush predatory, particle attachment), yet their diets remain undescribed by means of metabarcoding. Species selection from sea-ice meiofauna are less certain but nematodes (ex. *Cryonema spp.*), rotifers (ex. *Synchaeta spp.*) and harpacticoids (ex. *Tisbe furcata* and *Harpacticus superflexus*) seem likely candidates at the time of writing. From the sediment, nematodes seem the most viable candidates, much due to their dominance in deeper waters, but these species/genera will be chosen at the time of analysis. The full list of preliminary identified candidate species is found in Version 5 of the Sampling protocol. A more comprehensive overview of previous literature on their feeding modes, prey, and gene accession IDs (18S, CO1) can be requested from Snorre.

Sampling of meiofauna

Sympagic meiofauna were isolated from ice-cores at process stations P7 (deep-ice) and P5 (shallow-ice). Ice-cores indended for "Meiofauna" were thawed and meiofauna were handpicked under a microscope by Miriam Marquardt. The samples are to be further analysed at UiT, and shared with the writer at a later date to conduct diet analyses. For benthic samples, three replicates with two scoops of surface sediment (~20 mL) were obtained from stations P6, P4, P2 (only two replicates). Samples were fixed in ethanol (96%) and stored at -20°C. Benthic meiofauna will be identified and analysed at a later stage.

Sampling of small mesozooplankton

Small mesozooplankton samples were obtained by vertical hauls using a Bongo-net (64 μ m). The hauls were started as deep as possible, but at 1000 m at the P7 deep station. Approximately half of the sample was immediately sieved on a 64 μ m mesh, and large zooplankters were picked from the sieve and discarded. The sample was fixed in ethanol and stored cold (-20°C). The other half was transferred to a sorting tray, in which all large zooplankton were handpicked and discarded. The remaining solution was transferred to an acid-

washed glass bottle, filled with sterile filtered seawater (FSW, 0.22 μ m) and incubated for 48 hours in darkness and approximately *in situ* temperature (~0.1-1.0°C). After incubation, the sample was filtered across a 64 μ m mesh, fixed in ethanol (96%) and stored at -20°C.

C. finmarchicus spinoff-project

A spinoff-project was initiated after observations by ROV and shallow net-hauls indicated that the under-ice meseozooplankton community of P7 were highly active, and possibly feeding. The principal component of this community appeared to be *C. finmarchicus*. Thus, *C. finmarchicus* were sampled from the upper 50 m surface layer at P7. 100 individuals were isolated for gut-content (GC) analysis in pools of 5 individuals per replicate (20 replicates). An additional 30 individuals (6 replicates) were transferred to small glass vials (25 mL) with sterile FSW (0.22 μ m) for a gut evacuation incubation (48 h, 0°C, darkness). After 48 h, starved individuals were isolated in ethanol (96%) and stored at -20°C. Incubation-water from each replicate was filtered over Sterivex filters (0.22 μ m) to capture evacuated organic matter (i.e. gut content DNA). Sterivex filters were sealed and stored at -80°C. A separate protocol has been prepared and may be requested from Snorre.

RF3 - T3-2.2; 4.4. Measure how current environmental settings drive the phenology of primary and secondary production, and test how changing conditions may affect these seasonal patterns (2.2) and Sympagic-pelagic-benthic coupling (4.4) *Yasemin V Bodur and Martí Arumi-Amargant (UiT)*

Tasks T3-2.2 Measure how current environmental settings drive the phenology of primary and secondary production, and test how changing conditions may affect these seasonal patterns and T3-4.4 Sympagic-pelagic-benthic coupling

Sediment trap deployment and sampling

To assess the vertical flux at the P-stations along the cruise transect, short-term sediment traps (KC-Denmark) were deployed 48 h (Table 10). Due to the bad weather conditions and limited station time, only 3 deployments could be accomplished. At P7, 4 trap cylinders (1.8l volume) were deployed at 30, 60 and 200m and 2 cylinders at 40, 90 and 120m, respectively (Figure 1). At P7 and P4, bottles for the assessment of primary production were deployed at 5, 20, 40, 60, 90m and Chl a max (see report from M. Amargant-Arumi). Due to the shallow depth of P4, no cylinders were deployed at 200m and 4 traps were deployed at 120m. Prior to the deployment, the cylinders were filled with filtered deep water (below 200m) from the corresponding station or from a prior station to make sure that the water within the cylinders had a higher density than at the sampling depths. An anchor of 35kg was fixed to the bottom of the mooring to keep it upright in the water column. To keep the traps neutrally buoyant in the water, 3 large buoys were attached at 10 and 5m (Figure 20). A flagged pole equipped with an AIS beacon was used to mark the location of the mooring and to relocate its position for recovery. A small buoy with a long rope was attached to the pole for the recovery of the mooring. At all stations a chain was

added between 10 and 5m to protect the rig from sea ice, while at P7 and P5 the mooring was deployed on an ice floe where it was attached by an additional chain on two metal poles that were hammered into the ice (Figure 21). On P5, the sediment trap was deployed by hand with a tripod in a pre-drilled hole in the ice.

Table 10. overview of sediment trap stations during AeN SSQ3 with deployment and recovery time, and the total time of deployment. * the cylinders from 90 and 120m depth got mixed up during the sediment trap retrieval, therefore one sample is a 50:50 mixture between 90m and 120m depth, and the other sample was reduced to half of the original volume.

Station	Deployment	Recovery	Total time	Deployment	Deployment depths
	time	time	of	conditions	(m)
			deployment		
P7	01.12.2019	03.12.2019	41 h 45	On an ice	2 cylinders: 40, 90, 120
	23:45	17:30	min	floe	
					4 cylinders: 30, 60, 200
P5	07.12.2019	07.12.2019	12 h 15	Underneath	2 cylinders: 20m
	00:30	12:45	min	the ice	4 cylinders: 5, 10, 30
P4	08.12.2019	09.12.2019	27 h 46	Under ice	2 cylinders: 40, 90*
	03:44	07:30	min	conditions,	4 cylinders: 30, 60,
				in the water	120*

Figure 20. Scheme illustrating the structure of the mooring and the sampling depths of the sediment traps at open water conditions. At 30m, incubation bottles for primary production were deployed when the Chl a max was already covered at another depth.

Figure 21. Deployed sediment trap under ice conditions (left) and on an ice floe (right) during SSQ3 in August 2019.

Sampling largely followed the Nansen Legacy sampling protocol version 5, chapter 8. Upon recovery of the sediment traps, the cylinder content of each depth was pooled and partitioned (unfortunately, at P4 the cylinders from 90m and 120m got mixed up). From each depth, water was filtered for triplicate POC/PON analyses on pre-combusted GF/F filters and for size

fractionated algal pigments (total Chl a (in triplicates on GF/F filters) and Chl a >10µm; on Polycarbonate filters) and water samples were taken for microscopic counts of fecal pellets and phytoplankton communities. Filters for algal pigments were immediately stored in Ethanol at 4C and measured with a fluorometer on board ideally after 12-24 h. Fecal pellets were preserved in a hexamine-buffered 4% Formaldehyde solution and phytoplankton communities in GA-Lugol. At 30, 60 and 200m depth additional triplicate samples were filtered for stable isotopes (pre-combusted GF/F) and single samples were filtered for particulate biogenic silica (bSi; on 0,8µm polycarbonate filters), HPLC and IP25 analyses (GF/F). Approx. 500ml was filtered for DNA analyses through sterivex filters. DNA, IP25, HPLC and stable isotopes samples were stored at -80C. POC/PON and bSi were stored at -20C.

RF3 - T3-1.1; 1.2; 4.3; 4.4. Characterize and quantify biota in the seasonal ice zone (1.1), relate environmental conditions to biological communities (1.2), and explore the sympagic-pelagic-benthic coupling and trophic ecology of benthos (4.4)

Arunima Sen (Nord University), Eric Jorda Molina (Nord University), Thaise Ricardo de Freitas (UiO) and Silvia Hess (UiO)

During Q4, our team contributed primarily to the Nansen Legacy RF3 tasks T3-1 and T3-4, specifically T3-1-1, T3-1-2, T3-4-3 and T3-4-4. The gear used to collect samples included a demersal Campelen trawl and a box corer (50×50 cm).

Aims

The aims of the group were to:

- 1. **T3-1-1: Characterize and quantify biota in the seasonal ice zone** of the northern Barents Sea and adjacent Arctic Basin by sampling sediment communities for <u>biodiversity and abundance/biomass assessments</u>; specifically microbes (PI Lise Øverås, UiB), benthic foraminifera (PIs Elisabeth Alve, and Silvia Hess UiO, with PhD student Thaise Freitas), multicellular meiofauna (PI Bodil Bluhm) and macro-infauna (PIs Paul Renaud, APN and Henning Reiss via PhD student Eric Jorda Molina, Nord University).
- 2. **T3-1-1: Characterize biota in the seasonal ice zone** by collecting <u>voucher material of benthic</u> <u>macro- and megafauna to be archived at the UiT Museum</u> for a legacy of physical material of the project (PIs Bodil Bluhm, Andreas Altenburger UiT)
- T3-1-2: Relate environmental conditions to biological communities by sampling for sediment properties (grain size), indicators of food availability (total organic carbon and nitrogen, sediment pigment amount) and food sources (
 ¹³C/¹³C/¹⁵N, pigment composition) (PIs Elisabeth Alve and Silvia Hess, UiO and Paul Renauld, Akvaplan-niva)
- 4. **T3-4-4:** *Sympagic-pelagic-benthic coupling* by sampling representative benthic invertebrate taxa and demersal fishes for <u>stable carbon and nitrogen stable isotope</u> analysis (PIs Bodil Bluhm, UiT and Lis Jørgensen, IMR, for shared PD to be hired)

- 5. **T3-4-4:** *Sympagic-pelagic-benthic coupling* by conducting <u>sediment community</u> <u>respiration</u> <u>incubation experiments</u> onboard (PI Paul Renaud, APN, with PD Arunima Sen and PhD student Eric Jorda, Nord Univ.)
- 6. **T3-4-4:** *Sympagic-pelagic-benthic coupling* by sampling sediment for <u>IP₂₅ analysis</u> and biogenic silica as indicators of ice algal food available to the sediment communities (PI Marit Reigstad with PhD student Yasemin Bodur, UiT).
- 7. **T3-4-4:** *Trophic ecology of benthos* by sampling benthic <u>meiofauna for molecular</u> <u>characterization of diets of small benthic invertebrates</u> (PI Anna Vader, with PhD student Snorre Flo, UNIS/ UiT).
- 8. *RF1 T1-3: To help to interpret changes in sea-ice distribution, paleoproductivity, and related environmental conditions during the past 2 kyrs* by using results gained by living benthic foraminiferal assemblage and associated parameter analyses of surface and sub-surface sediments (Elisabeth Alve with Thaise Ricardo de Freitas and Silvia Hess)
- 9. *RF2 T2-1.2 Ocean acidification effects on the mobility of particulate and dissolved organic carbon (POC, DOC), essential trace elements (micro nutrients) and heavy metals* by sampling sediment sub-samples for trace element analysis by sequential sediment extraction (PI Murat Ardelan with PhD Stephen Kohler).

Sampling sites and strategy

Sampling largely followed the Nansen Legacy sampling protocol version 5. We sampled demersal fish and epibenthos at a site south of P2 and P1 from a single ~15 min Campelen 1800 trawl haul. Bottom trawl sampling at P7, P6, P5, P4, P3, and P2 was not possible due to sea ice appearance. Details on the trawling procedure are described in the fish section of protocol version 5. Benthic organisms were picked from the trawl haul both on deck and in the fish lab, identified to the highest practical taxonomic resolution, and either frozen (for later stable isotope analysis and wet weight-to-carbon analysis), or fixed in formalin or 70% ethanol (for the museum collection, depending on taxon), or 96% ethanol (to allow later molecular analysis of museum archived specimens).

Sampling for sediment parameters, organismal abundance and diversity was done at stations P2, P4, and P6 using a 50 x 50 x 50 cm giant box core (owned by APN). At all these sites three box core replicates were taken for further sub-sampling; except for P2 where only 2 successful box corer deployments were recovered. Sediment cores for respiration experiments were collected at P4 and P6.

Station P7 (3.-4. December 2019)

Four box core deployments failed at P7 due to technical problems (unclosed box corer) and sediment conditions. In approx. 15 cm sediment depth a coarse and compact gravel layer prevented a deeper box corer penetration and longer sediment recovery (Fig. 22). Due to the coarse sediment at the box core base, the core was not properly closed/sealed and the surface water and sediment was washed out. No quantitative sediment samples were taken; the entire disturbed surface area was scooped off, washed and preserved for stable isotope analysis of

specific macrofauna (>1 mm) taxa. The location for box coring for P7 was not exactly the same as in the cruise Q3 and some patchiness in the sediment structure in the deep basin around P7 might be the responsible for having had failure of good samples during Q4. For the next cruises Q1 and Q2 we suggest trying to sample at the same exact location as during Q3 for P7.

Figure 22. Gravel layer at the base of the box core at site P7. The surface water drained off and the sediment surface layer was disturbed. No quantitative sampling was done.

Station P6 (5.-6. December 2019)

Three box core replicates were successfully recovered. While bringing the corer of the first deployment on board, it was banging against the boat back. This resulted in turbid surface water. Sediment surfaces of deployment 2 and 3 were perfectly preserved had clear surface water on top and some macrofauna was visible (Fig. 23). Sediments were light brownish, soft and fine grained.

Figure 23. Sediment surface of box core 2 at site P6.

Microbes were sampled in replicates of three (one per box core) with a 4.7 cm diameter core and sectioned into 1 cm layers up to 6 cm. The center of each section was taken out with a 60 ml syringe and the sediment placed into a sterile whirl pack bag and frozen at -80°C. The rest sediment of each section and the lower part of the sub-core (>6 cm core depth) were stored in separate sterile whirl pack bags and kept in a fridge for on-board single cell extraction by Lise Øverås (UiB).

Benthic foraminifera and multicellular meiofauna were sampled in replicates of three with a 5.5 cm diameter core, sectioned into 1cm-layers down to 6 cm core depth, placed into Joni containers and preserved with rose Bengal stained 70% ethanol (2g rB per liter) and stored at room temperature.

Four sediment cores (11.7 cm inner diameter) were taken from each replicate core for incubation and measurement of bulk respiration rates. After the incubation experiment these cores were washed for macrofauna analyses through a 0.5 mm sieve and preserved in 4% formaldehyde seawater solution.

Sediment grain size, TOC, TN and $\delta^{13}C/\delta^{15}N$ samples were sampled in bulk using a 5.5 cm diameter core sectioned into 1cm-layers down to 6 cm in each of the three replicate cores. Samples were immediately stored at -20°C.

Sediment pigment (chlorophyll a, phaeopigments) samples were taken from a 4.7cm sub-core sliced down to 6cm in 1cm-slices and from there on in 2cm-slices down to 10cm core depth. Samples were wrapped in aluminum foil and stored in a -20°C freezer.

To assess pigment composition using HPLC analysis, a single sample from each box core was taken from the 0-2 cm layer using a 60 ml syringe and stored wrapped with aluminum foil at - 80°C as part of a collaboration with the CHAOS project in the UK's Changing Arctic Ocean program.

A surface sediment sample (0-1cm) was taken for IP25 analysis with a 60 ml syringe and stored at -80°C.

One surface scrape each was taken for molecular analysis of diets of selected meiofauna taxa (stored in 96% ethanol at -20°C), and for trace metal analysis from each box core.

Three samples from a single box core were taken from the 0-2 cm layer using a 60 ml syringe and stored wrapped with aluminum foil for incubation of diatom spores (Marti Amargant).

Two spoonful of the sediment surface was scraped off and placed into 15ml falcon tubes and stored at -20°C for measuring trace metals from each replicate box core.

A single sample from each box core replicate was taken from the 0-3 cm layer using a 60 ml syringe. One-centimeter sections were made and placed into Ziploc bags and stored at -20°C for analysis of biogenic silica.

The remaining surface area was sieved through 1 mm mesh and organisms retrieved (mostly polychaetes) were identified to family level where possible and frozen at -20°C for later stable isotope analysis.

Station P4 (9. December 2019)

Three box core replicates were successfully recovered after four deployments. Sediment surfaces of all replicate cores were well preserved, had clear surface water on top and some visible macrofauna (Fig. 24). Sediments were light brownish down to 3 cm core depth. Sediments below were gray and stiff. Many long polychaete tubes from Spiochaetopterus were present in all replicate cores.

Replicate cores were sub-sampled in the same way as at site P6. A new incubation experiment was set up.

Figure 24. Sediment surface of box core 2 at site P4.

Station P2 (11. – 12. December 2019)

Two box core replicates were successfully recovered after five deployments. Sediment surfaces of both replicate cores were well preserved, had clear surface water on top and some visible macrofauna (Fig. 25). Sediments were light brownish down to 4-5 cm core depth. Sediments below were gray and stiff and slightly sandy.

Replicate cores were sub-sampled in the same way as at site P6. No cores were taken for incubation experiments. Instead macrofauna cores were directly sieved (>500 μ m) and fixed in 4% formaldehyde seawater solution.

Figure 25. Sediment surface of box core 1 at site P2.

Station P1 (13. December 2019)

Three box core deployments were conducted at P1. Due to rough sea conditions and high waves the box corer penetrated the sediment at an angle instead of perpendicular to the sediment surface. This resulted in tilted and disturbed sediment surfaces. Surface water was turbid and rocks and grey clay from the underlying glacial sediments were visible on the surface. Additional attempts to collect sediment material were cancelled due to inappropirate weather conditions (Fig. 26). No quantitative sediment samples were taken; the entire disturbed surface area was scooped off, washed and preserved for macrofauna analysis (>1 mm) taxa.

Figure 26. Disturbed sediment surface of box core 1 at site P1.

Respiration incubation experiments

Sediment incubations for measuring bulk respiration rates were conducted with sediment retrieved from stations P4 (330 m depth), and P6 (900 m depth). Both stations had sea ice at the water surface.

At each station where incubations were conducted, about 100L of CTD water was collected early during activities at the station from the bottom and kept in the cold rooms in the dark to keep them at the temperature at which the incubations were conducted. The CTD data from both this year and the year prior were used for determining the temperatures at which incubations would be conducted. Negative temperatures were not possible to achieve in the designated cold rooms, therefore experimental temperatures did not completely match in situ conditions, however, we attempted to mimic seafloor conditions as much as possible while also maintaining observed inter-station variability. One treatment was maintained at ambient water conditions: Treatment 1 (T1). At P6, this treatment was maintained at about 0°C and at P4 temperature was maintained at about 0.5°C. Additionally, one treatment (named treatment 3 or T3) was maintained at higher than ambient temperatures: at P6, temperature was maintained at about 4°C above ambient conditions, to simulate expected warming conditions. For each treatment, 6 replicate cores were maintained.

At P6 and P4, 6 sub-cores (sub-cores were 11.7 cm in inner diameter) were inserted into the sediment of the three box cores, filled with bottom water from the CTD and kept in the appropriate cold rooms. Cores were bubbled for 6 hours to saturate with oxygen following which 15-20 ml of overlying water was taken for quantifying nutrients. Core tops with magnetic stir bars were fixed on, removing air bubbles and connected to electric transformers to keep the bars stirring in order to avoid stratification of the water in the cores. Oxygen measurements were taken every 6 hours via the PreSens Fibox 4 optical sensor system. Experiments were terminated about 66 hours later when oxygen concentrations had decreased. Upon termination,

nutrient samples were taken once more from the overlying water. Cores were sieved on a 0.5 mm sieve and all macrofauna retained were fixed in 4% formaldehyde and rose Bengal. Sediment cores for respiration incubations were given a UUID through the system, but no labels were generated since these cores did not have a physical form after incubations were terminated. However, macrofauna samples, nutrient samples and meiofauna samples (post-incubations) were taken from these cores and all these samples had UUIDs and appropriate labels, with the parent UUID being the generated, but label-less UUIDs for the incubation cores.

