

Mooring Service Cruise (MSC) 2022 Cruise Report

The Nansen Legacy Report Series 38/2023

Mooring Service Cruise (MSC) 2022: Cruise report

Cruise 2022712

R/V Kronprins HaakonLongyeabyen-Longyearbyen2 October – 11 October 2022

Authors: Øyvind Lundesgaard¹, Arild Sundfjord¹, Julie Sortland^{2,3}

1: Norwegian Polar Institute, Tromsø Norway (NPI)

- 2: UiT The Arctic University of Norway, Tromsø, Norway (UiT)
- 3: Institute of Marine Research, Norway (IMR)

To be cited as: Lundesgaard Ø, Sundfjord A, Sortland J (2023). Nansen Legacy Mooring Service Cruise 2022: Cruise report. *The Nansen Legacy Report Series* 38/2023. DOI: <u>https://doi.org/10.7557/nlrs.6977</u>

© The authors. This report is licensed under the <u>Creative Commons Attribution 4.0</u> <u>International</u> licence

ISSN 2703-7525 Publisher: Septentrio Academic Publishing, Tromsø, Norway

Table of contents

1.	Obj	bjectives and quick cruise summary3									
-	1.1.	Stud	ly area and conditions during the cruise	4							
2.	eports	6									
	2.1.	Моо	looring operations								
	2.1.	1.	Note about the AT800-8 mooring	8							
	2.2.	Ship	board CTDs	8							
	2.2.	1.	CTD transects	9							
	2.3.	Nutr	ient sampling	10							
	2.4.	Und	erway thermosalinograph and PCO2	11							
-	2.5.	Ship	board ADCP	11							
-	2.6.	Wea	ther station	11							
3.	Cru	ise pa	articipants	12							
Ар	pendi	x A.	Daily cruise summary	13							
Ар	pendi	x B.	CTD overview	15							
Ар	pendi	x C.	Nutrient samples	18							
Ap	pendi	x D.	Outreach								
Ар	pendi	x E.	Planned Nansen Legacy datasets								
Ap	pendi	x F.	Diagrams of recovered moorings	21							
Ap	pendi	x G.	Diagrams of deployed moorings								

1. Objectives and quick cruise summary

The main objective of the cruise was to retrieve and deploy ocean moorings in the north-western Barents Sea and on the continental slope north of Kvitøya for the *Nansen Legacy* and *A-TWAIN* projects. A secondary objective was to perform hydrographic surveys in regions of Atlantic Water inflow and other regions of interest. In addition, the cruise aided other research groups by deployment and recovery of minor equipment at sites along the cruise trajectory.

In general, mooring operations were conducted during day hours, while nights were used to collect CTD data along various transects. Mooring work was completed quickly, efficiently, and ahead of schedule. This left ample time for additional pre-planned hydrographic surveys after the mooring work was complete.

The cruise departed from Longyearbyen in the afternoon on 02.10.2022. An IMR ARGO float was deployed north of Spitsbergen the day after. On the following day, the ship operated for three days in the area around the A-TWAIN mooring array on the continental slope north of Kvitøya. Here, four moorings were recovered, and four were deployed, and hydrographic transects (CTDs) were conducted across the Atlantic Water inflow current and across northern Kvitøya Trough.

After transiting south from the A-TWAIN area on the evening of 06.10.2022, another transect was conducted at night across the southern outlet of Kvitøya Trough. Mooring work began the following morning at the Nansen Legacy M1 location in the north-western Barents Sea. Two moorings were recovered and redeployed. Afterwards, a cross-slope transect was conducted intersecting the M1 mooring location. In the following days, consecutive transects were conducted into the through extending from M1 to Hartogbukta, along the Storisstraumen glacier front, from Storisstraumen southeast across the ocean basin, and along the bathymetric saddle west of Kong Karls Land.

During the transit back north and west, an additional brief transect was conducted outward from Wahlenbergfjorden into the Hinlopen Trough, to obtain data from a fjord with tidewater glaciers that are likely not influenced by Atlantic Water. On 10.10.2022 an NPI radio transmitter was retrieved from the island of Moffen by small boat. The ship then transited back to Longyearbyen, arriving in port on the evening of 11.10.2022.

Overall, the cruise was highly successful. All planned operations were completed in good time, allowing room for extensive hydrographic surveying as well as two minor deployment and recovery operations for other research groups. The success was in part due to fair weather during the first five days of the cruise and completely sea ice-free seas throughout. This allowed mooring work to take place in favourable conditions in an area where operations are often hampered by wind, swell, and sea ice. However, we would also like to highlight the competence and professionalism of the crew of the Kronprins Haakon as a key factor in the success of the cruise. Cooperation and communication with crewmembers on deck and on the bridge were excellent throughout. In addition, the cruise participants efficiently completed all the planned objectives despite the small size of the team (7 team members).

Figure 1: Map of cruise track with stations and operations.

Figure 2&2: Zoomed in maps of the A-TWAIN (left) and M1 (right) areas.

1.1. Study area and conditions during the cruise

The cruise began and ended in port in Longyearbyen, Svalbard. The cruise trajectory (Figure 1) went west and north of Spitsbergen to the A-TWAIN array on the continental slope of the Nansen Basin. From there, it followed a clockwise trajectory around Nordaustlandet, with mooring work

in the northwestern Barents Sea as well as hydrographic transects along the way. The return journey from the northern Barents Sea went through Hinlopen Strait before transiting back to port north and west of Spitsbergen.

Ocean and ice temperatures were both relatively high for the season during the cruise (Figure 3). Ocean temperatures measured at the water intake were around 2-3 C during most of the work, with slightly higher temperatures in the northwestern Barents Sea than in the A-TWAIN area (Figure 4). Air temperatures were above freezing except in a few instances north of Svalbard. Winds were occasionally strong, in particular during the passage of a pressure system starting around 07.10, but did not significantly impede operations.

Figure 3: Conditions during the cruise. From top (1) to bottom (4). 1: Longitude/latitude. 2: Air temperature measured by onboard weather station. 3: Wind speed measured by onboard weather station. 4: Ocean tempeature measured at ship water intake (blue dashed line shows -1.8C). X-label dates are 00:00 UTC.

The sea ice edge was located in the Nansen Basin, ~250 km north of Svalbard, during the cruise (Figure 5), and the ship encountered no sea ice in open waters. Large surface sediment plumes were observed at several locations along the front of Storisstraumen glacier.

Figure 4: Near-surface salinity (left) and temperature (right) along the cruise track. Data from thermosalinograph, water intake at 4 m depth.

Figure 5: Sea ice concentration on 12.10.22 from AMSR-2 ASI N6250 (https://data.seaice.uni-bremen.de/).

2. Activity reports

2.1. Mooring operations

Two moorings were recovered and redeployed for the Nansen Legacy project. The NPI mooring M1-4 was recovered and its replacement M1-5 was deployed at the same site. The IMR mooring M1-Bioac-2 was similarly replaced by M1-Bioac-3.

Four moorings were recovered and four deployed for the Fram Centre A-TWAIN/SIOS-Infranor. The two NPI moorings AT800 and AT200 were both recovered and redeployed. The NPI bottom mooring lander AT500 was recovered but not redeployed. The IMR mooring AT800-BioAC was recovered. The IMR moorings AT800-BioAC-300 and AT800-BioAC-600 were deployed.

An upward looking Nortek Signature250 ADCP recovered from AT800-7 had an incomplete data record, and there were issues communicating with the instrument. This instrument was therefore

not redeployed on the replacement mooring AT800-8. Otherwise, all moorings were equipped according to plan.

Moorings were deployed anchor first. Both deployment and recovery were done over the starboard side of the ship. The ship's small boat was used to recover the AT500 bottom lander mooring.

An overview of recovered and deployed moorings is found in Table 1 and Table 2. Mooring diagrams showing the nominal depths and serial numbers of instruments on all recovered moorings are found in Appendices Appendix F and Appendix G.

Table 1: Overview of moorings **recovered** during the MSC2022 cruise. Date/time in UTC. BGC: Biogeochemical, OA: Ocean Acoustics. Exact positions and depths taken from deployment during the MSC2021 cruise report. The #CTD column shows the CTD station number of profiles collected at the mooring site before recovery.