Macrofauna observations

Epifauna

Trawls were not quantitatively analyzed during Q4. However, we noticed some differences in the epifauna collected by the trawls at P1 and P2. *Pandalus borealis* and *Sabinea*

septemcarinata shrimp were highly abundant at both stations. The sea cucumber *Molpadia borealis*, soft corals from the family Nephtheidae (*Gersemia* sp. likely), *Ctenodiscus crispatus*, sea urchins and pycnogonids were more abundant at P1. Polychaetas from the family *Flabelligeridae* (*Brada* sp.) and gastropods (mostly Buccinids) were more abundant at P2.

At the two shelf sites (P2 and P4), polychaete tubes of *Spiochaetopterus sp.* were visible on the surface and extended into the clay layer. At shelf stations (P2 and P4) representatives of the polychaete families Lumbrineridae, Maldanidae, Nepthydae and Spiochaetopteridae were quite abundant. Different types of Bryozoans were also present at some cores along the shelf. At P4, a nudibranch and a large brittle star were even recovered in the box cores and used in the respiration experiments.

At the slope at P6, the sediment surface contained clumps of sponge spicules similar as it was found during the cruise Q3 in August 2019. Spionidae polychaetes were also present together with Maldanidae, Ampharetidae and Trichobranchidae individuals. At station P7 the macrofauna observed after sieving with 1 mm sieve was much less abundant than in all other stations, as it was the case during cruise Q3. In this station some representatives of the family Ampharetidae and Terebellidae were present in the samples, as well as 1 individual of the family Opheliidae.

				Station / number incubation	of replicat	es /	' treatments	for		
Sample type	Task	PI/responsible	Institution	P1	P2	Ρ3	P4	P5	P6	P7/Deep Ice
	T3-1-									
Sediment microbes	1	L. Øvreås	UiB	-	2 (6)	-	3 (6)	-	3 (6)	-
	T3-1-									
Meiofauna	1	E. Alve	UiO	1 (1)	2 (6)	-	3 (6)	-	3 (6)	1 (1) 1 (top 5 cm of
	T3-1-	P. Renaud/H.		2 (top 5 cm of						whole box
Macrofauna	1	Reiss, E. Jorda	APN / Nord	whole box core)	8	-	12	-	12	core)
	Т3-1-									
Museum vouchers	1	B. Bluhm	UiT	11	11	-	-	-	-	-
Grain size, TOC/TON,	T3-1-									
d13C/d15N	2	E. Alve	UiO	-	2 (6)	-	3 (6)	-	3 (6)	-
Sediment Chl /	T3-1-								3 (7, 6,	
phaeopigments	2	P. Renaud	APN	-	2 (8)	-	3 (8)	-	8)	-
Sediment pigment	T3-1-	P. Renaud / UK								
compositon	2	CHAOS	APN	-	2 (1)	-	3(1)	-	3 (1)	-
	T3-4-	B. Bluhm / L.								
Organisms ⊠ ¹³ C/ ⊠ ¹⁵ N	4	Jørgensen	UIT / IMR	-	16 taxa	-	21 taxa	-	7 taxa	-
	T3-4-	P. Renaud / A.								
Incubation experiments	4	Sen	APN / Nord	-	-	-	2 T/6 R	-	2 T/6 R	-
	T3-4-	P. Renaud / A.								
Nutrients pre-incubations	4	Sen	APN / Nord	-	-	-	2 T/6 R	-	2 T/6 R	-
Nutrients post-	T3-4-	P. Renaud / A.	APN / Nord	-	-	-	2 T/6 R	-	2 T/6 R	-

Table 11. Overview of stations sampled for each of the different activities. Numbers in parentheses indicate number of sediment layers.

incubations	4	Sen								
	T3-4-	M. Reigstad / Y.								
Sediment IP ₂₅	4	Bodur	UiT	-	2 (1)	-	3 (1)	-	3 (1)	-
	T3-4-									
Meiofauna molecular diet	4	A. Vader	UNIS	-	2 (1)	-	3 (1)	-	3 (1)	-
		M. Adelan / N.								
Trace metals	RF2	Sanchez	NTNU	-	2 (1)	-	3 (1)	-	3 (1)	-
	T3-4-	Y. Bodur/ M.								
Biogenic silica	4	Reigstad	UiT	-	2 (3)	-	3 (3)	-	3 (3)	-

RA-C

AUV operations and risk in the Arctic

Tore Mo Bjørklund (NTNU), Ruochen Yong (NTNU)

Autonomous Underwater Vehicle (AUV)

The objective is to develop and test adaptive algorithms for marine robots in the arctic. The goal of the algorithm is to search for and map temperature gradients, here the polar front was the ideal testing ground. Due to heavy weather and ice conditions in the polar night, there was not a chance to deploy the AUV near the polar front. There was however, a chance to deploy the AUV in Ullsfjorden, near Tromsø (69N 58.679 20E 06.141) on the 16th of December at 13:12 UTC. The mission failed after 31 minutes and two dives due to an unrejected outlier in the Doppler Velocity Logs (DVL) measurement of the vehicles altitude above the seabed. The adaptive planner on board behaved as expected. The work boat on board KPH was used for deployment, and the MOB boat was used for recovery due to overheating of the workboat engine. It was found that neither of the boats were well suited for AUV operations, as their deck space is limited. In addition, they are located on the 4th deck, while the vehicle was kept at 3rd deck. This led to the need for a crane operation in order to get the AUV on board. After recovery, the AUV was carried by hand throught the interior of KPH, this proved unpractical.

Risk analysis of AUV operation

Another objective is to get experience of operating AUV in the Arctic area (harsh environment) and analyze the risk issue that may occur during the AUV operation in this environment.

It is planned that the AUV mission is conducted in the station P1/P2; however, due to the big wave and other bad weather factors (strong wind and low visibility), the task is canceled. The AUV mission is finally conducted in Ullsfjorden, which is close to Tromsø. The LAUV Harold is not equipped with the recovery device on board, and there is no diver platform on the R/V Kronprins Haakon, so the release and recovery of the AUV has to be deployed with the help of small boat. The main risk issues considered in the station P1/P2 is the weather condition. The wave in the P1/P2 was 3-4m, and the swell was also unacceptable for the deployment of the small boat. In addition, since the cruise is in December, there is no daylight during the deployment, which is challenging for the small boat deployment. The low visibility during operating small boat can lead to inappropriate path selection, which can also increase the risk of mission.

The AUV mission in Ullsfjorden starts from around 13:10, December 16, 2019. The R/V was stopped and stayed still against the wind and wave, providing relatively good environment. Two researchers together with two crews were on the small boat, and the whole mission was around 1 hour including test and real operation. The mission fails due to the mistakes when measuring the altitude of AUV above the bed. The fault log will be recorded for the further risk analysis. In addition, due to the high temperature of the engine of the work boat, the deployment met some problems during the release of the AUV, this may pose risk on the AVU mission.

In general, the issues considered in this AUV operation include weather condition, the interaction between R/V and work boat, the AUV itself and also the operator's control.

Eyeball Remotely Operated Vehicle (ROV)

An eyeball ROV was deployed under the ice at P7, on the 2nd of December, approximately 15:00 UTC. Video footage was captured down to 50m depth.

Acoustic Zooplankton and Fish Profiler (AZFP)

An AZFP was deployed from the ice along with a sediment trap near P7(82N03.79 29E04.35) on the 1st of December at 22:30 UTC. It was left drifting with the ice until the 3rd of December 16:00UTC, the time of recovery. In the acoustic data the sediment trap is clearly visible, see Figure 29.

Figure 27. AZFP acoustic data from all four channels (125, 200, 455, 769 kHz). Deployed for 41 hours in the arctic ice between the 1st and 3rd of December 2019.

LOGISTICS

Transport of equipment and samples

The logistic team of the Nansen Legacy project, Håvard Hansen and Simon Bjørvig, provided a guideline well ahead of the first cruise with information and deadlines for sending equipment to cruises, and for return of equipment, cooled samples and frozen samples (-20°C and -80°C). Prearranged transportation helps on both efficiency and costs prior to and after each cruise. Equipment was shipped to Longyearbyen with Bring, and loading the ship in Longyearbyen went smooth and efficient resulting from well-planned work, and good collaboration between the logistics team, the crew and the scientists in Longyearbyen. The Nansen Legacy seasonal Q4

team leaders helped on deck to direct the pallets to the right deck, and cruise participants carried the boxes to the designated labs.

Shipping of samples that required cooled or frozen transport was ordered in advance, including dry ice for transport of frozen samples (-80°C). To be picked up at arrival in Tromsø.

Pallets belonging to UNIS and NPI in Longyearbyen were shipped back with Bring Cargo.

On board communication

Based on the experience from last year cruises, a key task was to address challenges in keeping people updated on ongoing and planned activities, and to keep the station activity plan updated with respect to timing and progress. The vessel is large and the distance from the instrument room at Deck 7 to Deck 3 is long. At Q4 we copied the onboard communication done successfully during the Q3 cruise. Unfortunately, we only had one ship radio available during the Q4 cruise and not two as during the Q3 cruise due to radios being broken.

• Cruise leader and co-lead had 6 hrs shifts to always be present, and to meet often enough to discuss program and respond to any issues regarding practical or overarching character. They planned the overall timing of cruise activities, station work, posted programs and adjusted activities when needed, and had close communication with the bridge, instrument personnel, crew and scientists.

• Station programs were posted and available on all screens in due time, updated continuously, and facilitated good preparations from crew and scientists, and efficient sampling on each station.

• Daily meetings were held after dinner for short science presentations of ongoing work from scientists and cruise leaders, and to share practical information regarding science work, social life and routines onboard.

Station programs

A station program was prepared in Excel, published as a web page on the khfelles-server and updated continuously. This program was available on HDMI13 on the TV screens in all common rooms, on the bridge, labs and cabins. Each screen had to be updated manually (remote control). Adjustments to the program were done in Excel and published as a web page which was updated every 30 sec. Activities were marked green when finished, or red if cancelled or postponed to a later time slot in the program due to technical problems. The availability of plans ~24 hrs ahead and regular updates, resulted in efficient sampling and work during the cruise, as both crew and scientists could plan and prepare for sampling activities, handling of sampling and rest. Helping hands were also provided from those knowing they had some available time in the program. The ability to plan the work was well received on the bridge, among the crew and the scientists. A very handy tool since the program could quickly change due to technical problems with sampling equipment or problems with sea ice in the moonpool etc switching to another task to not lose valuable wire time.

Water budgets

Water budgets were planned in advance to optimize the utilization of the bottles on the rosette. Parameters were distributed on the different CTD casts to optimize co-sampling for related parameters, and early sampling for water needed for experiments. On deep water stations (>3000 m), all deep-water requests were given priority on one CTD cast to avoid repeated CTD to the sea floor.

Sea ice work

Sea ice work were organized to optimize sampling efficiency, and the entire group helped out to support the sea ice team through handling samplings in lab, assisting on the sea ice and as polar bear guards on ice or watches on bridge. Most participants during the Q4 cruise was familiar with sea ice work which was important since at this cruise it was pitch dark 24 hrs.

Sample and data management for legacy

Routines for labelling and logging of samples and metadata for Nansen Legacy were established in 2018 and was well tried out at the previous seasonal Q3 in August 2019. The essential part of this system is that all samples and datasets are labelled with a UUID, and all information about each sample is logged in an excel sheet containing all relevant metadata and standardized parameters. The UUIDs are printed on stickers that can be attached to the samples. The stickers are available in different sizes. Two label printers were set up with a virtual server on the network onboard, so that they could be accessed from both stationary and personal computers. The excel sheet used for logging of sample information is generated using an excel template generator which was made available on the same virtual server along with an excel file checker, UUID generator and relevant documentation (the labelling manual, sampling protocol v4, and lists over the gear and sample types used in the project).

Universally unique IDs (UUIDs) for the individual gear used was assigned by one scientist. Metadata about the gear cast was copied from the cruise logger (Toktlogger v.1.1.2; download function did not work), UUIDs were generated and given, and additional relevant metadata was added (e.g. sample depths, data file names, serial number of instruments). This information was combined in an Excel file and shared in the cruise folder so that the scientists could grab the Parent IDs for their samples and thus did not need to individually acquire metadata about the gear casts. Around 200 gear casts were registered (Appendix A1.1), and around 90 datasets with several samples per dataset were collected and logged during the cruise (Appendix A3.1). Sample and metadata information are added to the Nansen Legacy database which is accessible and searchable through the SIOS webpage. In general, the system for labelling and logging of samples worked well, although several scientists had problems accessing the ship network. This may be related to the fact that the ship computer system is divided into different networks, and that although we should have all relevant access through the network assigned to scientists, this is not always the case. Since our labelling system is placed on a virtual server on the ship network, it is essential that all scientists have easy access. The download function of the cruise logger (v1.2.2) does not work, so information has to be copied into our gear cast log sheet. Until relevant metadata are included in the cruise logger (including generation of UUIDs for each

gear cast) and the download function works, it is necessary to assign one scientist to gather the relevant metadata for each gear cast, assign parent ID and to distribute this information to cruise participants during the cruise.

COMMUNICATION AND OUTREACH

The locations and activities during research cruises are well suited to visualize the Arctic environment as well as the research activities in the project. However, in this polar night cruise space was prioritized for scientists and artist(s) was not invited.

Blog reports from the cruise activities were produced during the cruise, and by the end of the cruise, 6 blog texts were submitted to the project office, and 6 were published on Forskning.no/ Sciencenorway.no (see Appendix 2.1). In addition, a popular scientific report from the cruise was written to the local newspaper Svalbardposten.no in Longyearbyen.

REFERENCES

Dickson, A. G., Sabine, C. L: and Christian, J. R. (eds) (2007): Guide to best practices for Ocean CO2 measurements. PICES Special publication, 3, 191 pp.

Landry, M.R., Hassett, R.P. (1982). Estimating the grazing impact of marine microzooplankton. Marine Biology 67, 283–288 <u>https://doi.org/10.1007/BF00397668</u>

Morison, F., Menden-Deuer, S. (2017) Doing more with less? Balancing sampling resolution and effort in measurements of protistan growth and grazing-rates. Limnology Oceanography: Methods 15, 794–809. <u>https://doi.org/10.1002/lom3.10200</u>

The Nansen Legacy (2020). Sampling Protocols: Version 5. The Nansen Legacy Report Series13/2020. DOI: https://doi.org/10.7557/nlrs.5719

APPENDIX

- Appendix A1.1. Full Q4 station list with station locations and gear sampled
- Appendix A1.2 Cruise participants, task and contact info
- Appendix A1.3 Working hours and cabin distributions
- Appendix A1.4 Lab-use during the Nansen Legacy cruise Q4
- Appendix A1.5 Q4 Water budgets
- Appendix 2.1 Outreach activities
- Appendix 3.1 Overview of registered Q4 data sets
- Appendix 3.2 Q4 continuous measurements data sets

-														
	Time	Time			Local			Bottom	Sample	Max	Min			
Date	(UTC)	(UTC)	Gear Type	Station Name	Station ID	Latitude	Longitude	Denth (m)	Depth	depth	depth	Start Date	End Date	Event Remarks
	start	stop			Station ID			Deptil (III)	(m)	(m)	(m)			
2019-11-28			EK80	continuous								2019-11-28	2019-12-16	EK80
2019-11-28			EM302	continuous								2019-11-28	2019-12-16	EM302
2019-11-28			Weather station	continuous								2019-11-28	2019-12-16	Weather station
2019-11-28			ADCP	continuous								2019-11-28	2019-12-16	ADCP
2019-11-28				continuous								2019-11-28	2019-12-16	Thermosalinograph
2019-11-28				continuous								2019-11-28	2019-12-16	pCO2 underway
2019-11-28	19:52	20:08	CTD w/bottles	IsA	419	78,265	15,527	92	81	92		2019-11-28	2019-11-28	for IMR
			Macroplankton											speed 2.5 knot; stop pos. 81.31N;
2019-11-30	13:51	14:04	trawl	N_Trawl	4628	80,9500	19,9900	114	94			2019-11-30	2019-11-30	20.25E
														Niskin: bottom x2; 20m x 5 (for
2019-11-30	14:22	14:38	CTD w/bottles	N_Trawl	420	80,9460	20,0555	125				2019-11-30	2019-11-30	sea ice core ++)
2019-11-30	14:52		TS probe	N_Trawl	84							2019-11-30	2019-11-30	Failed - no signal
			Macroplankton											
2019-11-30	15:56	16:11	trawl	N_Trawl	111	80,9500	19,8590	132	90			2019-11-30	2019-11-30	Door distance: 32.1-36m
2019-11-30	16:28		TS probe	N_Trawl	85							2019-11-30	2019-11-30	Failed - no signal
2019-11-30	19:11					81,2433	21,6283					2019-11-30	2019-11-30	ice observation
2019-11-30	19:42					81,2433	21,9317					2019-11-30	2019-11-30	ice observation
2019-11-30	23:09					81,3256	23,8771					2019-11-30	2019-11-30	ice observation
2019-12-01	04:46					81,7389	26,5339					2019-12-01	2019-12-01	ice observation
2019-12-01	10:15											2019-12-01	2019-12-01	ice observation
														10,20,30,40,50,60,90,120m NOON
2019-12-01	10:52		CTD w/bottles	P7 (DEEP-ICE)	421	82,0578	29,2830	3425	120			2019-12-01	2019-12-01	СТD
2019-12-01	12:16		Bongonet 64 um	P7 (DEEP-ICE)	126	82,0600	29,2830	3425	100	100	0	2019-12-01	2019-12-01	For expm.
														failure CTD signal -only to 1600m!
2019-12-01	12:36		CTD w/bottles	P7 (DEEP-ICE)	422	82,0610	29,2190	3433	1600			2019-12-01	2019-12-01	Up cast file sta9998.cnv
2019-12-01	15:08	15:29	CTD w/bottles	P7 (DEEP-ICE)	423	82,0614	29,1360	3436	90	90	10	2019-12-01	2019-12-01	SHALLOW CTD EXPM
														First CTD expm; Virus; Arunima,
2019-12-01	16:22	19:18	CTD w/bottles	P7 (DEEP-ICE)	424	82,0612	29,1126	3436				2019-12-01	2019-12-01	Lise/Hilde
														sediment trap deployment with
			Sediment trap											PP bottles, drift ca 0.1-0.2kn west
2019-12-01	21:17	22:16	(short term)	P7 (DEEP-ICE)	256	82,0634	29,0373	3443	200			2019-12-01	2019-12-01	south west
2019-12-01	21:38			P7 (DEEP-ICE)								2019-12-01	2019-12-01	ice observation
														ice observation at site of
2019-12-01	22:55			P7 (DEEP-ICE)		82,0664	28,9846					2019-12-01	2019-12-01	sediment trap
2019-12-01	22:16	00:35	GO-FLO	P7 (DEEP-ICE)	257	82,0644	29,0075		500			2019-12-01	2019-12-02	Trace metals
2019-12-02	05:02	07:15	Multinet 180 um	P7 (DEEP-ICE)	127	82,0634	28,8563	3263	2500	2500	0	2019-12-02	2019-12-02	deep multi