Mooring	Date	Time (on deck)	Latitude	Longitude	Depth (m)	#CTD	Details
AT800- 7	04.10.22	08:23	81N 33.006 81.5501	30E 52.662 30.8777	889	224	ADCPs, CTDs, sea ice, BGC & OA sensors
AT800- BioAc-2	04.10.22	10:38	81N 32.892 81.5482	30E 53.358 30.8893	872	224	Sig100 ADCP (~395 m depth)
AT500- 2	04.10.22	12:15	81N 27.462 81.4577	31E 05.418 31.0753	488	231	Bottom lander; ADCP, CTD
AT200- 6	06.10.22	08:30	81N 24.630 81.4105	31E 14.598 31.2433	205	236	ADCPs, CTDs, sea ice
M1- BioAC-2	07.10.22	07:05	79N 35.328 79.5888	28E 05.274 28.0879	259	255	Sig100 ADCP (~10m above bottom)
M1-4	07.10.22	07:53	79N 34.974 79.5829	28E 04,302 28.0717	263	255	ADCPs, CTDs, BGC, OA, sea ice

Table 2: Overview of moorings deployed during the MSC2022 cruise. Date/time in UTC. The #CTD column shows the CTD station number of profiles collected at the mooring site after deployment.

Mooring	Date	Time (released)	Latitude	Longitude	Dept h (m)	#CTD	Details
AT800- BioAc-300	04.10.2 2	15:18	81N 32.878 81.54797	30E 53.398 30.88997	867	237	Sig100 ADCP (~300 m depth)
AT800-8	05.10.2 2	10:23	81N 32.995 81.54992	30E 51.660 30.86101	895	237	ADCPs, CTDs, BGC sensors
AT800- BioAc-600	05.10.2 2	11:51	81N 32.761	30E 50.067 31.83445	872	237	Sig100 ADCP (~600 m depth)

			81.54602				
AT200-7	06.10.2 2	11:31	81N 24.635 81.41059	31E 14.519 31.24199	203*	247	ADCPs, CTDs, sea ice
M1-5	07.10.2 2	13:29	79N 34.914 79.58190	28E 05.194 28.08656	268	264	ADCPs, CTDs, BGC, sea ice
M1-BioAC- 3	07.10.2 2	14:11	79N 35.340 79.58900	28E 05.319 28.08871	261	264	Sig100 ADCP (~10m above bottom)

*206 m on echo sounder, estimated 203 m on the aft deck where the mooring was deployed.

2.1.1. Note about the AT800-8 mooring

The top of this mooring was too shallow when deployment was nearly complete, presumably due to wrong length Kevlar lines. Instruments attached to top 150 m were taken off, the line length was adjusted, and the top 150 m was again lowered and instruments attached. Instruments above the middle buoy were measured from the top buoy, and are assumed to be correctly positioned relative to each other. Instruments below the middle buoy were positioned relative to the anchor, and are also assumed to be positioned correctly relative to other instruments in this range. However, there is some uncertainty in the positions of the top instruments relative to the bottom ones. This should be possible to resolve from the pressure records from RBR Concertos when they are recovered.

2.2. Shipboard CTDs

A total of 77 shipboard profiles were conducted during the cruise (Appendix B). The main steel cable usually used on the rosette was not available, and the main CTD rosette could therefore only be deployed with a more sensitive neutrally buoyant kevlar cable. As a result, the main CTD rosette could only be deployed through the ship's moon pool, resulting in meaningful profiles only below the depth of the ship's hull. The CTD was also only lowered at a speed of 0.7 m/s due to the use of the Kevlar cable.

Profiles from the CTD transmissometer exhibited frequent drops to zero within otherwise sensible data. This indicates an issue with the electronic transmission rather than with the instrument itself. The connector cables were gone over, but the issue seems to have persisted throughout the cruise. The remaining data from this instrument appears to be of good quality. Before scientific use of the data, bin average profiles should be recalculated from the full-resolution data after bad scans have been removed.

The CTD was controlled by IMR instrument engineers using SBE Seasave software. GPS data from the ship's navigation system were logged with every scan. CTD unit on the rosette was a SBE911plus. Serial numbers and calibration dates of individual sensors/components are shown in Table 3:

Table 3: Overview of sensors on the CTD rosette.

Sensor	Serial number	Calibration
		date
SBE 3P Temperature (primary)	6498	21-Jan-22
SBE 4C Conductivity (primary)	4726	25-Jan-22
SBE 5T submersible pump (primary)	9378	-
Digiquartz Temperature Compensated Pressure (primary)	141612	19-Dec-17
SBE 3P Temperature (secondary)	5458	26-Jan-22
SBE 4C Conductivity (secondary)	4221	25-Jan-22
SBE 5T submersible pump	9379	-
SBE 43 Oxygen sensor	3937	10-Mar-22
Benthos Altimeter	73084	24-Dec-17
WET Labs ECO-AFL/FL Fluorometer	FLRTD-6506	18-Sep-20
WET Labs C-Star Transmissometer	CST-2003DR	01-Oct-19
WET Labs CDOM Fluorometer	FLCDRTD-4885	11-Jul-22
Biospherical/Licor PAR/Irradiance sensor	70736	29-Oct-18

The CTD feed also contains measurements from a SPAR sensor (Biospherical/Licor) mounted on the ship (20568, calibrated 27-Nov-2017). Data from this instrument were not assessed during the cruise, but were reported as being unstable or absent.

Two 300 kHz RDI ADCPs were mounted on the rosette in Lowered ADCP (LADCP) mode, one looking up and one looking down. The two instruments sampled coherently in master/slave mode. LADCP data were downloaded between casts.

At each cast, the CTD rosette was lowered to 20 m. After the instrument feeds stabilised, the rosette was raised to 10 m before being lowered to the desired depth (~10 m above bottom with the exception casts #222 and #241). The CTD was lowered at 0.5 m/s above 100 m depth, and at 0.7 m/s below. Water samples for salinity calibration were taken from maximum depth by instrument engineers at each cast, to be sent to IMR for salinity calibration corrections for post-processing of the CTD profiles. Water samples for nutrients were taken on 4 stations (Section 2.3, Appendices Appendix B and Appendix C).

On stations #222 and #276 - #297, a small, internally recording CTD unit was used to supplement the main rosette with data from the upper 20 m. The unit measured temperature, salinity and pressure, and was lowered to >40 m depth before the cast with the main rosette. The unit (SAIV MINI STD/CTD, S/N 882) was most recently calibrated on 04.07.2010, so great care should be taken when interpreting profiles from this sensor.

2.2.1. CTD transects

In addition to CTD stations taken for mooring calibrations, hydrographic surveys were performed along set transects (Figure 6: Locations of hydrographic transects around Nordaustlandet (left) and near the continental slope (right). Transects indicated in orange, with CTD stations shown as yellow dots and ship track shown as gray line.). The CTD stations associated with each transect are shown in Table 4.

Figure 6: Locations of hydrographic transects around Nordaustlandet (left) and near the continental slope (right). Transects indicated in orange, with CTD stations shown as yellow dots and ship track shown as gray line.

Table 4: CTD transects showing dates and associated CTD numbers. Note that some stations fall along multip	le
transects (addtional stations from other transects are indicated in parentheses).	

Transect	Date	Nr of stations	CTD stations
A-TWAIN cross-slope (AT)	04-05.10	12	223, 225-235
Kvitøyrenna north (KVN)	05-06.10	8	238-240, 242-246
Kvitøyrenna south (KVS)	06-07.10	7	248-254
M1 cross-slope (M1T)	07-08.10	11	257-267
Hartogbukta cross-canyon (HBC)	08.10	4 (5)	269-271, (272), 273
Hartogbukta along-canyon (HBA)	08.10	5 (6)	268, 272, 274-276
			(277)
Storisstraumen along-front (SS)	08.10	4	277-280
Storisstraumen offshore (SSO)	08-09.10	7 (8)	(279), 281-287
Olgastretet saddle (SAD)	09.10	5	288-292
Wahlenbergfjorden-Hinlopen (WBHL)	09-10.10	5	293-297

2.3. Nutrient sampling

At total of 40 nutrient water samples for were collected at four stations: at AT800, AT200, M1, and in front of the Storisstraumen glacier terminus. Samples were collected in accordance with the Nansen Legacy Sampling Protocols v10 and using Falcon 50 ml tubes. Water was collected from CTD bottles set to close at fixed depths, as well as 10 m above bottom. In addition, one sample per station was collected from the ship intake.