Appendix A1.1 Full Q4 station list with station locations and gear sampled

														ICE WORK ice cores, CTD, net and
2019-12-02	09:00	16:15		P7 (DEEP-ICE)	ICE WORK	82,0428	28,7516					2019-12-02	2019-12-03	water
			Active water											200m, the surface pump did not
2019-12-02	10:00	12:00	sampler	P7 (DEEP-ICE)	258	82,0428	28,7516		200			2019-12-02	2019-12-02	work (air trapped)
2019-12-02	12:41	14:01	TS probe	P7 (DEEP-ICE)	86	82,0467	28,6616		1000			2019-12-02	2019-12-02	Nils Olav/Tom
2019-12-02		16:05	MIK-net 1500 um	P7 (DEEP-ICE)	128	82,0494	28,5958		1000	1000	0	2019-12-02	2019-12-02	Community; jellies; Tom, Anette
2019-12-02	16:11	17:45	MIK-net 1500 um	P7 (DEEP-ICE)	129	82,0495	28,5938		1000	1000	0	2019-12-02	2019-12-02	Ecotox Julia; SI/FA Anette
														Comunity; no depth because of
2019-12-02	17:49	20:28	Multinet 180 um	P7 (DEEP-ICE)	130	82,0501	28,5713		2500	2500	0	2019-12-02	2019-12-02	ice under ship at some events
2019-12-02	21:21	22:52	Multinet 64 um	P7 (DEEP-ICE)	131	82,0548	28,5224	3549	1000	1000	0	2019-12-02	2019-12-02	Community; Amalia, Anette
2019-12-02	23:18	23:54	Multinet 64 um	P7 (DEEP-ICE)	132	82,0639	28,5016	3517	1000	300	0	2019-12-02	2019-12-02	Kasia: forams
2019-12-03	00:23	03:53	CTD w/bottles	P7 (DEEP-ICE)	425	82,0698	28,4973	3525	3515	3515	0	2019-12-03	2019-12-03	deep standard CTD
2019-12-03	05:43	06:30	CTD w/bottles	P7 (DEEP-ICE)	426	82,0918	28,5042	3572	500	500	10	2019-12-03	2019-12-03	shallowstandard CTD
														did not close properly-sample partly
2019-12-03	06:34	09:23	Box core	P7 (DEEP-ICE)	65	82,0947	28,5030	3573				2019-12-03	2019-12-03	lost
2019-12-03	10:13	12:32	Box core	P7 (DEEP-ICE)	66	82,1060	28,4910	3602				2019-12-03	2019-12-03	did not release - no sample
														Ecotox Julia; time from bottom
2019-12-03	13:54	14:03	MIK-net 1500 um	P7 (DEEP-ICE)	133	82,1200	28,4520	3602	500	500	0	2019-12-03	2019-12-03	and up
														retrieve ice primary productivity
2019-12-03	13:40	14:10		P7 (DEEP-ICE)	ICE WORK	82,1200	28,4520	3602				2019-12-03	2019-12-03	incubations, phytopl. net
			Sediment trap											
2019-12-03	16:37		(short term)	P7 (DEEP-ICE)	ICE WORK	82,1522	28,3152	3634				2019-12-03	2019-12-03	recover sediment traps
			Phytoplankton											
2019-12-03	17:26	17:38	net 20 um	P7 (DEEP-ICE)	134	82,1529	28,3031	3635	100	100	0	2019-12-03	2019-12-03	Community
2019-12-03	17:40	18:00	WP2 64 um	P7 (DEEP-ICE)	135	82,1529	28,3030	3636	100	100	0	2019-12-03	2019-12-03	WP2 50um net Oithona F
2019-12-03	18:09	18:16	Niskin	P7 (DEEP-ICE)	260	82,1532	28,2975	3637	20			2019-12-03	2019-12-03	Marti P/I curve
2019-12-03	18:25	18:31	Bongonet 180 um	P7 (DEEP-ICE)	136	82,1534	28,2936	3637	50	50	0	2019-12-03	2019-12-03	Prey for Snorre
														Expm one bottle spilled so will
2019-12-03	18:46	19:03	GO-FLO	P7 (DEEP-ICE)	261	82,1535	28,2911	3637	90	90		2019-12-03	2019-12-03	redo at NLEG 24
														Metabarcoding, biomass, comm,
2019-12-03	22:29	23:38	Bongonet 180 um	P7 (DEEP-ICE)	262	82,1561	28,2397	3648	1000	1000	0	2019-12-03	2019-12-03	FA
2019-12-03	23:55	02:37	Box core	P7 (DEEP-ICE)	68	82,1562	28,2061	3650				2019-12-03	2019-12-04	not completely filled box
														Metabarcoding, biomass, comm,
2019-12-04	02:53	04:19	Bongonet 64 um	P7 (DEEP-ICE)	263	82,1606	28,1542	3660	1000	1000	0	2019-12-04	2019-12-04	FA

					-									
2019-12-04	13:34	14:33	TS probe	NLEG24	87	81,6850	30,5270	2845	1000	1000	0	2019-12-04	2019-12-04	Acoustics
2019-12-04	14:57	17:48	CTD w/bottles	NLEG24	427	81,6930	30,5270	2488				2019-12-04	2019-12-04	
2019-12-04	19:00	21:14	CTD w/bottles	NLEG23	428	81,6182	30,6704	1969				2019-12-04	2019-12-04	
2019-12-04	22:05	23:17	TS probe	P6	87	81,6851	30,5271	914		900		2019-12-04	2019-12-04	P6 beginner
2019-12-05	23:27	00:29	CTD w/bottles	P6	429	81,5530	30,8221	938				2019-12-04	2019-12-05	
2019-12-05	01:21	02:20	MIK-net 1500 um	P6	137	81,5342	30,9438	818		800	0	2019-12-05	2019-12-05	Comm; Tom/B. depth end 838m
2019-12-05	02:51	03:51	MIK-net 1500 um	P6	138	81,5430	30,8759	838		800	0	2019-12-05	2019-12-05	Ecotox; SI/FA
2019-12-05	03:55	04:45	CTD w/bottles	P6	430	81,5465	30,8399	880				2019-12-05	2019-12-05	CTD StD shallow
2019-12-05	04:45	06:06	Multinet 64 um	P6	139	81,5495	30,8118	907		850	0	2019-12-05	2019-12-05	Comm./B. depth 937 at end
2019-12-05	06:46	08:01	Multinet 64 um	P6	140	81,5421	30,9462	844		750	0	2019-12-05	2019-12-05	Forams; Kasia/B. deptn
2019-12-05	08:16	09:30	CTD w/bottles	P6	431	81,5458707	30,86962	881		871		2019-12-05	2019-12-05	CTD std DEEP/ End B. depth 914
			Phytoplankton											
2019-12-05	09:48	10:02	net 20 um	P6	264	81,5518454	30,757738	978		50		2019-12-05	2019-12-05	
2019-12-05	10:10	11:10	Bongonet 180 um	P6	265	81,5525854	30,74887192	1009		800		2019-12-05	2019-12-05	
2019-12-05	12:04	12:27	CTD w/bottles	P6	432	81,5430	30,9339	851		120		2019-12-05	2019-12-05	NOON CTD
2019-12-05	12:35	13:37	Bongonet 64 um	P6	266	81,5463	30,9033	867		800		2019-12-05	2019-12-05	
2019-12-05	13:44	15:09	GO-FLO	P6	267	81,5552	30,8386	959		500		2019-12-05	2019-12-05	
2019-12-05	16:05	17:15	Multinet 180 um	P6	141	81,5452	30,9284	861				2019-12-05	2019-12-05	
2019-12-05	17:50	18:33	Box core	P6	69	81,5428	30,9424	848				2019-12-05	2019-12-05	
2019-12-05	18:42	19:27	WP3 1000 um	P6	142	81,5442	30,9014	858		700	400	2019-12-05	2019-12-05	
2019-12-05	20:24	21:00	Box core	P6	70	81,5469	30,8633	879				2019-12-05	2019-12-05	
2019-12-05		21:31	Bongonet 64 um	P6	268	81,5460	30,8819	871		100		2019-12-05	2019-12-05	
2019-12-05	21:32	22:45	Bongonet 64 um	P6	269	81,5461	30,8804	872		800		2019-12-05	2019-12-05	
2019-12-05	23:18	23:59	Box core	P6	71	81,5500	30,8920	870				2019-12-05	2019-12-05	
2019-12-06	00:24	00:48	MIK-net 1500 um	P6	143	81,5531	30,8172	969		300	0	2019-12-06	2019-12-06	
2019-12-06	00:57	01:52	MIK-net 1500 um	P6	144	81,5557	30,7814	1009		800	0	2019-12-06	2019-12-06	
2019-12-06	03:34	04:18	CTD w/bottles	NLEG19	433	81,4593	31,0617	507		500	0	2019-12-06	2019-12-06	
2019-12-06	05:58	06:22	TS probe	NLEG15	89	81,3124	31,3490	188		178	0	2019-12-06	2019-12-06	B. depth at end: 530m
2019-12-06	06:28	07:02	CTD w/bottles	NLEG15	434	81,3139	31,3213	215				2019-12-06	2019-12-06	B. depth at end: 233m
2019-12-06	13:23	13:43	TS probe	NLEG14	90	80,9980	34,0012	211				2019-12-06	2019-12-06	
2019-12-06	13:51	14:21	CTD w/bottles	NLEG14	435	80,9981	33,9685	211				2019-12-06	2019-12-06	
2019-12-06	20:30	00:30		P5	ICEWORK	80,5333	34,3877	155				2019-12-06	2019-12-07	
2019-12-06	20:30	20:46	TS probe	P5	91	80,5333	34,3877	155				2019-12-06	2019-12-06	
2019-12-06	21:04	21:15	MIK-net 1500 um	P5	145	80,5317	34,3821	154		120	0	2019-12-06	2019-12-06	
2019-12-06	21:32	21:42	MIK-net 1500 um	P5	146	80,5300	34,3766	154				2019-12-06	2019-12-06	
2019-12-06	21:50	22:02	MIK-net 1500 um	P5	147	80,5288	34,3687	151				2019-12-06	2019-12-06	

														due to failure are the
														temperature data of this cast not
														of highest quality, better to use
2019-12-06	22:15	22:41	CTD w/bottles	P5	436	80,5270	34,3643	149				2019-12-06	2019-12-06	TS from next CTD cast nr 437
			Sediment trap											
2019-12-06	22:50	10:30	(short term)	P5		80,5270	34,3643	149				2019-12-06	2019-12-07	deployed from hole in sea ice
2019-12-06	23:35	00:06	CTD w/bottles	P5	437	80,5376	34,3177	147				2019-12-06	2019-12-07	
2019-12-06	00:27	00:42	Multinet 64 um	P5	148	80,5173	34,2736	143,58				2019-12-07	2019-12-07	
2019-12-07	01:03	01:18	Multinet 64 um	P5	149	80,5149	34,2602	146,55				2019-12-07	2019-12-07	
2019-12-07	01:26	01:40	Bongonet 64 um	P5	270	80,5134	34,2183	149				2019-12-07	2019-12-07	
2019-12-07	01:59	02:14	MIK-net 1500 um	P5	150	80,5113	34,1852	139				2019-12-07	2019-12-07	
			Active water											
2019-12-07	02:43	05:30	sampler	P5	272	80,509	34,141	155				2019-12-07	2019-12-07	Filtration pump
2019-12-07	07:27	07:27	Multinet 180 um	P5	151	80,496	33,937	162	140	140	0	2019-12-07	2019-12-07	
2019-12-07	07:50	08:03	Bongonet 64 um	P5	273	80,509	34,848	162	140	140	0	2019-12-07	2019-12-07	in ship log written Bongonet 180
2019-12-07	08:07	08:19	Bongonet 180 um	P5	274	80,492	33,918	159	140	140	0	2019-12-07	2019-12-07	retrival from hole in sea ice
2019-12-07	11:29	11:49	CTD	P5		80,459	33,760					2019-12-07	2019-12-07	Fail - sensors frozen
2019-12-07	12:06	12:50	GO-FLO	P5	275	80,460	33,766	186	175			2019-12-07	2019-12-07	
2019-12-07	12:57	13:27	CTD w/bottles	P5	438	80,459	33,760	186				2019-12-07	2019-12-07	
			Phytoplankton											
2019-12-07	13:29	13:36	net 10 um	P5	152	80,455	33,732	189	50	50	0	2019-12-07	2019-12-07	
2019-12-07	18:39	19:00	TS probe	NLEG12	92	79,999	34,000	225				2019-12-07	2019-12-07	
2019-12-07	19:10	19:40	CTD w/bottles	NLEG12	439	79,997	33,989	215				2019-12-07	2019-12-07	
2019-12-07	22:14	22:39	TS probe	P4	276	79,812	33,991	297				2019-12-07	2019-12-07	
2019-12-07	22:48	23:20	CTD w/bottles	P4	440	79,807	33,977	296				2019-12-08	2019-12-08	
2019-12-08	00:53	01:15	MIK-net 1500 um	P4	153	79,837	34,209	253		222	0	2019-12-08	2019-12-08	
2019-12-08	01:24	01:42	MIK-net 1500 um	P4	154	79,832	34,194	266				2019-12-08	2019-12-08	
			Sediment trap											
2019-12-08	02:13		(short term)	P4	277	79,825	34,171	271				2019-12-08	2019-12-08	
2019-12-08	03:21	03:46	MIK-net 1500 um	P4	155	79,821	34,094	274				2019-12-08	2019-12-08	
			Active water											
2019-12-08	04:12	06:55	sampler	P4	278	79,815	34,076	283				2019-12-08	2019-12-08	40m and 140m depths
2019-12-08	07:40	08:15	GO-FLO	P4	279	79,797	34,052	304				2019-12-08	2019-12-08	
2019-12-08	08:33	08:58	CTD w/bottles	P4	441	79,792	34,053	317				2019-12-08	2019-12-08	
2019-12-08	09:09	09:33	Multinet 180 um	P4	156	79,787	34,054	323		280	0	2019-12-08	2019-12-08	280-200-100-50-20-0m
2019-12-08	09:51	10:19	Multinet 180 um	P4	157	79,783	34,055	327		300	0	2019-12-08	2019-12-08	300-200-100-50-20

									-	-				
2019-12-08	10:28	11:01	CTD w/bottles	P4	442	79,778	34,055	326				2019-12-08	2019-12-08	NOON CTD
2019-12-08	11:30	12:02	Bongonet 64 um	P4	280	79,770	34,052	326		300	0	2019-12-08	2019-12-08	comm/biomass
2019-12-08	12:11	13:08	Bongonet 180 um	P4	281	79,765	34,049	326		300	0	2019-12-08	2019-12-08	comm/biomass
2019-12-08	13:13	13:27	Bongonet 180 um	P4	282	79,754	34,041	332		300	0	2019-12-08	2019-12-08	SI/FA
2019-12-08	13:36	13:50	Bongonet 64 um	P4	283	79,750	34,036	335	100	100	0	2019-12-08	2019-12-08	Angela expm
2019-12-08	13:55	14:23	Bongonet 64 um	P4	284	79,747	34,033	339	300	300	0	2019-12-08	2019-12-08	Christine expm and comm
2019-12-08	14:28	15:06	CTD w/bottles	P4	443	79,742	34,026	339				2019-12-08	2019-12-08	CTD standard shallow
			Phytoplankton											
2019-12-08	15:09	15:23	net 20 um	P4	158	79,735	34,014	342		50	0	2019-12-08	2019-12-08	
2019-12-08	15:41	12:26	CTD w/bottles	P4	444	79,733	34,009	344				2019-12-08	2019-12-08	
2019-12-08	17:03	17:36	Multinet 64 um	P4	159	79,725	33,991	344				2019-12-08	2019-12-08	
2019-12-08	17:53	18:27	Multinet 64 um	P4	160	79,722	33,989	346				2019-12-08	2019-12-08	
2019-12-08	21:05	21:34	Multinet 180 um	P4	161	79,762	33,989	330				2019-12-08	2019-12-08	
2019-12-08	22:18	22:34	Box core	P4	72	79,759	33,995	330				2019-12-08	2019-12-08	
2019-12-09	00:00	00:34	Box core	P4	73	79,750	34,003	337				2019-12-09	2019-12-09	
2019-12-09	02:03	02:20	Box core	P4	75	79,739	34,004	338				2019-12-09	2019-12-09	
			Sediment trap											sediment trap and PP bottles
2019-12-09		06:24	(short term)	P4	285	79,675	34,068	360		120	30	2019-12-09	2019-12-09	retrieved
2019-12-09	11:34	11:57	TS probe	NLEG9	93	79,241	34,435	211				2019-12-09	2019-12-09	
2019-12-09	12:09	12:43	CTD w/bottles	NLEG9	445	79,239	34,001	211				2019-12-09	2019-12-09	
2019-12-09	12:30	13:00		NLEG9		79,239	34,001	211				2019-12-09	2019-12-09	Frost flower sampling
2019-12-09	17:48	18:17	TS probe	P3	94	78,749	34,000					2019-12-09	2019-12-09	
2019-12-09	18:24	18:52	MIK-net 1500 um	P3	162	78,749	33,999	307		280	0	2019-12-09	2019-12-09	
2019-12-09	18:58	19:22	MIK-net 1500 um	P3	163	78,749	33,998	307		280	0	2019-12-09	2019-12-09	
			Active water											
2019-12-09	19:53	21:41	sampler	P3		78,749	33,996	307	40			2019-12-09	2019-12-09	in parallel to CTD, no station ID
2019-12-09	20:00	20:25	CTD w/bottles	P3	446	78,750	33,996	307				2019-12-09	2019-12-09	
2019-12-09	21:09	21:47	CTD w/bottles	P3	447	78,750	33,994	306				2019-12-09	2019-12-09	
2019-12-09	21:57	22:24	Multinet 64 um	P3	164	78,750	33,993	305		300	0	2019-12-09	2019-12-09	
2019-12-09	22:39	23:08	Multinet 64 um	Р3	165	78,750	33,993	306		300	0	2019-12-09	2019-12-09	
2019-12-09	23:25	23:54	Multinet 180 um	P3	166	78,749	33,995	306		300		2019-12-09	2019-12-09	
			Phytoplankton											
2019-12-10	00:16	00:28	net 20 um	Р3	286	78,747	33,993	301		50	0	2019-12-10	2019-12-10	
2019-12-10	00:00	01:05	Bongonet 64 um	Р3	287	78,746	33,992	304		290	0	2019-12-10	2019-12-10	
2019-12-10	01:19	01:39	Bongonet 180 um	Р3	288	78,744	33,989	303		290	0	2019-12-10	2019-12-10	
2019-12-10	01:54	02:37	GO-FLO	Р3	289	78,742	33,987	304				2019-12-10	2019-12-10	