The water samples will be analysed for nitrate + nitrite (NO₃+NO₂), phosphate (PO₄) and silicate (SiO₄). A detailed overview of the nutrient samples can be found in Appendix C.

2.4. Underway thermosalinograph and PCO2

Measurements from the seawater intake at 4 m depth were collected throughout the cruise since no sea ice was encountered. Close to the water intake, a SBE38 temperature sensor recorded the temperature in order to obtain temperature measurements before the water is heated up as it travels along the piping. In the Clean Seawater Lab, a SBE21 SeaCAT thermosalinograph monitored temperature, salinity, and fluorescence (WET Labs WET star fluorometer).

Instrumentation for measurements of CO_2 , pCO_2 , (General Oceanics), dissolved oxygen (DO) (Aanderaa sensor), salinity, temperature, CDOM and chlorophyll-a fluorescence was also active during the cruise. These records were not examined specifically but are reported to have functioned well during the cruise.

2.5. Shipboard ADCP

A 150 kHz vessel-mounted ADCPs measured continuously from shortly after leaving port until the end of the cruise. A 38kHz ADCP was used during parts of the cruise where the ship operated in water deeper than 4-500 m. Data acquisition was done using VMDas. Both ADCPs sampled in broadband mode, favouring resolution over range, and both were mounted in the hull (the drop keel mounted instruments were not used). The following, standard configurations were used throughout the cruise:

150kHz ADCP: *CR1 CB611 WP00001 NP00000 WN070 WS0400 WF0600 CX 1,0 BP000 BX08000* ND111100000 TP000100 TE00000200 EZ1020001 EX00000 EA004642 EJ0008 EI-017 ED00084 ES35 CK

(broadband profiling, single-ping ensembles, 70 bins with 4 m bin depth, 6 m blanking distance, no bottom track, synchronised pinging with K-Sync, transducer misalignment of 46.42 degrees, transducer depth 8.4 m)

38 kHz ADCP: CR1 CB611 WP00001 NP00000 WN064 WS1600 WF1600 CX 1,0 BP000 BX17000 ND111100000 TP000300 TE00000300 EZ1020001 EX00000 EA004688 EJ-009 E1001 ED00084 ES35 CK

(broadband profiling, single-ping ensembles, 64 bins with 16 m bin depth, 16 m blanking distance, no bottom track, synchronised pinging with K-Sync, transducer misalignment of 46.88 degrees, transducer depth 8.4 m)

2.6. Weather station

Continuous measurements of air temperature, humidity, wind speed/direction, air pressure, humidity, dew point, seawater temperature at 8.5 m, and solar radiation were collected by a Vaisala AWS430 weather station on the ship.

3. Cruise participants

Table 5: Cruise participants

Name	Institute	Role	E-mail
Øyvind Lundesgaard	NPI	Cruise leader	oyvind.lundesgaard@npolar.no
Arild Sundfjord	NPI	Co-cruise leader; hydrography, moorings	arild.sundfjord@npolar.no
Ceslav Czyz	NPI	Moorings	<u>ceslav.czyz@npolar.no</u>
Harald Dag Jølle	NPI	Historian/outreach	harald.dag.jolle@npolar.no
Terje Hovland	IMR	Moorings	<u>terje.hovland@hi.no</u>
Thomas Haug Johnsen	NPI	Moorings	thomas.haug.johnsen@npolar.no
Julie Sortland	UIT	Hydrography, moorings, water sampling	julie_sortland@outlook.com

Figure 7: Happy cruise participants toward the end of a successful cruise.

Appendix A. Daily cruise summary

Times in UTC

02.10.2022

Left port once the last cruise participants embarked, around 13:00. Safety meeting for all participants in the conference room. Heading north along western Spitsbergen. Fair weather and sea conditions.