		-						-	-	-	-		-	
2019-12-10	09:43	10:00	TS probe	NLEG 5	95	78,000	34,003	192				2019-12-10	2019-12-10	
2019-12-10	10:09	10:41	CTD w/bottles	NLEG 5	448	77,999	34,003	192				2019-12-10	2019-12-10	
2019-12-10	15:12	15:35	TS probe	P2	96	77,500	34,002	190		160	0	2019-12-10	2019-12-10	
2019-12-10	15:41	16:00	MIK-net 1500 um	P2	167	77,500	34,002	190		160	0	2019-12-10	2019-12-10	
2019-12-10	16:06	16:23	MIK-net 1500 um	P2	168	77,500	34,005	190				2019-12-10	2019-12-10	
2019-12-10	16:38	17:07	CTD w/bottles	P2	449	77,500	34,005	190				2019-12-10	2019-12-10	
2019-12-10	17:40	18:12	CTD w/bottles	P2	450	77,500	34,004	190				2019-12-10	2019-12-10	
2019-12-10	18:21	18:42	Multinet 64 um	P2	169	77,500	34,002	190			0	2019-12-10	2019-12-10	
2019-12-10	18:57	19:17	Multinet 64 um	P2	170	77,500	34,000	190			0	2019-12-10	2019-12-10	
2019-12-10	19:25	19:41	Multinet 180 um	P2	171	77,500	33,997	192			0	2019-12-10	2019-12-10	
			Phytoplankton											
2019-12-10	20:15	20:21	net 20 um	P2	290	77,496	33,985	184		50	0	2019-12-10	2019-12-10	
	20:15	20:21				77,496	33,985	184		50	0	2019-12-10	2019-12-10	SAIV 208 CTD on net
2019-12-10	20:35	21:12	GO-FLO	P2	291	77,494	33,981	187			0	2019-12-10	2019-12-10	
2019-12-10	21:42	21:51	Box core	P2	77	77,491	33,969	190				2019-12-10	2019-12-10	
2019-12-10	22:17	22:34	Bongonet 64 um	P2	292	77,488	33,968	189			0	2019-12-10	2019-12-10	
2019-12-10	22:39	22:52	Bongonet 180 um	P2	293	77,487	33,964	188			0	2019-12-10	2019-12-10	
														note: only two box cores on this
2019-12-10	23:30	23:40	Box core	P2	78	77,486	33,961	189				2019-12-10	2019-12-10	station, three fails.
2019-12-11	01:15	01:26	Box core	P2	79	77,485	33,971	188				2019-12-11	2019-12-11	fail
2019-12-11	01:33	01:45	Box core	P2	80	77,485	33,972	189				2019-12-11	2019-12-11	fail
			Macroplankton											written Pelagic trawl in ship log,
2019-12-11	05:58	06:16	trawl		112	77,058	34,093	155				2019-12-11	2019-12-11	V- haul
2019-12-11	07:05	07:25	TS probe	NLEG 3	97	77,005	34,005	159				2019-12-11	2019-12-11	
2019-12-11	07:32	07:25	CTD w/bottles	NLEG 3	451	77,005	34,005	159				2019-12-11	2019-12-11	
												2019-12-11	2019-12-11	SAIV 208 CTD on side
			Macroplankton											
2019-12-11	08:29	08:55	trawl	NLEG 3	113	77,009	34,065	150		100	0	2019-12-11	2019-12-11	in scattering layer at 100 m
2019-12-11	12:05	12:25	Campelen trawl		114	76,849	32,579	204				2019-12-11	2019-12-11	
2019-12-11	17:00	17:29	TS probe	NLEG2	98	76,499	31,217	314				2019-12-11	2019-12-11	
2019-12-11	17:38	18:17	CTD w/bottles	NLEG2	452	76,499	31,217	314				2019-12-11	2019-12-11	
2019-12-12	16:11	16:42	CTD w/bottles	P1	453	76,000	31,219	327				2019-12-12	2019-12-12	
2019-12-12	17:13	17:51	CTD w/bottles	P1	454	76,000	31,219	326				2019-12-12	2019-12-12	
2019-12-12	17:57	18:39	Multinet 64 um	P1	172	76,000	31,219	326				2019-12-12	2019-12-12	fail, taken from aft ship
2019-12-12	19:32	20:08	Multinet 64 um	P1	173	76,000	31,219	326				2019-12-12	2019-12-12	success through moonpool

		-			-				-	-	-		
2019-12-12	20:22	20:59	Multinet 64 um	P1	174	76,000	31,219	326			2019-12-12	2019-12-12	
2019-12-12	21:20	21:43	Multinet 180 um	P1	175	76,000	31,219	326			2019-12-12	2019-12-12	
2019-12-12	21:57	22:23	Multinet 180 um	P1	176	76,000	31,219	326			2019-12-12	2019-12-12	
2019-12-12	22:35	23:07	Multinet 64 um	P1	177	76,000	31,219	326			2019-12-12	2019-12-12	
2019-12-12	23:18	23:50	Multinet 64 um	P1	178	76,000	31,219	326			2019-12-12	2019-12-12	
2019-12-13	00:09	00:38	CTD w/bottles	P1	455	76,000	31,219	326			2019-12-13	2019-12-13	
2019-12-13	01:03	01:25	Box core	P1	81	76,000	31,219	326			2019-12-13	2019-12-13	disturbed sediment surface
2019-12-13	02:31	02:50	Box core	P1	82	76,000	31,219	326			2019-12-13	2019-12-13	disturbed sediment surface
2019-12-13	03:49	04:38	TS probe	P1	99	76,000	31,219	326			2019-12-13	2019-12-13	winch problems, took longer
2019-12-13	05:51	06:24	MIK-net 1500 um	P1	179	76,000	31,219	326	295	0	2019-12-13	2019-12-13	vertical haul-quantitative (Tom)
2019-12-13	07:07	07:32	MIK-net 1500 um	P1	180	75,999	31,224	326			2019-12-13	2019-12-13	V-haul (Robynne, Julia, Anette)
			Macroplankton										scattering layer 100m (Julia,
2019-12-13	08:08	08:35	trawl	P1	115	76,002	31,205	328	100	0	2019-12-13	2019-12-13	Robynne)
			Macroplankton										
2019-12-13	09:42	10:05	trawl	P1	116	76,001	31,203	324	200	0	2019-12-13	2019-12-13	V-haul (Tom)
2019-12-13	10:23	10:52	CTD w/bottles	P1	456	75,995	31,280	322			2019-12-13	2019-12-13	NOON CTD
2019-12-13	13:06	13:23	Campelen trawl	P1x	117	76,085	30,846	327			2019-12-13	2019-12-13	
2019-12-13	14:34	15:27	GO-FLO	P1x	294	76,086	31,006	334			2019-12-13	2019-12-13	
2019-12-13	15:39	16:11	CTD w/bottles	P1x	457	76,086	31,007	331			2019-12-13	2019-12-13	
			Phytoplankton										
2019-12-13	16:20	16:29	net 10 um	P1x	181	76,087	31,001	333	50	0	2019-12-13	2019-12-13	
2019-12-13	16:33	16:30	Bongonet 180 um	P1x	182	76,087	31,001	333	20	0	2019-12-13	2019-12-13	
2019-12-13	17:08	17:31	Bongonet 180 um	P1x	183	76,087	31,001	333	300	0	2019-12-13	2019-12-13	
2019-12-13	17:40	18:08	Bongonet 64 um	P1x	184	76,087	31,001	333	20	0	2019-12-13	2019-12-13	
2019-12-13	18:11	18:41	Bongonet 64 um	P1x	185	76,087	31,001	333	300	0	2019-12-13	2019-12-13	
2019-12-13	18:50		Bongonet 64 um	P1x	186	76,087	31,001	333	300	0	2019-12-13	2019-12-13	not recorded in station ship log
2019-12-13	20:16	20:37	Box core	P1	83	76,002	31,214	327			2019-12-13	2019-12-13	
													only one water sample taken for
2019-12-13	22:50	23:14	CTD	P1-1	458	76,167	31,213	316			2019-12-13	2019-12-13	salinity
2019-12-14	00:40	01:03	CTD	P1-2	459	76,334	31,212	314			2019-12-14	2019-12-14	
			Active water										
2019-12-14	08:07	11:23	sampler	P1	295	76,000	31,220	327	120	20	2019-12-14	2019-12-14	
2019-12-14	13:14	13:35	CTD	extra 1	460	75,857	30,875	326			2019-12-14	2019-12-14	extra stn south of P1
2019-12-14	16:09	16:40	CTD	extra 2	461	75,565	30,238	354			2019-12-14	2019-12-14	extra stn south of P1
													AUV test, deployed from small
2019-12-16	13:15	16:30		extra 3	no ID	75,5650	20,1745	239	100	0	2019-12-16	2019-12-16	boat

Appendix A1.2 Q4 Cruise participants

#	Торіс	Name	Institution	Task description	WP	E-mail
1	(zooplankton)	Janne E. Søreide	UNIS	Cruise leader	RF2/RF3	jannes@unis.no
2	(Primary prod.	Rolf Gradinger	UiT	Co-cruise leader	RF3	Rolf.gradinger@uit.no
3	Safety	Audun Gjerland	NPI	Safety	RA-A	audun.gjerland@npolar.no
				Carbonate chemistry and pCO2		
4	Chemistry	Ylva Ericsson	IMR	underway systems	RF2	ylva.ericson@npolar.no
				Carbonate chemistry water,		alizabath ianas@hi na
5	Chemistry	Elisabeth Jones	IMR	nutrients and sea ice, OA	RF2	enzabeth.jones@m.no
				Carbonate chemistry water,		
6	Chemistry	Helene H. Lødemel	IMR	nutrients and sea ice, OA	RF2	helene.hodal.loedemel@hi.no
7	CTD/Protists/f	Miriam Marquardt	UIT	budget/ sea ice/ sed traps	RF3	Miriam.marquardt@uit.no
				Protist/ microzooplankton? water		
		Rita Amundsen	UiO	comm. Samples, Chla fltration/	RF3	
8	Protists			macrozooplankton helping Julie		rita.amundsen@ibv.uio.no_
				Filtrations, sediment traps,		
9	Flux	Yasemin Bodur	UIT	respiration exp.	RF3	yasmin.v.bodur@uit.no
				Prim prod, 14C incubations. In-		
10	Primary Prod.	Marti Amargant		situ, P vs I and P vs T curves,	RF3	marti.a.arumi@uit.no
				Microbiology (std+sea ice) comm./		
11	Microbiology	Lise Øverås	UiB	food web	RF3	Lise.Ovreas@uib.no
12	Protists	Anna Vader	UNIS	Filtration, Metabarcoding, metatrar	RF3	anna.vader@unis.no
				DNA/RNA filtrations , zooplankton		
13	Protists	Snorre Flo	UNIS	and benthic molecular diet	RF3	Snorre.Flo@UNIS.no
				Abundance of phytoplankton,		
14	Protists	Hilde Stabel	UiB	heterotrophic flagellates, bacteria	RF3	Hilde.Stabell@uib.no
15	Zooplankton	Anette Wold	NPI	Zooplankton, POM for CSIA of FA	RF3	anette.wold@npolar.no
				Micro- and mesozooplankton		
16	Zooplankton	Anglea Stippkugel	NTNU	grazing experiments (dilution	RF3	angela.stippkugel@ntnu.no
				Zooplankton, grazing experiments,		
17	Zooplankton	Konrad Karlsson	UNIS	respiration measurements	RF2/RF3	Konrad.Karlsson@slu.se
				Zooplankton sampling, small		
18	Zooplankton	Christine Gawinski	UIT	zooplankton secondary production	RF3	christine.gawinski@uit.no
19	Zooplankton	Amalia Keck	NPI	Zooplankton	RF3	Amalia.Keck@npolar.no
20	Fish/macrozoc	Robynne Nowicki	UNIS	Zooplankton and fish	RF2	robynne.nowicki@unis.no
		durate in Manua		Ecotox sampling (zooplankton		
21	Fish/macrozoc	Øystein varpe	UNIS/UIB	/fish) and helping out in	RF2/RF3	oystein.varpe@uib.no
				Ecotox zooplankton, fish, water	553	
22	Fish/macrozoc	Julia Giebichenstein	00	pump	RF2	julia.giebichenstein@ibv.uio.no
				Ecotox sampling (zooplankton		and the ff Others t
23	Fish	Siv Hoff	UiB	/fish) and helping out in	RF2	s.n.k.hoff@ibv.uio.no
24	Macrozoo/Aqu	Tom van Engeland	IMR	Zooplankton (macro)	RF3	tom.van.engeland@hi.no
25	Aqustic	Nils Olav Handegard	IMR	TS probe	RF3	nilsolav@hi.no
	. 	<u></u>		Ecotox sampling (zooplankton		
26	Fish	Julie Bitz-Thorsen	UIT	/fish) and helping out in	RF2/RF3	Julie.bitz-thorsen@uit.no

27	Benthos	Silivia Hess	UiO	living benthic forams, exp with	RF3	silvia.hess@geo.uio.no
				Benthic sampling. Stable isotope		
				sampling benthic meiofauna		
				(UIT/UNIS PhD), invertebr. for OC		eric.jorda-molina@nord.no
28	Benthos	Eric Jorda	Nord	content (Ecopath need), ice	RF3	
				Benthic respiration, experimental		
29	Benthos	Arunima Sen	Nord	with Silvia and Thaise	RF3	arunimas@unis.no
		Theire Discussion de		Living benthic forams and benthic		
		Thaise Ricardo de	UiO	meiofauna, experiments with		
30	Benthos	Freitas		Arunima	RF3	t.r.de.freitas@geo.uio.no
				Carbonate chemistry, pteropods,		
31	zooplankton	Kasia Zamelczyk	NPI	forams, OA, sediment	RF2	kasia.zamelczyk@npolar.no
		Maria Digarnas, DhD		Trace metals and perhaps DOC		maria a digarnas@ntnu na
32	Trace metals	s	NTNU	characterization	RF2	mana.g.digemes@ntild.no
		Stanhan Kahlar		Trace metals and perhaps DOC		stanhan a kablar@ntnu na
33 Trace metals		Stephen Komer	NINO	characterization	RF2	stephen.g.komer@ntna.no
34	Technology	Tore Mo Bjørklund	NTNU	AUV, AZFP, ROV (Blueeye)	RA-C	toremobj@stud.ntnu.no
35	Technology	Ruochen Yang	NTNU	AUV, AZFP, ROV (Blueeye)	RA-C	ruochen.yang@ntnu.no
36	Instrument	Jan Vidar Nordstrand	IMR	Instrument responsible		jan.vidar.nordstrand@hi.no
37	Instrument	Jarle Kristiansen	IMR	Instrument		jarle.kristiansen@hi.no
		Kristoffer				kristoffer.ingebrigtsen.monsen
38	Instrument	Ingebrigsten Monsen	IMR	Instrument trainee		@hi.no

Working hours 0400-1200; 1600-2000	Working hours 2000-0400; 1200-	Cabin
	1600	
Janne E. Søreide		605
Nils Olav Hanegard	Tom van Engeland	419
Kristoffer I. Monsen	Audun Gjerland	421
Lise Øverås	Hilde Stabel	456
Stephen Kohler	Øystein Varpe	458
	Rolf Gradinger	468
Siv Hoff	Julie Giebichenstein	327
Anette Wold	Amalie Keck	329
Marti Amargant	Eric Jorda	330
Anna Vader	Miriam Marquardt	332
Robynne Nowicki	Thaise Ricardo de Freitas	333
Tore Mo Bjørklund	Ruochen Yang	335
Rita Amundsen	Silvia Hess	377
Snorre Flo	Konrad Karlsson	379
Julie Blitz-Thorsen	Arunima Sen	380
Christine Gawinski	Yasmine Bodour	382
Maria Digernes	Angela Stippkugel	383
Helene Lødemel	Elisabeth Jones	385
Kasia Zamelczyk	Ylva Ericson	386

Appendix A1.3 Q4 Working hours and cabin distributions
Lab no.	Name of laboratory	Use during JC3	Lab users
102	Clean seawater sample room	Seawater intake room & TSG,	Instrument crew
		pCO_2 underway instrumentation	+ Ylva/Libby
301	Chilled lab	Mesozooplankton experiments	Angela, Christine
302	Dry lab common (Chem. lab)	Analyses of AT, DIC, pH,	Libby/Helene/Ylva
		dissolved oxygen, ice core	
707		processing	
303	Wet lab common, (Zoopl.	Meso- and macrozooplankton,	Anette, Amalie, Konrad, Julia
	lad) Thormov 1 - 2	filtration (viruses, bacteria, XRF)	and Kobynne
207	Padioisotopa lab	Primany (PP) and bactorial	Marti
307	Radioisolope lab	production (PB)	Maiti
308/309	Wet lab biology (fish lab)	ocean physics	Zoe/Julie/Pedro, Marius
310	Catch sample room	Trawl processing,	Siv, Julie (trawl)
		rinsing & storage of sea ice	All ice teams
		equipment (ice stations)	
311	Toxicology lab	Trace metal clean lab	Stephen, Maria
312	Cooler room (inside fish lab)	OA & pollutants exp.	Siv, Julie
313	Freezer room converted to	Experiments, cultures	Angela
	cold room (accessible from		
	fish lab)		
314	Cold room (by benthos lab)	Benthos exp. (Temp +2°C)	Arunima, Eric
315	Cold room (by benthos lab)	Benthos exp. (Temp. in situ),	Arunima, Eric
		storage samples (<4°C)	
316	Filtration lab	Filtration (metabarcoding)	Anna, Miriam, Lise, Hilde
317	Education lab	Label printer, microscope,	Hilde (microscope)
		fluorometer, sample labeling &	Miriam (fluorometer)
		logging, common use	Kasia (stereomicroscope)
			Label printer, Miriam CID
710	Wat Lab Caalaau (Daathaa	Dauthas	logs, otners
319	Wet Lab Geology/Benthos	Eiltrations (Chl. a. DOC/DON	Arunima, Eric, Thaise, Silvia
520		FA/SI/HRI and more) $-$	Julia, Kila
322	lce l ab	Storage of phys/chem ice cores	Ice core handling
323	Cold room (Greenland)	ice core melting (°C).	Microbes & zoopl, teams
525		zooplankton sample temporary	
		storage, storage filtered	
		seawater	
325	Freezer ice samples	For biological frozen samples	Primarily biologists
AUD	Auditorium	Meetings; drying ice containers	All; ice bio group
701 (deck 9)	Observation Central	Common, ice observation	Rolf, Ylva, everyone
		support	
Incubators			
Thermax1	303 Wet lab	Zooplankton live storage	Anette, Amalia, Konrad
Thermax2	303 Wet lab	Zooplankton, OA experiment	Konrad, Janne

Appendix A1.4 Lab-use during the Nansen Legacy Q4 cruise

Thermax3	Hangar	Zooplankton egg production	Christine, Hilde
		exp.	
Thermax4	Hangar	Zooplankton exp. OA	Christine, Hilde
Lab cont.	Deck main	RA-C, AUV; ROV etc	Tore, Ruochen
Safety/logistic	Deck2/little CTD hangar	Logistics	Audun
storage	(radios charging area,		
	weapons)		
Atmosphere	Heli deck/heli hangar	Not in use/ some storage	
equipment			

Appendix 1.5 Q4 Water budget

Miriam Marquardt organized the CTD Rosette water budget based on the cruise participants requests.

WATERBU	DGET SQ4 - 2019																											
only moonpo	ol sampling possible,	i.e. No 5 m																										
Order	Parameter	Name	Stations	Depth	Volume	Depth	10	20	30	40	50	60	90	120	150	200	BOTTOM- 10	CHLA MAX	500m at deep statio n	750	1000	1500	1750	2000	2500	3000	3500	4000
pre-station	trap and benthic	Arunima	station	Bottom -10m	100	Cast 1/before											100											
pre-station	trap and benthic	Angela	station	Chla max	15-20 L	Cast 1/before	stati	on										20										
pre-station	trap and benthic	Yasemin	station	Bottom -10m	40	Cast 1/before	stati	on									40											
						SUM vol	0	0	0	0	0	0	0	0	0	0	140	0										
CAST 2																												
Order	Parameter	Name	Stations	Denth	Volume	Denth	10	20	30	40	50	60	90	120	150	200	BOTTOM-	CHLA	at deep statio	750	1000	1500	1750	2000	2500	3000	3500	4000
order	rarameter	Name	514110113	5m 30m or Chia	volume.	Deptil	10	20	30	40	50	00		120	150	200	10			750	1000	1500	17.50	2000	2300	3000	3300	4000
evn Water	Primary Production	Marti		may	61	evn Water	6											6										
exp. Water	Primary Production	Marti	All	20 40 60 90	21	exp. Water	Ŭ	2		2		2	2					•										
exp. Water	Primary Production	Marti	P1. P7	5 m (or 10 m if	68 L	exp. Water	68	-		-		-	-															
exp. Water	Particle absorbtion	Anette/Miriam	All Process	5, 10, 20, Chla max, 30, 40, 50,	0,5	exp. Water	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5				0,5										
exp. Water	Dilution experiment	Angela	Exp. Stations (P1,	Chla max	50	exp. Water												50										
exp. Water	zooplankton experiments	Konrad	P1, P4, P7 (all process)	Chla max	60	exp. Water												60										
exp. Water	zooplankton experiments zooplankton experiments	Konrad Christine	P1, P4, P7 (all process) Zooplanton experiment station	Chla max Chla max	<u>60</u> 5	exp. Water exp. Water												60 5										

NOON	metatranscriptomics	Anna	Process	5m (10 m if	35	NOON	35																					
			P4, P7 (dvs.	Chla max																								
NOON	Grazer-exclusion ex	UiB Microbio	En sør for	alternatively	50	NOON												50										
NOON	Experiments	Marti	P1, P6	10	12	NOON	12																					
NOON	P vs I curves	Marti	All	10	1	NOON	1																					
NOON	Fatty acids POM + H	Anette, Bodil	Process	chl max	18	NOON												6										
				Chla max/20m,																								
NOON	Virus-diversity	UiB Microbio	Process	bottom-10m, and	40 L	NOON											40	40	40							1		ı
	Microzooplankton			5, 10, 20, Chla																								
NOON	community	Angela	P1, P4, P7	max, 40 and 60	1,2 L	NOON	1,2	1,2		1,2		1,2						1,2										
			all Process,	Standard 12																								
			all Nleg and	depths, more																						1		ı
Std	Carbonate chemistr	Helene/Libby	mooring	than 12 depths	0,85	Std	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,85	0,85	0,85	0,9	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
Std	Chl a	Anna, Miriam	All	Standard 12	2	Std	2	2	2	2	2	2	2	2	2	2	2	2	2		2	w		2	2			
				Standard 12																								
Std	POC/PON	Miriam	All	depths	3 L	Std	3	3	3	3	3	3	3	3	3	3	3	3	3		3			3				
			Process	5, 10, Chla max,																								
Std	Phytoplankton (ice a	Bente, Anna	stations	30, 60, 90	0,3	Std	0,3		0,3			0,3	0,3					0,3								1		ı
				5, 10, 20, 30, 60,																								
				90, 200, bottom-																						1		
				10 (+if available																						1		i
				Chla max, deep																						1		i
				stations 500,																						1		
				1000, 1500,																						1		i
Std	XRF	UiB Microbio	All	2000, 2500)	5 L	Std	5	5	5			5	5			5	5	5	5		5	5		5	5			
				Chla max, 120m,																						1		i
Std	SEM	UiB Microbio	All	bottom -10m	0,5	Std								0,5			0,5	0,5										
	Bacterial			Standard 12																								
Std	Production (BP),	UiB Microbio	All	depths	0,1	Std	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1										
Std	metabarcoding incl	Anna, Bente, Ka	All	5, Chla max,	25	Std	25									25	25	25										
	Coccolithophore			5/10 (if																								
	diversity (same		Process	moonpool), Chla					1																	1		
Std	CTD as	Bente, Karoline	stations	max, 200, deep	0,5	Std	0,5		1							0,5	0,5	0,5								1		1

other param.	PFAS	Julia	all	1 Arctic water, 1	6 L	other param.	3					3												1
	Dissolved Organic			10, 20, 30, 50,																				1
other param.	Matter	Maria, Stephen	P1-P5	deep, chla max	10L	other param.	10	10	10		10						10	10						1
	Dissolved Organic			10, 20, 30, 120,																				1
other param.	Matter	Maria, Stephen	P6	deep, chla max	10L	other param.	10	10	10					10			10	10						1
	Dissolved Organic			10, 20, 30, 200,																				1
other param.	Matter	Maria, Stephen	P7	deep, chla max	10L	other param.	10	10	10							10	10	10						1
	Total Mercury,			Depth 500, and																				1
other param.	Methylmercury	Stephen, Maria	P6, P7	all >500m	0,5 L	other param.													0,5	0,5		0,5		1
	Mercury																							1
other param.	Experiment Water	Stephen, Maria	P7	deep only	10 L	other param.											10							1
	stable isotopes																							1
other param.	from bottom water	Yasemin	all process	deep only	10 L	other param.											10							1
						SUM vol	193	45	57	9,7	16	18	14	17	6	46	126,95	286	51,35	11,35		11,35		0,85

Appendix 2.1 Q4 Outreach activities.

Blogs written by cruise participants in collaboration with project office and published in Norwegian on the Nansen Legacy Blog at Forskning.no https://blogg.forskning.no/arven-etter-nansen/ and translated to English (by Eva Therese Jensen, UNIS) and published on Science of Norway https://sciencenorway.no/arctic-ocean-blog-nansen-legacy-project-blog/ during the Nansen Legacy seasonal cruise Q4 2019

No	Title	Author(s)	Online link	Status
1	Unike utfordringer på en arktisk vinterekspedisjon	Rolf Gradinger	Forskning.no/AeN/1602551	Pub. 4/12/2019
	Unique Challenges at the start of an Arctic winter Expedition			
2	«Blowing in the wind»	Rolf Gradinger	Forskning.no/AeN/1602796	Pub. 5/12/2019
3	l Polhavet og på skuldrene til giganter	Øystein Varpe og Janne Søreide	Forskning.no/AeN/1603356	Pub. 6/12/2019
	In the Arctic Ocean and on the shoulders of giants			
3	Vet de at det er Polarnatt?	Arunima Sen	Forskning.no/AeN/1605582	Pub. 10/12/2019
	Do the animals at the bottom of the ocean know it's dark season?			
4	Kjernevirksomhet!	Miriam Marquardt	Forskning.no/AeN/1607304	Pub. 12/12/2019
	Care for your core!			
5	Hot Spots i kulden!	Lise Øverås	Forskning.no/AeN/1608323	Pub 13/12/2019
	Hot topics from the cold!			
6	Blomstersanking i polarnatta	Anna Vader og Lise Øverås	Forskning.no/AeN//1610141	Pub. 17/12/2019
7	På forskningstokt i drivisen til 82°N i polarnatten	Janne E. Søreide	Svalbardposte.no/kronikker/469655	Pub. 16/12/2019

										1.00000					
	Who	Sample i	nfo			Analyses			implen	Legaly		Data			
		Sample				Analyses	Where will	When are	inpien		Sharing	Dala	Ack		
Cruise			Intended		Analysis		analyses be	analyses			within	Publiching	for	Ifvor	
narticinant	PI	Sample type	method	Parameter	nrotocol	Dataset	done	nlanned for	RF	Task/Subtask	project	data	embar	why?	Comments
participant		Sample type	methou	rarameter	protocor	Dataset	uone	plainted for	N.	Tasky Subtask	project	uata	embai	wity:	comments
Anette Wold	Mats Granskog; Børge Hamre; Pedro Duarte; Philipp Assmy	Particulate absorbtion	Spectophotom eter with integrating sphere	absorption spectra for algal and non- algal particles	Instrumen t: QFT- ICAM	Particulate absorbtion from standard depth sampled from CTD at all process stations	Rudiger Röttgers (Germany) (Tristan Petit)	Analysed by Tristan Petit at UiB.	RF1; RF3	T1-2.3/T1T3- 1.3/T3.3.1	2021	2021-2022	ves	PD	Samples have to be analysed within 6 months of sampling. If can be done depends on the travel (Norway, Germany) and working (Germany) regulations due to corona situation. Abroad in collaboration with Rudiger Röttgers (Germany) (Tristan Petit)
Anette Hora	1111100100111	4000104011	spilere	angur parateres	10/11/	stations	(instant care)	ut of bi		1.07101011	2021	2021 2022	, co	project	
Amalia Keck	Mats Granskog	Snow depth	Snow depth measurement s	Snow depth	NL v5 14.4	Snow depth	NPI (Sebastian Gerland)	2021-2022	RF1	T1-2.2	2020	2022-2023	no	Post doc, not hired yet	Only few snow depth measuremens were conducted on SQ4, too little data to be published on its own. Only worth publishing after more cruises if sufficient data.
Janne E.	Janne E. Søreide/			fluroescense,		CTD and fluroescense,	UNIS (Janne								few stations since upper 10
Søreide	everyone	CTD upper 20-30 m	Hydrography	Oxygen	NA	Oxygen	Søreide)	2020-2021	RF1		2021	2021	no		m lost from ship CTD
		Mesozooplankton			NL v5										The Bongonet for Metabarcoding split in two 1/2 for Metabarcoding & 1/2 for taxonomy (formaldehyde). This was not done during Q3 cruise
Anette Wold;	Janne Søreide; Kim	metabarcoding	Metabarcodin		9.2.2		UiT (Kim			T3-1.1 & 2.1				master	
Amalia Keck	Præbel	>180 um	g	CO1	(9.1.2)	Barcoding Biodiversity	Præbel)	2020-2022	RF4	T3-2.1 & 2.3	2021-2022	2021-2022	yes	student	
		Mesozooplankton													, Søreide & Kim Præbel
Anette Wold;		community > 180			NL v6		UNIS (Janne								The Bongonet sample taken
Amalia Keck	Janne Søreide	um	Morphology	community	9.2.1.4	Integrated community	Søreide)	2021	RF3	T3 - 2.1 & 4.2	2021	2021-2022	no		for Metabarcoding was
		Mesozooplankton	mesozooplant	Dry matter, CN and											Søreide
Anette Wold;		biomass and food	on dry matter,	C and N stable	NL v6	Integrated biomass, CN,	UNIS (Janne								The Bongonet sample taken
Amalia Keck	Janne Søreide	quality > 180 um	CN and stable	isotopes	9.2.1.4	stable isotopes,	Søreide)	2021	RF3	T3 - 2.1 & 4.2	2021	2021-2022	no		for Metabarcoding was

Appendix 3.1 Overview of data sets collected during the Seasonal cruise Q4 from 28 November to 17 December, 2019.

		Mesozooplankton			NL v5										Svensen, Janne Søreide &
Anette Wold;	Janne Søreide; Kim	metabarcoding >64	Metabarcodin		9.2.2		UiT (Kim			T3-1.1 & 2.1				master	Kim Præbel
Amalia Keck	Præbel	um	g	C01	(9.1.2)	Barcoding Biodiversity	Præbel)	2020-2022	RF4	T3-2.1 & 2.3	2021-2022	2021-2022	yes	student	The Bongonet sample taken
					NL v5										Svensen, Janne Søreide &
Anette Wold;		Mesozooplankton			9.2.2		UNIS (Janne								Kim Præbel
Amalia Keck	Janne Søreide	community > 64 um	Morphology	community	(9.1.2)	Integrated community	Søreide)	2021	RF3	T3 - 2.1 & 4.2	2021	2021-2022	no		The Bongonet sample taken
			mesozoonlant												
		Mesozoonlankton	on dry matter	Dry matter CN and	NL v5										Bongonet sample 1/1 taken
Anette Wold		hiomass and food	CN and stable	C and N stable	922	Integrated biomass, CN	UNIS (Janne								for biomass. Not done
Amalia Keck	Janne Søreide	quality > 64 um	isotones	isotones	(9.1.2)	stable isotones	Søreide)	2021	RF3	T3-21&42	2021	2021-2022	no		during O3 cruise
, and the theory	Camilla Svensen.	Depth stratified	15010000	10000000	(31212)	stable isotopes,	opreide,	2021			2021	2021 2022			
	Janne Søreide.	mesozooplankton			NL v5		IO PAS								
Anette Wold;	Anette	community > 180			9.2.2	Depth stratified community	(Slawek							PhD	More flexible, take contact
Amalia Keck	Wold/Haakon Hop	um	Morphology	community	(9.1.2)	composition	Kwasniewski)	2021	RF3	T3 - 1.1 & 2.1	2021	2021-2022	ves	project	with PI`s
	Janne Søreide.	Depth stratified			NL v5		IO PAS								
Anette Wold:	Anette	mesozooplankton			9.2.2	Depth stratified community	(Slawek							PhD	
Amalia Keck	Wold/Haakon Hop	community > 64 um	Morphology	community	(9.1.2)	composition	Kwasniewski)	2021	RF3	T3 - 1.1 & 2.1	2021	2021-2022	ves	project	PhD project
					(- <i>i</i>								1		
	Anette Wold						Counts								From standard MIK net
	Camilla Svensen						weight and								each taxa counted
	Janne Søreide (in		Genetic				lengths done								weighted (WW) and
	collabaoration		analyses,			Gelatinous zooplankton	onboard.								measured L. Individuals
	with sanna		counts, size			abundance (ind/m3).	Species								picked out, photographed
Anette Wold;	Majaneva at	Gelatinous	measurement	species list;	NL v5	volume & species	barcoding			T3-1.1 & 2.1				Post doc	and storedin EtOH (to
Amalia Keck	NTNU)	zooplankton	s	ind/m3; ml/m3	9.1.1.6	composition (species list)	later at NTNU	2020	RF3	T3-2.1 & 2.2	2021-2022	2021-2022	Yes	project	NTNU/S. Majaneva).
			Analysis of	Relative			AWI								
			relative	proportions of			(collaboratio								
			proportions	neutral and polar			n w/ Martin								Dataset shared with Ecotox
			oflipid	lipid classes and			Graeve)								group (see comment for
			classes by	fatty acids, and	NL V5		University la								Stable istope)to be
Anette Wold;	Philipp Assmy;		HPLC and	carbon stable	9.2.5	Fatty acids of POM, main	Rouchelle	2020		TA A A				Post doc	finalised by P. Assmy &
Amalia Keck	Doreen Konibach	Fatty acids Highly branched	Analysis of	Isotope	(9.1.5)	zooplankton taxa & fish	(collaboratio	2020	RF3	13-1.3	2021-2022	2021-2022	Yes	project	Doreen. Konibach
		isoprenoids (HBIs)	relative	abundances of	NL v5		University (in								
Anette Wold;	Philipp Assmy;	NOT IN SAMPLE	abundances	highly branched	9.2.5	HBI of POM, main	collaboration							Post doc	
Amalia Keck	Doreen Kohlbach	TYPE LIST	of pelagic	is oprenoids'	(9.1.5)	zooplankton taxa & fish	with Simon	2020	RF3	T3-1.3	2021-2022	2021-2022	Yes	project	
															SI & FA samples taken of
															same taxa of
															mesozooplankton,
															macrozooplankton & fish.
															These two datasets will be
															shared between J.
															Giebichenstein, R. Nowicki
															& D. Kohlbach. SI sampled
															by J. Giebichenstein will be
															analysed at UiO. FA
															analysed by D. Kohlbach
															(NPI) at AWI. Zooplankton
															SI dataset is also referred
															to in row 28 (Meso &
															macrozooplankton SI) and
															also linked to the Oithona
					NH UF	Challe in the set of DOCT									SI dataset (row 27)
Anette Wold;	Dhiling Assess	POIVI, ZOOPIANKTON	Stable	d12C d14N	INL V5	Stable isotopes of POM,								Dest de -	
Andria Keck;	Doreen Koblbach	is otopes	isotopes	(species specific?)	9.2.5 (0.1.5)	fich	1110	2020	DE3	T2-1 3	2021-2022	2021-2022	Voc	project	
CINIC C	ILIQUEELI NULLUEU	113010005	112101000	DATES STREETING (1)									· · F >	A & A & A & A & A & A & A & A & A & A &	

			Flow												
			Cytometry,	Flow Cytometry,											
			nutrient	nutrient analysis,											
			analysis,	phytoplankton and											
			phytoplankto	microzooplankton	NL v5										
			n and	diversity, HPLC,	9.2.1								Yes,		
Angela		Two point dilution	microzooplan	Fluorometry, CN	(should	Dynamics of lower trophic				T3-3.1 & T3-			possib	PhD	
Stippkugel	Angela Stippkugel	experiment	kton diversity,	, analysis	be 9.3.1)	level food web structure	NTNU	2018 - 2021	RF3	4.2	2021	2021	ly.	project	
Anna Vader,			Fluorometric	Chl a total and >	NL v5	Chl a total and > 10um									
Miriam	Anna Vader	Chlorophyll a	analysis	10um biomass	7.11.1	biomass	Onboard KPH	During cruise	3	T3-1.1	des.19	feb.20	No		
Anna Vader.						diversity across season				T3-1.1/T3-					Will be analysed partly by
Snorre Flo.	Anna Vader. Tove	Microbial diversity				based on rRNA				1.2/T3-					PostDoc to be hired august
Rita Amundsen	M. Gabrielsen	(DNA and RNA)	rRNA	Protist diversity		metabarcoding	UNIS	2019-20	RF3	1.3/T3.2.1/	2020	2020	No		2021
		1.2	1		1	Metatranscriptomics and									Will be analysed by
						quantification of gene									PostDoc to be hired august
A						expression of select genes									2021
Anna vader,	Anna vader, Tove		m DNIA	Drotist activity		across season	LINIC	2020	DED	T2 2 2	2021	2021	No		2022
SHOTTE FIO	IVI. Gabrielsen					Destist discussion	UNIS	2020	КГЭ	15-2.2	2021	2021	INO		-
A	Danta Eduarda an					Protist diversity,									
Anna vader,	Bente Edvardsen;		and the second in			proportional abundance,				T2 1 1 T2 1 2				Dh D	De st. of Konselling
Shorre Flo,	Anna vader; Tove	(DNA and DNA)	metabarcodin	Drotist divorsity		distribution		2010 2021	DED	13.1.1, 13.1.2,	2020	2020 2021	Vac	PhD-	Part of Karoline
Rita Amundsen	IVI. Gabrielsen	(DNA and KNA)	g using rDiNA	Protist diversity		distribution	UIO and UNIS	2019-2021	KF3	13.2.1	2020	2020-2021	res	project	Saubrekkas triesis
						spatial and temporal									
				ogg production		canadary production									
				egg production		specific aga production,									
Chuistine		Due du attribute ef	Car hatabian	rate, weight		specific egg production rate								nh n	
Christine	Constiller Constant	Productivity of	Egg natching	specific egg	chapter	as an estimate for copepod		2010 2021	052	T2 2 2	2020	2021		PND	
Gawinski	Camilia Svensen		experiment	production rate	9.2.3.	production	011	2019 - 2021	KF3	13-2.2	2020	2021	yes	project	
		Droductivity of				spatial and temporal									
		Productivity of				variability of copepod									
		Caranus	-	egg production		secondary production,									
Chaistin	Constiller Constant	nyperboreus,	Egg	rate, weight	NL V5	specific egg production rate								Dh D	
Christine	Camilla Svensen,	Calanus glacialis,	production	specific egg	cnapter	as an estimate for copepod		2010 2021	552	TA A A	2020	2024		PND	
Gawinski	Janne Søreide	Metridia longa	experiments	production rate	9.2.3.	production	UT	2019 - 2021	RF3	13-2.2	2020	2021	yes	project	
						spatial and temporal									
						variability of copepod									
						secondary production,									
						female:egg ratio as an									
				Female:egg ratio,		estimate for copepod									
a				taxonomy and	NL V5	production, copepod								21.0	
Christine		small	Secondary	abundance of	chapter	reproduction during the								PhD	
Gawinski	Camilla Svensen	mesozooplankton	production	nauplii	9.2.3.	polar night	UiT	2019 - 2021	RF3	T3-2.2	2020	2021	yes	project	
				composition,		characterization of the									
			Sorting and	zooplankton		mesozoopiankton									
			morphologica	abundance	NL v5	community in relation to									
Christine		small	1	(ind/m3) and	chapter	hydrography and seasons								PhD	
Gawinski	Camilla Svensen	mesozooplankton	identification	biomass (mg	9.2.1.2		UiT	2019 - 2021	RF3	T3-2.2	2020	2021	yes	project	
			Bacterial												
			production,	Bacterial											
			Flow	production, Flow		Influence of Oithona and									
Christine			Cytometry,	Cytometry,		Calanus on the microbial				1				1	
Gawinski,	1		microbial	microbial	Samples	food web (top down									
Hilde Rief	1	Grazing experiment	diversity,	diversity,	will be	control?), comparison									
Armo, Lise		of Oithona and	microzooplan	microzooplankton	analyzed	between the two different				1				PhD	
Øvreås	Camilla Svensen	Calanus	kton diversity	diversity	at UiB	feeding strategies	UiB	2019-2020	RF3	T3-4.1	2020	2021	yes	project	