03.10.2022

Arrived at the planned site of ARGO deployment and test CTD on the continental slope north of Svalbard. Steamed slightly northwest after getting more information about the desired deployment depth (2000 m) from investigators at IMR. Test CTD to 500 m at 11:40 followed by deployment of ARGO float WMO 4903641 shortly after. Continued eastward toward the A-TWAIN area.

04.10.2022

Arrived at night (01:30) at the northernmost location of the planned A-TWAIN CTD transect near 81N 40. Steaming south to arrive at AT800 mooring site in the morning. Toolbox meeting with ship crew, pinged the mooring and found it on ship echo sounder. Pre-recovery CTD with nutrients at AT800. AT800-7 released at 08:23, full mooring on deck at 09:22. AT800-BioAc-2 released at 09:58, on deck 10:38.

Steamed to AT500 site and released AT500-2 at 11:43. Recovered using small boat, on deck 12:15. Back to AT800 site to deploy AT800-BioAC-300. Deployment start 14:25, released 15:18. Steamed north to continue CTD transect from station AT2.

05.10.2022

Finished last station (AT12) in the early morning. Back to AT200 site to conduct pre-recovery CTD with nutrients. Toolbox meeting and preparations for deployment. AT800-8 deployment start 08:04. Spent some time adjusting the top kevlar length and moving location in order to get the top buoy at the right depth. AT800-8 released 10:23. Deployment of AT800-BioAC-600 start at 11:14. Some position adjustments for depth. AT800-BioAC-600 deployed released 11:53. Post-deployment CTD at AT800.

Steamed to AT200 site for recovery of AT200-7. Began pinging for the mooring around 14:10 but received no return signal. Tried to release the mooring but no floats surfaced. Bottom elements of the moorings were visible on the ship echo sounder. After unsuccessful release of AT200-7: headed west for CTD transect at Kvitøyrenna North (KVN), working westward during the night.

06.10.2022

Finished KVN transect and returned to AT200 site. Toolbox meeting before mooring operations. Tried pinging AT200-7 again, from a slightly different location and with the acoustic transducer closer to the hangar door. The AT200-7 mooring now released at 08:12. AT200-7 on deck 08:43.

Start of AT200-8 deployment 10:52, released 11:31. Depth on echo sounder 206 m, estimating that exact depth of mooring was 203 m. Conducted post-deployment CTD at AT200 site and

steamed south to complete Kvitøyrenna South (KVS) transect overnight. Reached first, eastern, KVS station around 22:00.

07.10.2022

Finished KVS transect and arrived at M1 site in the morning. Pre-recovery CTD with nutrient sampling at M1 at 05:55. Easterly wind picking up but manageable working conditions. Pinged M1-BioAc-2 and released at 06:42. Foggy and poor visibility but found the mooring float after a short time. On deck 07:05. Moving on to M1-4 site, pinged and released M1-4 at 07:16. Some difficulty connecting to the mooring due to swell. Entire M1-4 mooring on deck 08:10. Pause on site to prepare for deployment of the two remaining moorings. Collected one CTD to examine any changes in the mixed layer during wind forcing.

Began deployment of M1-5 around 12:20. Released at 13:29. Began deployment of M1-Bioac-3 shortly after. M1-Bioac-3 released at 14:11.

Steamed north to conduct a cross-slope transect at M1 (M1T). Transect included a post-deployment CTD at the M1 site (CTD #249). Finished last station shortly after midnight UTC.

08.10.2022

Continued doing CTD westward from M1, both along (HBA) and across (HBC) the trench connecting the M1 area and Hartogbukta. SAIV CTD used in the surface waters from HBA-4 onward. Finished the HB transects and arrived at the first station of the Storisstraumen transect (SS) close to Storisstraumen glacier front in Hartogbukta. First station SS-1 at 11:57, also took nutrient samples. Very poor visibility, but calving front is visible in front of the ship. Clear delineation into surface plume water visible both as a color change (blue->brown), on the ice radar (as a line feature at the edge of the surface plume waters) and in the thermosalinograph (as a >2 C drop in temperature and >1 g/kg drop in salinity). Conducted CTD within plume. Due to shoaling waters and unknown bathymetry, the ship went away from the glacier front on the way to the next station. Using Kartverket bathymetry (available slightly further south) and going back toward the glacier front to collect a new CTD, this time in an indent of the Storisstraumen front near the middle of the terminus (station SS-2). Brown, fresh waters were also observed here and on the two subsequent CTDs taken along the glacier front.