					samples										
					sampres										
					will be										
Julia					analysed										
Giebichenstein					by Julia										
, Christine				d13C; d14N	Giebichst	Determine trophic position								PhD	
Gawinski	Camilla Svensen	stable isotopes	from Oithona	(species specific?)	ein	of Oithona	UiO	2019 - 2021	RF3	T3-2.2	2020	2021	yes	project	
					samples										
					will be										
					analysed	determine the quality of									
Christing				Delative amount of	anaryseu by Dorson	feed of Oithons in different								DhD	
Christine		e	6 au	Relative amount of	by Doreen	1000 of Ofthona in different									
Gawinski	Doreen Kohlbach	fatty acids	from Orthona	fatty acid	Kohlbach	seasons	NPI	2019 - 2021	RF3	13-2.2	2020	2021	yes	project	
			Benthos												
			sample from												
Eric Jorda.			box core for												
Arunima Sen	Anna Vader/Bodil		DNA analysis			Diversity of zoobenthos									
	Plubm/Camilla		of honthic			prov. possibly also gonatic							Voc		
Theirs Freites	Brunnin Camina		dista and anon	Denth an all at /annu		identification of boothin							ies,	DL D	Complete a state of the second in
Inaise Freitas,	Svensen/Kim		diets and prey	Benthos diet/prey		identification of benthic			-				possib	PND	Sample type not found in
Snorre Flo	Præbel	Sediment in ethanol	based on DNA	diversity	NL v5 10	species	UNIS/UIT	2020-21	3	T4-4.1	2021	2021	ly	project	log sheet, should be added
			Carbonate			Relative and absolute									
			contribution			abundance of marine									
			(from the		tba 64 um	calcifiers on the water									
			abundances		multinet -	column and their									
Kasia	Agneta Fransson		of marine	mg CaCO3/m3 (%	fixed	contribution to the	NPL CAGE-LIIT							Post Doc	
Zamol czyk	Tinol Pacmusson	Plankton cample	calcifiors)	and #/m2)	donths	carbonato numn	(Trome d)	2020	DE3	T2 1 4	2021	2021	VOC	nroject	
Zamerczyk	THE L. Rashussen	Flankton sample	calcilleis		ueptils		(ITOIIISØ)	2020	RF2	12-1.4	2021	2021	yes	project	
			Bacterial	Bacterial											
		Bacterial activity	production of	production rate											
Hilde Stabell /		(Radioactively	carbon	([2,3,4-3H] leucine)						T3-2.3/T3-					
Lise Øvreås	Gunnar Bratbak	labelled bacteria)	biomass	in μgC L-1-d-1	NL v5 7.19	Bacterial production rate	UiB	2019-2020	RF3	3.1/	2020	2021	No		Confirm with the PI
Hilde Stabell /	Gunnar Bratbak,	Microbial	Flow	Planktonic cell per						T3.1.1, T3.1.2,					
Lise Øvreås	Aud Larsen	abundance	cytometry	ml	NL v5 7.18	Abundance tables	UiB	2019-2020	RF3	T3.2.1	2020	2021	No		Confirm with the PI
			Scanning	Qualitative											
Hilde Stabell /			electron	analysis of		Plankton diversity				T2 1 1 T2 1 2					
Lico duroåc	Gunnar Brathak	SEM filtor	microscoppy	cmall plankton		dynamics, and distribution	LIED	2010 2020	DE2	T2 2 1	2020	2021	No		Confirm with the Pl
Lise Øvreas		SEIVETITLE	Microscoppy		INL V5 7.22		UIB	2019-2020	KL2	15.2.1	2020	2021	NO		commi with the Pi
	Gunnar Bratbak,		х-кау	Concentration of		Concentration of total									
Hilde Stabell /	Jorun K. Egge,		Fluorescence	total particulate		particulate O, P, Na, Mg, Si,				T3.1.1, T3.1.2,					
Lise Øvreås	Tatiana Tsagaraki	XRF filter	(XRF)	elements in µM	NL v5 7.9	S, Ca, Mn, Fe, Zn (μM)	UiB	2019-2020	RF3	T3.2.1	2020	2021	No		Confirm with the PI
			Recover												
			viruses from							1					
			natural			Virus diversity across				1	1				
Hilde Stabell /	Gunnar Brathak		waters via			season based on				T3 1 1 T3 1 2					
Lise Øyreås	Ruth-Anne Sandaa	Virus diversity	iron chloride	Virus diversity	NI v5 7 20	metabarcoding	LIIB	2019-2020	RE3	T3 2 1	2020	2021	No		Confirm with the Pl
LISE ØVIERS	Nutri-Anne Sanuaa		nonemonae	virus urversity	INE V5 7.20	metabarcounig	010	2013-2020	NI J	13.2.1	2020	2021	NO		communication of the second
			Bacterial												
			production,										1		1
			Flow	Bacterial						1					
			Cytometry	production Flow									1		1
			microbial	Cytometry									1		1
			diversity	microbial						1					
			urversity,										1		1
			nutrient	aiversity, nutrient						1					
	Gunnar Bratbak,		analysis,	analysis,									1		1
Hilde Stabell /	Oliver Müller,	Grazer exclusion	microzooplan	microzooplankton	NL v5	Dynamics of lower trophic				1					
Lise Øvreås	Lasse Mørk Olsen	experiment	kton diversity	diversity	7.27.1	level food web structure	UiB	2019-2020	RF3	T3-4.1	2020	2021	No		Confirm with the PI

		zooplankton	Physiology; respiration;												this was a test experiment
Janne E.		community	energetic		NL v5										run once and only during
Søreide	Janne E. Søreide	respiration	needs	respiration	9.2.2	Basal metabolic rate	UNIS	autumn 2020	RF3	T3-2.1; 4.2	2020	2021	no		Q4
		Zooplankton													surface waterintake collected a lot of
		community from	stable		NL v5										zooplankton while
Janne E.		ship's surface	isotopes and		9.2.5	Stable isotopes of									steaming - this collected
Søreide	Janne E. Søreide	water intake	community	13C and 15N	(9.1.5)	zooplankton community	UNIS	2021	RF3	T3-4.2	2021	2021	no		for stable isotope samples
Konrad															Many C. hyperboreus and
Karlsson,			DNA (antenna)			Individual dry weight of									C. glacialis males in
Janne E.		Individual Calanus	and Dry	DNA and Dry	NL v5	species identified Calanus									December so special focus
Søreide	Janne E. Søreide	males	matter	matter	9.2.2	males	UNIS	2021	RF3	T3-4.2	2021	2021	no		on sampling them
			Physiology;			individual dry weight,									
Konrad	Konrad Karlsson,	Individual copepod	respiration;	respiration,	NL v5	Calanus species ID									
Karlsson	Janne E. Søreide	basal metabolism	energetic	images, dry matter	9.2.2	molecular tools	UNIS	2021	RF3		2021	2021	no		
				food web											
Julia	K. I	DEAC	DEAC	contaminant	NL V5	food web contaminant		2040 2022	552	T2 2 4	2022	2022		PhD	
Glebichenstein	Katrine Borga	PFAS water samples	PFAS analyses	biomagnification	13.1.2	biomagnification	010	2019-2022	RF2	12-2.1	2022	2022	yes	project	
Giobichonstoin			isatanas	food wob											
Bita		Moso and	moreury	contaminant	INL V5	food web contaminant								PhD	
Amundson	Katrine Borgå	Macrozoonlankton	nersistent	biomagnification	13	hiomagnification		2019-2021	RE2	T2-2 1	2021	2022	VOC	project	
Antanasen,	Ratific Dorga	Naci 0200prankton	persistent	food web	NI V5	biomagnification	010	2015-2021	1112	12-2.1	2021	2022	yes	project	
Giehichenstein		In-situ filtration	organic	contaminant	chanter	food web contaminant								PhD	
. Rita	Katrine Borgå	pump	pollutant	biomagnification	13	biomagnification	UiO	2019-2021	RF2	T2-2.1	2021	2022	ves	project	
,		P = P	isotones										,		
		frozen (-20C) whole	mercury												SLanalyses will be done at
Julia		and dissected	persistent	food web	NL V5										UiO, fatty acid analyses by
Giebichenstein		fishes: muscle.	organic	contaminant	chapter	food web contaminant								PhD	post-doc at NP, if she needs
. Øvstein Varpe	Katrine Borgå	otoliths, stomach	pollutants.	biomagnification	13	biomagnification	UiO / NP	2019-2021	RF2	T2-2.1	2021	2022	ves	project	this data.
,,,,								2019-2021					1		
								(analysed							
				dissolved oxygen,				onboard,							
Libby Jones,			Carbonate	pH, dissolved				except							Onboard analyses except
Helena Hodal			chemistry and	inorganic carbon,		dissolved oxygen, pH,		nutrients							nutrients and O18 which
Lødemel, Ylva	Melissa Chierici,	Water samples	chemical	alkalinity,		dissolved inorganic carbon,		post.crusie							are samples for pot-cruise
Ericson	Agneta Fransson	from the CTD	parameters	nutrients, d180	NL v5	alkalinity, nutrients, d180	IMR/NPI	analyses)	RF2	T2-1.1	2020	2021	No		analysis in 2020
Libby Jones,			Carbonate	pH, dissolved											Onboard analyses except
Helena Hodal	Maliana Chiaviai	Sea Ice, show,	chemistry and	inorganic carbon,		pH, dissolved inorganic									nutrients and 018 which
Lødemer, riva	Agente Fregerici,	brine, under-ice	chemical	arkarinity,	NIL VE	carbon, arkannity,		2010 2021	052	T2 1 1	2020	2021	NIE		are samples for pot-cruise
Ericson	Agneta Fransson	water	parameters	nutrients, d180	INL V5	nutrients, d180	TIVIR/INPT	2019-2021	RF2	12-1.1	2020	2021	NO		analysis in 2020
lise Øvreås		Microbial diversity	rDNA and	Bacterial and		on rDNA and rRNA									
Anna Vador	Lico Ouroåc	(DNA and PNA)	r DNA allu	archoan divorcity	NI VE 7 1 5	motobarcoding		2020	2	T2 1 1	2020	2021	No		
Maria	LIJC (201003		11110	Type and	142 45 7.15	metabarcourng	0.5	2020	5	13-1.1	2020	2021	110	1	
Digernes.		Dissolved organic		composition of		Variation, composition, and				1					
Stephen		matter		DOM, TOC,		distribution of DOM and				1					
Kohler,		characterization.		ancillary POC and		TOC, with ancillary POC				1				phd	
Nicolas	Murat V. Ardelan	тос	HPLC-MS	DOC	NL v5 7.6	and DOC measurements	NTNU	2019-2020	RF2	T2-2.2	2020	2021	yes	project	Maria Digernes PhD project

Marti anom Beldingstreinty (F) Function Printing (F) (F) Function Printing (F) Function					1	1		1		1		1	1	1	1	
Amarganic Isabilità algene inproduction rate opendiarità acras intrata opendiarità acras intrata opendiarità acras D 17 1019 300 8 127 2010 2010 No No Mardia Ref razdenge (pit internity Acras (pi	Martí		Radioactively	Primary	Primary		Vertical profiles of primary				T3-1.1/T3-					
Arrent Boff Grafinger Grafinger Grafinger Grafinger Status	Amargant-		labelled algae on	production in	production rate		production across latitude				1.2/T3-				PhD-	
Mittle Base setup uptitions of response variable Primary positions response variable UP Primary positions response variable	Arumí	Rolf Gradinger	GF/F filters	situ	(14C uptake)	NL v6 7.26	and seasons	UIT	2019-2020	RF3	1.3/T3.2.1/	2020	2021	Yes	project	
Instragent Budiscripting Unit Instragent Primary production Primar																
Marting Badin streky No. Primary production and productin and production and productin and production and produc				Light intensity												
Amarge Amarge Instant of all of alge on photosynthes i production rel response to various light of alge on photosynthes i production rel set on set of alge on photosynthes i production rel set on set of alge on photosynthes i production rel set on set of alge on photosynthes i production rel set on set of alge on photosynthes i production rel set on set of alge on photosynthes i production rel set on photosynthes i production rel set on set of alge on photosynthes i production rel set on set of alge on photosynthes i production rel set on set of alge on photosynthes i production rel set on set of alge on photosynthes i production rel set on set of alge on photosynthes i production rel set on set of alge on photosynthesis i producti photosynthesis i production rel photosynthesis i product	Martí		Radioactively	vs.	Primary		Primary production				T3-1.1/T3-					
Anum Belf Gradinge Gr/F Bites score Lice uplate Not and the performance Display bites	Amargant-		labelled algae on	Photosynthesi	production rate		response to various light				1.2/T3-				PhD-	
Mardi Amargant. Nation of Control and Statistics of Control and Statistics and Statistics of Control and Statistics Amargant. Nation of Control and Statistics Incubations. Nation of Control and Statistics Incubation of Control and Incubation of Control and Incubatistics Incubation of Control and Incubation of C	Arumí	Rolf Gradinger	GF/F filters	s curves	(14C uptake)	NL v6 7.27	intensitites	UIT	2019-2020	RF3	1.3/T3.2.1/	2020	2021	Yes	project	
Numing Risopen Lip Nargent update in size Nargent update in size Norgent hunders in size Norgent hundersin Norgent hu							Ratios of Carbon and									
Martar Second alter Second alter Inclusion							Nitrogen stable isotopes									
managent Around Balf Gradingent Birl Gradingen Gr/f Birlsr inclusions discussions Frank Problem	Martí		Isotonically	Nitrogon			hefore and after				T2 1 1/T2					
Amound Albel for addinger Open to be the set of the s	ivial ti		isotopically	Niti Ogen			belore and arter				13-1.1/13-					
Arum Rel Gradinger CF# filters inclustions d12C, d15N TBO printing production 7 2019-202 R13 1.3/T3-1/ 2020 2021 Ve printing Arum Fired water Fired water Product Town productions and corresponding abundances Product Town production of productions and corresponding abundances Product Town productions and correspond	Amargant-		labelled algae on	uptake in situ			incubations, F-ratios of	_			1.2/13-				PND-	
Nardi Anargant Anargant Anargant Anargant Anargant Anargant Minim Fixed ware sprints are comments between and comments are comments between and comments are comments between and comments are comments between and comments are comments between and comments are comments between and comments are comment are comments are comments are comments are comments ar	Arumí	Rolf Gradinger	GF/F filters	incubations	d13C, d15N	TBD	primary production	?	2019-2020	RF3	1.3/T3.2.1/	2020	2021	Yes	project	
Fired water stringles and Amargant. Fired water stringles and protect Different incubation and Gradinger Protist DNA sequences, phyloglendic opsition and corresponding abundances and Gradinger Protist DNA sequences, phyloglendic opsition and corresponding abundances and concertively between and concentratively between and concertively between																
Marti Marti Amargant- Amargant- Atargant- Rangargant- Atargant- Rangargan																
Marti Sample and experimental margant			Fixed water				Protist DNA sequences,									Quantification of
Marria Serives, Hiser from experimental or experimental or experimental functional difference in transmission of transmissing transmission of transmis			samples and				phylogenetic positions and									phytoplankton resting
Anargent experimental	Martí		Sterivex filters from		Community		corresponding abundances				T3-1.1/T3-					spores' germination rates,
April Far All Registad, Maria Mari Registad, Mara Registad	Amargant-		experimental		composition cell		at different incubation				1 2/T3-				PhD-	and connectivity between
And the second of the	Arumí	Rolf Gradinger	bottles	see comments	abundances		times	ніт	2019-2020	RE3	1 3/13 2 1/	2020	2021	Voc	nroject	sea ice and sediments
Minified Mark Registion Opc/PON CM analyses µ/L NL 57.4 POC/PON UIT/UIB 2020-2023 RF3 Conception Vest V	Alum	Mon di admiger	bottles	see comments	abundances	100	times	011	2013-2020	NI J	1.5/15.2.1/	2020	2021	163	project	sea ree and sediments
Marigand Lemma France POL/PON CM naryes Jup / J	wirram	Marit Reigstad,													PND	
Miriam Miriam Ice mediauna Nuriami Nortami	Marquardt	Gunnar Bratbak	POC/PON	CN analyses	µg/L	NL v5 7.4	POC/PON	UIT/UIB	2020-2023	RF3		2020-2023	2022	yes	project	
Marquardt, Rolf abundance/taxono Microscopy Ind/m3:mi Nucroscopy Nucrosco	Miriam	Miriam	Ice mei ofa una			NL v5	Ice meiofauna							Yes,		
Miriam Mirism Mutients from samply corres Nutrients Nutrients <td>Marquardt</td> <td>Marquardt, Rolf</td> <td>abundance/taxono</td> <td>Microscopy</td> <td>Ind/m3; ml/m3</td> <td>14.6.4</td> <td>abundance/taxonomy</td> <td>UiT</td> <td>2020-2023</td> <td>RF3</td> <td></td> <td>2020-2023</td> <td>2022</td> <td>possib</td> <td></td> <td></td>	Marquardt	Marquardt, Rolf	abundance/taxono	Microscopy	Ind/m3; ml/m3	14.6.4	abundance/taxonomy	UiT	2020-2023	RF3		2020-2023	2022	possib		
Marquard, Ubby Jones, Nackas Multients from sea (a genet Franson (a ce ores) Nutrients from sea (a nu ly accord) Nutrients (a genet Franson) Nutrients from sea (a nu ly accord) Nutrients (a nu ly accord) Nutrients (a nu ly accord) N	Miriam															
Libby Jones, Nacolas Agneta Fransson Lee cores analyzer µg/L + 7.10 Nutrients IMR 2020-2023 RF3 2020-2023 2023 No Mod Nicolas Total trace elements and dissolved trace Total and dissolved trace Kend	Marguardt,	Melissa Chierici,	Nutrients from sea	Nutrient		NL v5 14.6										
Nicolas Discussion Total trace elements and dissolved trace stephen dissolved trace Preconcentrat elements and dissolved trace Discussion Discusion Discussion Discussio	Libby Jones	Agneta Fransson	ice cores	analyzer	ug/I	+ 7 10	Nutrients	IMR	2020-2023	RF3		2020-2023	2023	No		
Incomo Incomo Incomo Incomo Incomo Incomo New and trace <t< td=""><td>Nicolas</td><td>- Brieta i l'anssen</td><td>Total trace</td><td>Preconcentrat</td><td>PB/ -</td><td></td><td>induiterits</td><td></td><td>2020 2020</td><td>1.1.0</td><td></td><td>2020 2025</td><td>2020</td><td></td><td></td><td></td></t<>	Nicolas	- Brieta i l'anssen	Total trace	Preconcentrat	PB/ -		induiterits		2020 2020	1.1.0		2020 2025	2020			
Salitized, beinders and dissolved trace kohler, Maria Murat V. Ardelan elements ICP-MS elements in M NLV 5.7. elements transect profile NTW 2019-2020 RF2 T2-2.2 2020 2021 PI Confirm with the PI Nils Olav Echo bacscattering NLV 5.7. elements in M NLV 5.7.	Sanchoz		olomonts and	ionvia										Nood		
Stephen Initial and dissolved trace Sea AVS 1 and Long fragments Initial and dissolved trace Initial and d	Sanchez,													Neeu		
Kohler, Maria Murat V. Ardelan elements ICP-MS elements in nM NU \$ 7.7 elements transact profile NTU 2019-2020 RF2 T2-2.2 2020 2021 PI Confirm with the PI Nils Olav Handegard, Nils Olav Echo bacscattering NL \$ 5 Zoplankton target Onboard KPH During cruise RA-C TC-1-1 2020 2020-2022 No PI Confirm with the PI Nils Olav Handegard TS probe integration strength 9.1.3 strength Onboard KPH During cruise RA-C TC-1-1 2020 2020-2022 No PA Nils Olav Echo bacscattering NL \$ 5 Zoplankton acoustic Onboard KPH During cruise RA-C TC-1-1 2020 2020-2022 No PA A strength <	Stephen		dissolved trace	SeaFAST and	Concentration of		lotal and dissolved trace							to ask		
Nils Olav Acoustic <t< td=""><td>Kohler, Maria</td><td>Murat V. Ardelan</td><td>elements</td><td>ICP-MS</td><td>elements in nM</td><td>NL v5 7.7</td><td>elements transect profile</td><td>NTNU</td><td>2019-2020</td><td>RF2</td><td>T2-2.2</td><td>2020</td><td>2021</td><td>PI</td><td></td><td>Confirm with the PI</td></t<>	Kohler, Maria	Murat V. Ardelan	elements	ICP-MS	elements in nM	NL v5 7.7	elements transect profile	NTNU	2019-2020	RF2	T2-2.2	2020	2021	PI		Confirm with the PI
Handegard, Tom VanNIs OlavEcho Handegardbcc. strength9.1.3StrengthsOnboard KPHDuring cruiseRA-CTC -1-120202020-2021NoImage comparisonTom VanHandegard, Handegard, Nils OlavShipp mountedAcoustic EchoAcoustic bacscatteringNL v5Zooplankton acoustic backscatterOnboard KPHDuring cruiseRA-CTC -1-120202020-2022NoImage comparisonTom VanHandegard, HandegardNils OlavShipp mounted echo soundersEcho integrationStrength9.1.3backscatterOnboard KPHDuring cruiseRA-CTC -1-120202020-2022NoImage comparisonTom VanHandegard, Handegardecho soundersItaxonomic electron microscoppy abundance andItaxonomic Coccolithophore diversity, abundance andOnboard KPHDuring cruiseRA-CTC -1-120202020-2022NoImage comparison protist site site site site site site site	Nils Olav				Acoustic											
Tom VanHandegardTS probeintegrationstrength9.1.3strengthsOnboard KPHDuring cruiseR.4.TC-1.120202020-2022NoINIIS OlavNIIS OlavAcousticbaccsatteringNLv5Zooplankton acousticbaccsatteringNLv5Zooplankton acousticNIIS OlavNIIS Olav	Handegard,	Nils Olav		Echo	bacscattering	NL v5	Zooplankton target									
Nils Olav Handegard, Tom Van Nils Olav Handegard Shipp mounted echo sounders Acoustic bacscattering echo strength Acoustic bacscattering strength Zooplankton acoustic backscatter Onboard KPH During cruise RA-C TC-1-1 2020 2020-2022 No Part of Karoline Rita Amundsen Luka Supraha on PC filters (SEM) taxonomic composition, abundance and distribution Coccolithophore diversity, abundance and distribution UIO 2019-2020 RF3 T3.1.1, T3.1.2, T3.2.1 2021-2022 PI Part of Karoline Saubrekkas thesis. Confirm Rita Amundsen Fixed water samples from Rita Amundsen, Anna Vader, Anna Vader Mits diversity surgestrate Vermit diversity, surgestrate Phytoplankton/protist with metabarcoding project NL v5 7.13 Phytoplankton/protist abundance, dynamics and distribution ISOP 2019-2020 RF3 T3.1.1 Vermit when ready 2021 Vermit with micoscopical cell counts in Karoline Saubrekkas PhD- project Rita Amundsen, Anna Vader Bente Edvardsen; Anna Vader Protist diversity, surgestrate Protist diversity, proportional abundance, dynamics and distribution ISOP 2019-2020 RF3 T3.1.1, T3.1.2, T3.1.1, T3.1.2, PhD- PhD- PhD- Part of Karoline	Tom Van	Handegard	TS probe	integration	strength	9.1.3	strengths	Onboard KPH	During cruise	RA-C	TC-1-1	2020	2020-2022	No		
Handegard, Tom VanNils Olav HandegardShipp mounted echo soundersEcho integrationbacscattering strengthNLv5 9.1.3Zooplankton acoustic backscatterOnboard KPHDuring cruiseRA-CTC-1-120202020-2022NoAnRitaAmundsenLuka Suprahaon PC filtersSEM)taxonomic composition, microscoppytaxonomic composition, distributionNL v5 7.22doplankton acoustic backscatterNH<	Nils Olav				Acoustic											
Nameger of tom VanHandegardEcho SoundersIntegrationStrength9.1.3backscatterOnboard KPHDuring cruiseRA-CTC-1-120202020-2022NoNoTom VanHandegardecho soundersintegrationstrength9.1.3backscatterOnboard KPHDuring cruiseRA-CTC-1-120202020-2022NoNoRita AmundsenLuka Suprahaon PC filters(SEM)distributionNL v5 7.22dynamics and distributionUiO2019-2020RF3T3.2.12021-20222021-2022PIPojectwith the PIRita AmundsenExpressionLiter with cell counts underCoccolithophore diversity, distributionNL v5 7.22dynamics and distributionUiO2019-2020RF3T3.2.12021-20222021-2022PIprojectwith the PIRita AmundsenBente Edvardsen samples from Rifa Gradinger, Rita Amundsen, Bente EdvardsenVier wöhl cell counts underNL v5 7.13Phytoplankton/protist diversity, proportional abundanceISOP2019-2020RF3T3.1.1when ready2021NoNoNa aval network Arao NaderRita Amundsen, Anna Vader, Shorre Flo Anna VaderProtist diversity g using rDNA and rRNAProtist diversity proportional abundance, dynamics and distributionNoSciPe 2019-2020RF3T3.1.1, T3.1.2, T3.1.1, T3.1.2,20212021NoPhD-Part of KarolineRita Amundsen, Anna VaderBente Edvardsen; 	Handegard	Nils Olav	Shinn mounted	Echo	hacscattering	NI v5	Zoonlankton acoustic									
IntegrationFindegrationStatingS1.3DackstrationOniobard KPIDuring cluiseKPCCP1120202020-2022NoNoRitaAmundsenLuka Suprahaon PC filters(SEM)taxonomic composition, abundance and distributionCoccolithophore diversity, distributionUiO2019-2020RF3T3.1.1, T3.1.2, T3.2.12021-20222021-2022PIPart of Karoline Saubrekkas thesis. Confirm with the PIRitaFixed water samples from Rolf Gradinger, depths and iceUtermöhl cell counts underNL v5 7.13Phytoplankton/protist abundanceISOP2019-2020RF3T3.1.1when ready2021NoWe would like to compare metabarcoding results with micoscopical cell counts in Karoline Saubrekkas PhD- projectRitaAmundsen, Anna Vader, (DNA and RNA)microscope ad rd RNAProtist diversity, Protist diversityProtist diversity, proportianal abundance, dynamics and distributionISOP2019-2020RF3T3.1.1when ready2021NoProjectRitaMundsen, Anna Vader, (DNA and RNA)and rRNAProtist diversity, ProjectProtist diversity, propertistProtist diversity, propertistPhoto and distributionISOP2019-2020RF3T3.1.1, T3.1.2, T3.1.1, T3.1.2,Photo Part of Karoline project	Tom Van	Handogard	ocho coundors	intogration	strongth	0 1 2	backscattor		During cruico	PA C	TC 1 1	2020	2020 2022	No		
Scatning electronComposition, abundance and distributionCoccolithophore diversity, abundance andImage: Coccolithophore diversity, abundance and distributionNeed composition, abundance and distributionPart of Karoline to askRita AmundsenLuka Suprahaon PC filters(SEM)distributionNL v5 7.22dynamics and distributionUiO2019-2020RF3T3.1.12021-20222021-2022PIprojectwith the PIRita AmundsenLuka Suprahaon PC filters(SEM)Utermöhl cell counts under depts and iceNL v5 7.13Phytoplankton/protist projectFixed water samples from depts and iceUtermöhl cell projectNL v5 7.13Phytoplankton/protist projectFixed water samples from microscopeVew ould like to compare protist > 10 µmFixed water samples from protist diversity, proportional abundanceISOP2019-2020RF3T3.1.1when ready with eneradyVew ould like to compare with the PIRita AmundsenBente Edvardsenmicroscope stationsmicroscope protist > 10 µm+7.14abundanceISOP2019-2020RF3T3.1.1when ready with eneradyVew ould like to compare with the PIRita Anna Vadermetabarcodin guing rDNA Anna VaderProtist diversity guing rDNA (DNA and RNA)Protist diversity guing rDNAProtist diversity projectProtist diversity projectVew ould like to compare projectRF3T3.1.1Wen ready sau2021NoMedProject		nanuegaru	echo sounders	Cooperation	su engen	5.1.5	DackScatter	Chibbara Ki II	During cruise	NA-C	10-1-1	2020	2020-2022	NU		
Rita Amundsen Luka Supraha Coccolithophores on PC filters Coccolithophore diversity, distribution Coccolithophore diversity, distribution UIO 2019-2020 RF3 T3.1.1, T3.1.2, T3.2.1 Need Part of Karoline Rita Amundsen Luka Supraha on PC filters (SEM) distribution NL v5 7.22 dynamics and distribution UiO 2019-2020 RF3 T3.2.1 2021-2022 2021-2022 PI project with the PI Rita Amundsen Fixed water samples from Niskin bottles 6 Counts under the Lermöhl cell counts under NL v5 7.13 Phytoplankton/protist + 7.14 Amundance ISOP 2019-2020 RF3 T3.1.1 Value Value Value would like to compare metabarcoding results with microscopical cell counts in Karoline Saubrekkas PhD- project Value <td< td=""><td></td><td></td><td></td><td>scanning</td><td>taxonomic</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				scanning	taxonomic											
Rita AmundsenLuka SuprahaCoccolithophoresmicroscoppabundance andCoccolithophore diversity,microscoppT3.1.1, T3.1.2,to askPhD-Saubrekkas thesis. ConfirmRita AmundsenLuka Suprahaon PC filters(SEM)distributionNL v5 7.22dynamics and distributionUIO2019-2020RF3T3.2.12021-20222021-2022PIprojectwith the PIFixed water samples from Niskin bottles 6 Rolf Gradinger, Rita AmundsenFixed water depths and iceUtermöhl cell theCell abundances of projects >10 µmNL v5 7.13Phytoplankton/protistFixed NL v5 7.13Phytoplankton/protistVermöhl cell counts underVermöhl cell micoscopical cell counts in Karoline Saubrekkas PhD- projectZ020 orVermöhl cell counts underVermöhl cell micoscopical cell counts in Karoline Saubrekkas PhD- projectZ020 orVermöhl cell counts underVermöhl cell micoscopical cell counts in Karoline Saubrekkas PhD- projectZ020 orVermöhl cell counts underVermöhl cell micoscopical cell counts in Karoline Saubrekkas PhD- projectZ020 orVermöhl cell counts underVermöhl cell micoscopical cell counts in Karoline Saubrekkas PhD- projectZ020 orVermöhl cell counts underVermöhl cell micoscopical cell counts in Karoline Saubrekkas PhD- projectPho-Pho- Part of KarolinePho- Part of KarolineRita Amundsen, Anna Vader, Snorre Flo Anna Vader,Bente Edvardser; Protist diversity g using rDNA and rRNAProtist diversity NL v5 7.15 <td< td=""><td></td><td></td><td></td><td>electron</td><td>composition,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Need</td><td></td><td>Part of Karoline</td></td<>				electron	composition,									Need		Part of Karoline
Rita Amundsen Luka Supraha on PC filters (SEM) distribution NL v5 7.22 dynamics and distribution UiO 2019-2020 RF3 T3.2.1 2021-2022 PI project with the PI Rita Amundsen Fixed water samples from Niskin bottles 6 NL v5 7.22 dynamics and distribution UiO 2019-2020 RF3 T3.2.1 2021-2022 PI project with the PI Philipp Assmy, Nolf Gradinger, Rita Amundsen Niskin bottles 6 Outer wöhl cell depths and ice NL v5 7.13 Phytoplankton/protist Phytoplankton/protist Phytoplankton/protist Pi Z019-2020 RF3 T3.1.1 when ready Z021 No Picet We would like to compare metabarcoding results with micoscopical cell counts in Karoline Saubrekkas PhD- project Rita Amundsen Bente Edvardsen stations microscope protist diversity, project Phytoplankton/protist ISOP 2019-2020 RF3 T3.1.1 when ready Z021 No Phytoplankton/protist Rita Amundsen, Amundsen, Anna Vader Bente Edvardsen; Protist diversity Protist diversity, project Protist diversity, quanics and distribution FSO T3.1.1, T3.1.2, Phytoplankton/protist			Coccolithophores	microscoppy	abundance and		Coccolithophore diversity,				ТЗ.1.1, ТЗ.1.2,			to ask	PhD-	Saubrekkas thesis. Confirm
Fixed water samples from Philipp Assmy, Niskin bottles 6 addf Gradinger, Rita AmundsenFixed water samples from Niskin bottles 6 the metabarcodin protist s > 10 µmPhytoplankton/protist abundances of +7.14Phytoplankton/protist abundanceISOP2019-2020RF3T3.1.1Phytoplankton/protist when readyPhytoplankton/protist protistRita Anna VaderNNMetabarcodin metabarcodin gusing rDNA and rRNAProtist diversity gusing rDNA And VaderProtist diversity (DNA and RNA)Protist diversity and rRNAProtist diversity NL v5 7.15NL v5 7.15Phytoplankton/protist abundanceSOP2019-2020RF3T3.1.1Protist protistNL v5 7.16Phytoplankton/protist abundanceRita Anna VaderNNProtist diversity, gusing rDNA and rRNAProtist diversity, proportional abundance, dynamics and distribution dynamics and distribution dynamics and distributionProtist diversity, dynamics and distribution dynamics and distribution dynamics and distributionNL v5 7.16Phottle diversity, dynamics and distribution dynamics and distribution dynamics and distributionRF3T3.1.1, T3.1.2, T3.2.1PhotPhot PhotPhot PhotePhot Subrekkas thesisProtist diversity dynamics and distributionNL v5 7.15Hrough the seasonsUiO and UNIS2019-2021RF3T3.2.12021202120212021Subrekkas thesis	Rita Amundsen	Luka Supraha	on PC filters	(SEM)	distribution	NL v5 7.22	dynamics and distribution	UiO	2019-2020	RF3	T3.2.1	2021-2022	2021-2022	PI	project	with the PI
Fixed water Fixed water Fixed water Mamples from Utermöhl cell Mamples from Utermöhl cell Mamples from We would like to compare Philipp Assmy, Niskin bottles 6 counts under counts under counts under Phytoplankton/protist hytoplankton/protist phytoplankton/protist 2020 or 2020 or 2020 or 2020 or protist 2020 or protist protist protist diversity, p																
kamples from Philipp Assmy, Rolf Gradinger, Rolf Gradinger, Rita Amundsen Bente Edvardsen Utermöhl cell counts under the kamples from counts under the Utermöhl cell counts under the kamples from counts under Nu v5 7.13 Phytoplankton/protist Phytoplankton/protist Phytoplankton/protist Phytoplankton/protist Phytoplankton/protist Riskin bottles 6 Phytoplankton/protist Phytoplan			Fixed water													We would like to compare
Philipp Assmy, Riskin bottles 6 colunts under Riskin bottles 6 depths and ice Niskin bottles 6 the Colums under the Cell abundances of the NLv 5 7.13 Phytoplankton/protist Phytoplankton/protist 2020 or 2020 or 2020 or No Micoscopical cell counts in Karoline Saubrekkas PhD- project Rita Amundsen, Rita stations microscope protists > 10 µm + 7.14 abundance ISOP 2019-2020 RF3 T3.1.1 when ready 2021 No project Rita metabarcodin metabarcodin Protist diversity, proportional abundance, dynamics and distribution Protist diversity T3.1.1, T3.1.2, No PhD- Part of Karoline Snorre Flo Anna Vader (DNA and RNA) and rRNA Protist diversity NLv 5 7.15 through the seasons UiO and UNIS 2019-2021 RF3 T3.2.1 2021 2021-2022 Yes project			samples from	Utermöhl cell												metabarcoding results with
Rink bounds of Rita Amundsen Mark bounds of depths and ice Nu voides of the Counts winds Nu voides of the Nu voides of Cell abundances of microscope Nu voides of the		Philipp Assmu	Nickin bottles 6	counts under	1		1	1					1			micosconical cell counts in
Karolinger, Rita Amundsen depths and ice the microscope Cell abundances of protists >10 µm NU S 7.13 Phytoplankton/protist ISOP 2019-2020 RF3 T3.1.1 when ready 2021 No project Rita microscope protists >10 µm + 7.14 abundance ISOP 2019-2020 RF3 T3.1.1 when ready 2021 No project Rita metabarcodin Protist diversity, proportional abundance, dynamics and distribution Protist diversity, dynamics and distribution Fig T3.1.1, T3.1.2, T3.1.1, T3.1.2, No Phytoplankkas Phul- project Snorre Flo Anna Vader (DNA and RNA) and rRNA Protist diversity NL v5 7.15 through the seasons UiO and UNIS 2019-2021 RF3 T3.2.1 2021 2021-2022 Yes project		Pilitipp Assing,	NISKII DOLLES O		C.I.I							2020				Micoscopical cell coulds III
Rita Amundsen Bente Edvardsen stations microscope protists > 10 µm + 7.14 abundance ISOP 2019-2020 RF3 T3.1.1 when ready 2021 No project Rita Amundsen, Protist diversity, Protis	L	Kolf Gradinger,	depths and ice	the	Cell abundances of	NL V5 /.13	Phytoplankton/protist				L	2020 or	L			karoline Saubrekkas PhD-
Rita Protist diversity,	Rita Amundsen	Bente Edvardsen	stations	microscope	protists > 10 μm	+ 7.14	abundance	ISOP	2019-2020	RF3	13.1.1	when ready	2021	No	L	project
Amundsen, metabarcodin metabarcodin proportional abundance, prospectional abundance, prospectionabundance, prospectional abun	Rita				1		Protist diversity,	1					1			
Anna Vader, Bente Edvardsen; Protist diversity g using rDNA dynamics and distribution T3.1.1, T3.1.2, PhD- Part of Karoline Snorre Flo Anna Vader (DNA and RNA) and rRNA Protist diversity NL v5 7.15 through the seasons UIO and UNIS 2019-2021 RF3 T3.2.1 2021-2022 Yes project Saubrekkas thesis	Amundsen,			metabarcodin	1		proportional abundance,	1					1			
Snorre Flo Anna Vader (DNA and RNA) and rRNA Protist diversity NL v5 7.15 through the seasons UIO and UNIS 2019-2021 RF3 T3.2.1 2021 2021-2022 Yes project Saubrekkas thesis	Anna Vader,	Bente Edvardsen;	Protist diversity	g using rDNA	1		dynamics and distribution	1			T3.1.1, T3.1.2,		1		PhD-	Part of Karoline
	Snorre Flo	Anna Vader	(DNA and RNA)	and rRNA	Protist diversity	NL v5 7.15	through the seasons	UiO and UNIS	2019-2021	RF3	T3.2.1	2021	2021-2022	Yes	project	Saubrekkas thesis

										1		1			i
	Bente Edvardsen,	Fixed	Light and	Protist diversity >		Species lists and	UiO and						Need	PhD-	Part of Karoline
Rita Amundsen	Philipp Assmy	phytoplankton	electron	10 µm	NL v5 9.1	micrographs	IOPAS	2020-2021	RF3	T3.1.1	2020-2021	2021	to ask	project	Saubrekkas thesis.
			Energetics												
			analysis												
		'	using homb	Enorgy protoin		Soconal variation in									
				Lifeigy, protein											
			calorimetry	and lipid content;		macrozooplankton and fish									
	Øystein Varpe,		and Cellular	pollutant		energy content; Seasonal									
Robynne	Katrine borga, Geir	Macro-zooplankton	Energy	concentration of	NL v5 13.2-	remobilization of							Unsur	PhD	
Nowicki	Wing gabrielsen	and fish	Allocation	polar cod brain	13.3	pollutants in polar cod	UiT/UNIS/UiO	2020-2021	RF2	T2-2.5	2021	2021-2022	e	project	
Silvia Hess,		'													
Thaise Freitas.		'		mg Chla/m2.mg											
Arunima Sen			Eluorometric	nhaeonigment /											
Frie Janda	Devil Demoved		a na lucia	macopignient /	(10 2 2)	Codimentations anto	4.0.01	2010 2021	2	T2 1 2	2020	2020 2022	N -		to be finalized by DI
Eric Jorda	Paul Renaud	Sediment pigment	analysis	mz	(10.3.2)	Sediment pigments	APN	2019-2021	3	13-1.2	2020	2020-2022	NO		to be finalized by PI
			Laser	sediment grain											
		'	Diffraction	size fractions,											
			Particle Size	sediment total		sediment grain size									
			Analyzer	organic carbon		fractions, sediment total									
Silvia Hess.		'	(grain size):	(TOC. %), sediment		organic carbon (TOC. %).									
Thaise Freitas	Flissboth Alve &		combustion in	total nitrogen (TN		sediment total nitrogen (TN							Voc		
Anumiere Con		'	combustion m							DE1 DE2 T2			103,		
Arunima sen,	PhD- Inaise		mume	%), d13C (per mir),	(1000)	%), d13C (per mil), d15N				KF1, KF3 13-			possib	PND	
Eric Jorda	Freitas	Grain size	furnace (TOC,	d15N (per mil)	(10.3.3)	(per mil)	UIO	2019-2022	1,3	1.2	2020	2021-2022	ly	project	to be finalized by Pl
	Elisabeth Alve &														
	PhD student-					Foraminifera abundance,	UiO								
Silvia Hess,	Thaise Freitas		Sorting and			diversity and composition;	(Foraminifera								
Thaise Freitas.	(Foraminifera).	'	morphologica			metazoan meiofauna). UIT / IOPAS						Yes.		
Arunima Sen	Bodil Bluhm	Meiofauna	1	number of (taxon)		abundance diversisty and	(metazoan						nossih	PhD	
Frie Jordo	(moto zoon	ahundansa	identification		(10.2.5)	abundance, urversisty and	(metazoan moi ofauna)	2010 2022	1 2		2020	2021 2022	1.	nroiact	
Cit is Here	(IIIeta20aII	abunuance	Tuentincation		(10.5.5)	composition	nierorauna)	2019-2022	1, 5		2020	2021-2022	iy	project	
SIIVIa Hess,							Plymouth								
Thaise Freitas,				mg pigment type /			Marine		RF3,					no	
Arunima Sen,	Paul Renaud	Sediment pigments	HPLC	m2	(10.3.1)	sediment pigments HPLC	Laboratory	2019-2020	CAO	T3-1.2	2020	2021-2022	no	embargo	to be finalized by PI
		'				Macrofauna abundance,									
				number of (taxon)		diversity and composition;									
Silvia Hess.			Sorting and	/ cm2. diversity		metazoan macrofauna									
Thaise Freitas		Macrofauna	mornhologica	indexes		abundance diversisty and							Voc		
Anumiere Con	Usersian Daisa	diversity and	inorphotogica	muckes,						T2 1 1 T2 1 2			103,		
Arunna sen,	Heiling Reiss,	urversity and		community	(100.1)	composition, community				13-1.1, 13-1.2,			hossin	PHD	
Eric Jorda	Paul Renaud	abundance	Identification	analysis	(10.3.1)	analysis	Nord/IOPAN	2019-2020	3	13-1.3	2021-2023	2021-2023	ly	project	to be finalized by PI
Silvia Hess,		'		taxonomic		Microbial eukaryote									
Thaise Freitas,				composition,		diversity in sediment									
Arunima Sen,		Microbial diversity	Metabarcodin	abundance and	NL v5-	across season based on				T3-1.1, T3-1.2,			Unsur		
Eric Jorda	Lise Øvreås	(sediment)	g	distribution	10.3.4	metabarcoding	UiB	2019-2021	RF3	T3-1.3, T3-4.1	2021	?	е		to be finalized by L. Øvreås
Silvia Hess		Sediment	Sediment										-		
Thaise Freitas		community	community	ovvgen untake	NI v5							1		no	1
Anumine Co	David Danasud	is substituting	continuinty	oxygen uptake	10.2.0		anhaand	2010 2020	052	T2 4 2	2010 2020	2020 2021			1
Arunima Sen,	Paul Kenaud	incubations	oxygen uptake	mmol / n	10.3.8	oxygen uptake	onpoard	2019-2020	KF3	13-4.3	2019-2020	2020-2021	110	empargo	
Silvia Hess,			1	Taxonomic								1			1
Thaise Freitas,	Bodil Bluhm,		1	voucher inventory		Taxonomic voucher									Museum archival timeline
Arunima Sen,	Andreas	Megafauna	Museum	of Nansen Legacy	NI v5	inventory of Nansen Legacy						1		no	tbd by new collection
Eric Jorda	Altenburger	taxonomy	archival	fauna collected	10.2.3	fauna collected	UiT Museum	2020-2023	RF3	T3-3.1	n/a	n/a	No	embargo	employee
Silvia Hess	<u> </u>	d13C / d15N	IRMS coupled				UiO (Nansen			1		1	1		
Thaise Freitas	Bodil Bluhm Lis	organisms (mostly	to C/N		NI v5	Carbon and nitrogen stable						1	nossih	Post doc	1
Anumine Col	Idreese on	heathie)			10.2.1		Cebacy	2021 2022	052	T2 2 4	2022 2022	2022	1		1
Arunima Sen,	Jørgensen	pentfill()	analyser	013C, 015N	10.3.1	isotope composition	agreement?)	2021-2023	KF3	13-3.4	2022-2023	2023	iy	project	

									-					-	
				Macronutrient											
Silvia Hess,				concentrations in		Macronutrient									
Thaise Freitas,		Nutrient		bottom water		concentrations in bottom									
Arunima Sen,	Paul Renaud,	concentrations in	nutrient	before and after		water before and after								no	
Eric Jorda	Henning Reiss	incubations	analyzer	incubation	NL v5 10.3	incubation	APN	2019-2020	RF3	T3-3.4	2021-2023	2021-2023	no	embargo	
			analysis										Yes,		
Siv Hoff. Julie		Tissue (of capelin.	(individual	De novo genome									possib	PhD	
Bitz-Thorsen	Sissel Jentoft	polar cod and cod)	level)	assembly	NL v5 11.3	Whole-genome sequences	UiO	2019-2022	2	T2-3.1	2020-2022	2020-2022	lv	project	
				Population-genetic						-			ľ.	1	
			Genomic	data (diversity)											
			analysis	along climate									Yes.		
Siv Hoff, Julie		Tissue (of capelin.	(population	gradient in two									possib	PhD	
Bitz-Thorsen	Sissel Jentoft	polar cod and cod)	(population	seasons	NL v5 11.3	Whole-genome sequences	UiO	2019-2022	2	T2-3.1	2020-2022	2020-2022	lv	project	
													.,	p. 0) 000	
				Population-genetic											
				data (linked to											
			Investigation	function) along									Yes		
Siv Hoff Julie		Tissue (of capelin	of candidate	climate gradient in		Population-genomic							nossih	PhD	
Bitz-Thorsen	Sissel lentoft	nolar cod and cod)	genes	two seasons	NI v5 11 3	statistics	UIO	2019-2022	2	T2-3 1	2020-2022	2020-2022	possib Iv	nroiect	
bitz morsen	Sisser sentore	polar coa ana coa)	64 um	two seasons	142 45 11.5	statistics	010	2015 2022	-	12 5.1	2020 2022	2020 2022	. ,	project	
	Anna Vader/Bodil		nlankton			Diversity of small									
	Blubm/Camilla		sample for			zoonlankton prev possibly							Voc		
Sporre Elo	Svensen/Kim		DNA analysis	Zooplankton	NI v5	also zoonlankton genetic							nossih	PhD	
Anna Vador	Brabol	Plankton camplo	of dict of	diot/prov divorcity	10 2 12	identification		2020.21	2	T4 4 1	2021	2021	003310	nroject	
Anna vauer	FIÆDEI	Flatikton sample		ured prey urversity	10.3.15	Identification	01013/011	2020-21	3	14-4.1	2021	2021	iy	project	+
															C finm were nicked from
					Sample										shallow 180 up net haul at
					type not										P7 and is plated in ethanol
			Metabarcodin		found in										Additional C finm were
Sporre Elo			g of C		log sheet	Diversity of previn C							Voc		starved and will serve as a
Anna Vader		C finmarchicus	g or c.	C finmarchicus	should be	finmarchicus diet Possible							nossih	PhD	control for symbiotes (eDNA
Anette Wold	Anna Vader	c. minarchicus	nrev diversity	orev diversity	added	identification of symbiotes		2020-2021	RE3	TA_A 1	2021	2021	1	nroject	in dietary profiles
Anette Word	Aillia vadei	samples in edianoi.	Cold vapor	prey diversity	auucu.	ruentineation of symbrotes.	01413/011	2020-2021	NI J	14-4.1	2021	2021	' y	project	in dietary promes.
Stophon			atomic				Moditorranoa								
Koblor			fluorosconco				n Instituto of								
Nicolas			choctromotry				Ocoapograph								
Sanchar			(C) (AES) for			Total moreury and	v (MiO) in								
Sanchez,	Murat V Ardolan	Total moreury and	(CVAFS) IOI			mothyl moreury trans oct	y (iviiO) III							DHD	
Digorpos	Stophon Kohlor	notal mercury and				netilo	Franco	2010	DED	T2 2 2	2020 2021	2021		PIID	Stanhan Kablar DhD praiast
Digernes	Stephen Konter	mentymercury	Convention	Thg, ivieng III pivi	/./.1	prome	France	2019	RF2	12-2.2	2020-2021	2021	yes	project	Stephen Komer PhD project
Stephen			Sequential	Tes es el encet	Nansen	Distribution of the se							maybe		
Ninalaa					Legacy V4			2010 2020	DC2	T2 2 2	2021	2021	, CHECK		
NICOIAS	wurat v. Ardeian	Sediment samples	trace	concentrations	10.4		NTNU	2019-2020	KF2	12-2.2	2021	2021	with		
						Key organinis, e.g.									
						Euphausilds and									
			Continent			ampripods, Map spatial									
			Sorting and			distribution, taxonomic									
			morphologica			compostion and biomass									
						indices, temporal and									
	1		Identification,	taxonomic		spatial variation in							1		
Tom Van	Espen Bagøien,		isotopic	composition,	NL v5	abundance, biomass,									
Engeland	Post Doc	Macrozooplankton	analysis	biomass	7.11.1	diveristy	IMR	2019-2021	3	T3-1.1; T3-2.1	2020	2020-2022	No		to be finalized by PI

Toro Mo			1	Zoonlankton			NTNU/On							1	
Biørkelund	Martin Ludvigsen	Underwater Video	N/A	stratification	n/a	Video	board KPH	2019	PA-C	TC-2.2	2010	2020	20		Can be used for outreach
Tore Mo-	Wartin Luuvigsen	onder water video	N/A	Acoustic	11/ a	Video	board KFII	2015	NA-C	10-2.2	2015	2020	110		can be used for outreach.
Biørkelund		Echo sounder data	Echo	hackscattering			NTNU/Op								
Buochen Vang	Mrtin Ludvigsen	(A7FP)	integration	strength	n/a		hoard KPH	2019	RA-C	TC-2 2	2019	2020	no		
Vacamin Badur	Vasamin Dadur	Chlorophullo	algel	Chi a tatal	ahantar 0	Chlorophull a	Onheard KDU	During gruise	052	TO 2.2	2015	2020	110	nreiget	
Yasemin Bodur	Yasemin Bodur	Chiorophylia	algal	Chi a total	cnapter 8	Chiorophyli a	Unboard KPH	During cruise	KF3	13-2.2; 4.4	2020	2021	yes	project	
			algal												
			nigmonto												
			filtorod												
			through												
	Marit Reigstad	Chlorophyll a	Polycarbonat		NL v5									PhD-	
Vasemin Bodur	Vasemin Bodur	>10um	e filters from	ChLa >10um	chanter 8	Chlorophyll a >10um	Onboard KPH	During cruise	RE3	T3-2 2·4 4	2020	2021	Ves	project	
Tabellin boda	lasenin bouur	- 10 μ	CN analyses	cin d i zopin	chapter o		onbourd in in	burng cruise	1.1.5		2020	2021	705	project	
	Marit Reigstad		from sediment		NL v5									PhD-	
Yasemin Bodur	Yasemin Bodur	POC/PON	tran samples	11g/l	chanter 8	POC/PON	UiT	2019-21	RF3	T3-2 2·4 4	2020	2021	ves	project	
lasenni bodai	Marit Reigstad.		from sediment	PB/ -	NL v5	100,101	011	2015 21	1110	10 212, 111	2020	2021	100	PhD-	
Yasemin Bodur	Yasemin Bodur	stable isotopes	trap samples	d13C: d14N	chapter 8	stable isotopes	UiO	2019-21	RF3	T3-2.2: 4.4	2020	2021	ves	project	
	Marit Reigstad,	· · · · ·	HPLC from											1	
	Paul Renaud,	water column	sediment trap	mg pigment type /	NL v5									PhD-	
Yasemin Bodur	Yasemin Bodur	pigments	samples	m2	chapter 8	HPLC	UK	2019-21	RF3	T3-2.2; 4.4	2020	2021	yes	project	
	Marit Reigstad,		IP25 from												
	Paul Renaud,		sediment trap	mg pigment type /	NL v5									PhD-	
Yasemin Bodur	Yasemin Bodur	sea ice algae proxy	and boxcore	m2	chapter 8	IP25	UK	2019-21	RF3	T3-2.2; 4.4	2020	2021	yes	project	
				community											
	Marit Reigstad,	phytoplankton	from sediment	composition and	NL v5									PhD-	
Yasemin Bodur	Yasemin Bodur	communities	trap samples	counts	chapter 8	phytoplankton communities	UIT	2019-21	RF3	T3-2.2; 4.4	2020	2021	yes	project	
	Marit Reigstad,		from sediment	fecal pellet types	NL v5									PhD-	
Yasemin Bodur	Yasemin Bodur	fecal pellets	trap samples	and counts	chapter 8	fecal pellets	UiT	2019-21	RF3	T3-2.2; 4.4	2020	2021	yes	project	
		molecular diet	indidivuals		NL v5										
	Kim Præebel; Paul	analysis for	stored in 96%		chapter										
Yasemin Bodur	Renaud	Pandalus borealis	EthOH at -20C	DNA extraction	10.03.14	molecular diet analysis	UIT	2020	RF2/RF3	All that need b	yes	yes	no		
			biogenic												
Versenia Deduc	Marit Reigstad;	particulate	silica from	h	NL V5	h.C.		2010.24	052	T2 2 2 4 4	2020	2024		PnD-	
Yasemin Bodur	Paul Renaud	biogenic Silica	sediment trap	biogenic silica	chapter 8	051	ULI	2019-21	RF3	13-2.2; 4.4	2020	2021	yes	project	
			stable		nat										
	Marit Rojectad		hottom water		not					тэээ. тэлл.				RhD	
Vasemin Bodur	Paul Renaud	stable is otopes	(CTD) filtrated	stable is otopes	d	stable is otopes	UIO	2019-21	DE3	13-2.2, 13-4.4, T2-1 2	2020	2021	VOC	project	
Vasemin	r aur nenauu	stable isotopes		stable isotopes	NL v5	stable isotopes	010	2015-21	111.5	12-1.2	2020	2021	усэ	project	
Bodur: Maria			from		chanter					T3-2 2·T3-4 4·				PhD-	
Guadalupe	Marit Reigstad	POC/PON	Aggregation	POC/PON	7.27.2	POC/PON	UIT	2019-21	RF3	T2-1.2	2020	2021	ves	project	
Yasemin		/	DOC from	,	NL v5		-					. = =	,		
Bodur; Maria			Aggregation		chapter					T3-2.2; T3-4.4:				PhD-	
Guadalupe	Marit Reigstad	DOC	experiment	DOC	7.27.2	DOC	NTNU	2019-21	RF3	T2-1.2	2020	2021	ves	project	
Yasemin	0		DOC												
Bodur; Maria			characterizati		NL v5									1	
Guadalupe		DOC	on from	DOC	chapter					T3-2.2; T3-4.4;				PhD-	
Digernes	Marit Reigstad	characterization	Aggregation	characterization	7.27.2	DOC characterization	NTNU	2019-21	RF3	T2-1.2	2020	2021	yes	project	
					NL v5									1	
Yasemin			DNA/RNA from	biological	chapter 8;									1	
Bodur; Miriam	Marit Reigstad,	Metatranscriptomic	sediment trap	diversity & activity	chapter									PhD-	
Marquardt	Yasemin Bodur	s	samples	on particles	7.15	Metatranscriptomics	UIT/UNIS	2019-21	RF3	T3-2.2; 4.4	2020	2021	yes	project	
Ylva Ericson,			Sea ice											1	
Rolf Gradinger,			observations/											1	
Kasia	Desites Di 1	Cara la c	pictures from	Sea ice coverage,										1	
Zamerczyk,	Dmitry Divine,	Sea ICe	the bridge	Sea ice age and		Coo ioo ahaan	NDI	2020	DF4	T1 1 1 2	2020	2021	No	1	
Audun Gerland	Sepastian Gerland	observations	TOTIOW ASSIST	type, Snow cover	INL V5 4.1	Sea ice observations	INP1	2020	KF1	11.1-1.2	2020	2021	INO	1	

Who		Sample info		Analyses					Nansen Legacy		Data				
Cruise participant	PI	Sample type	Intended method	Para- meter	Analysis protocol	Dataset	Where will analyses be done	When are analyses planned for	RF	task	Sharing within project	Publishing data	Ask for embargo of data?	lf yes, why?	Comments
KHP instrumentation	Randi Ingvaldsen					Acoustic data surveying fish and xooplankton, logged		2019, NIRD	2020			EK80			
KHP instrumentation	Tom Arne Rydingen					Multibeam mapping					NIRD	2020			EM302
KHP instrumentation	Øystein Godøy					Air and sea temperature (8 m depth), air pressure, wind speed and direction, relative humidity and solar radiation logged continuously					NIRD	2020			Weather station
KHP instrumentation	Helge Sagen					Temperature, salinity, density and fluorescence at 4m, logged continuously					NIRD	2020			Thermosalinograph
KHP instrumentation	Randi Ingvaldsen					Currents in the upper ~500 m legged continuously					NIRD	2020			ADCP 150 kHz
KHP instrumentation	Agneta Fransson					pCO2 in air and ocean, dissolved O2 in ocean, saturation of O2 in ocean, sea water temperature					NIRD	2021	No		pCO2 underway, takes time to quality-check data thus later publication
KHP instrumentation	Marit Reigstad					Temperature, salinity, density fluorescence, oxygen pro	NLEG statio		NIRD	2020			CTD		

The Nansen Legacy in numbers

6 years

The Nansen Legacy is a six-year project, running from 2018 to 2023.

1 400 000 km² of sea

The Nansen Legacy investigates the physical and biological environment of the northern Barents Sea and adjacent Arctic Ocean.

280 people

There are about 230 researchers working with the Nansen Legacy, of which 73 are early career scientists. In addition, 50 persons are involved as technicians, project coordinators, communication advisers and board members.

10 institutions

The Nansen Legacy unites the complimentary scientific expertise of ten Norwegian institutions dedicated to Arctic research.

>10 fields

The Nansen Legacy includes scientists from the fields of biology, chemistry, climate research, ecosystem modelling, ecotoxicology, geology, ice physics, meteorology, observational technology, and physical oceanography.

>350 days at sea

The Nansen Legacy will conduct 15 scientific cruises and spend more than 350 days in the northern Barents Sea and adjacent Arctic Ocean between 2018 and 2022. Most of these cruises are conducted on the new Norwegian research icebreaker RV *Kronprins Haakon*.

onansenlegacy

nansenlegacy@uit.no

50/50 financing

The Nansen Legacy has a total budget of 740 million NOK. Half the budget comes from the consortiums' own funding, while the other half is provided by the Research Council of Norway and the Ministry of Education and Research.

Norwegian Ministry of Education and Research