Moved on to a new CTD transect (SSO) extending outward from SS-2, across the basin toward Svenskøya. First station 19:59.

09.10.2022

Finished the SSO transect around 03:30, went on to a new transect (SAD) westward across the saddle toward to Olga Basin. Finished after 11:00 and steamed north into Hinlopen Strait.

At this point, we were considering whether it was feasible to pick up radiosondes on Lågøya and Moffen for NPI colleagues working on walrus tracking. Given a weather forecast of strong NE winds in the morning and a ~4 h transect time between the two locations, we decided not to go to Lågøya, but instead to arrive at Moffen around noon and assess the conditions, resulting in some extra time being available during transit.

10.10.2022

The extra time during transit through Hinlopen was used to collect 4 CTDs from the middle of Wahlenbergfjorden and outward into Hinlopen (WBHL). In addition, a final CTD (#297) was collected in the northern mouth of Hinlopen around 06:50. This location fit well as the outermost station of the WBHL transect, but also constitutes a repeat of a station occupied by Fridtjof Nansen in 1912 (10.10 also happens to be Nansen's birthday).

Steamed north and west toward Moffen island. The swell and winds had abated considerably, and visibility was fair. The conditions were deemed safe for going ashore. After a safety meeting at 10:30, a light boat with 4 cruise participants and 3 crew members set out to Moffen at 11:00. The team included two polar bear guards, and the operations were monitored from the KPH bridge. Several walrus were observed on the beach and in the surrounding water; the team maintained distance from the animals, retrieved the radio sender, and was back on ship around 11:50.

Steamed westward toward Longyearbyen ahead of schedule. Going at a moderate speed to maximize fuel economy.

11.10.2022

Steaming toward Longyearbyen. Test trawl for maintenance of equipment west of Forlandet. In port in Longyearbyen around 20:00.

Appendix B. CTD overview

Table 6: Details of CTD casts during the cruise.

СТD		Time				Max dept	SAI V	Transec	
#	Date	UTC	Lat		Lon	h	CTD	t ID	Comment
									Test cast, Nansen Basin N of Hinlopen, ~2
	03.10.2	13:4	80	59.88					km depth. CTD only to 500. ARGO
222	2	2	Ν		015 52.99 E	495	Y		deployment.
	04.10.2	03:3	81	40.88					Northernmost of A-TWAIN line, Nansen
223	2	0	Ν		030 32.43 E	2819	Ν	AT1	Basin
	04.10.2	07:1	81	33.10					
224	2	7	Ν		030 55.34 E	880	Ν		Before AT800 recovery. Nutrient sampling.
	04.10.2	16:2	81	37.90					
225	2	3	Ν		030 40.64 E	2150	Ν	AT2	
	04.10.2	18:4	81	35.36					
226	2	7	Ν		030 47.40 E	1597	Ν	AT3	
	04.10.2	20:2	81	34.07					
227	2	9	Ν		030 49.98 E	1114	Ν	AT4	
	04.10.2	21:5	81	33.01					
228	2	2	Ν		030 52.63 E	882	Ν	AT5	
	04.10.2	23:0	81	31.07					
229	2	6	Ν		030 57.88 E	740	Ν	AT6	
	05.10.2	00:1	81	29.21					
230	2	4	Ν		031 01.32 E	627	Ν	AT7	
	05.10.2	01:1	81	27.47					
231	2	5	Ν		031 04.53 E	481	Ν	AT8	Near AT500 mooring
	05.10.2	02:1	81	25.99					
232	2	1	Ν		031 09.20 E	267	Ν	AT9	

277	05.10.2	03:0	81	24.60		104	N	4710	
255	2	6 04:0	N 81	21.23	031 14.65 E	194	IN	ATIU	
234	2	5	N	22120	031 22.27 E	184	N	AT11	
275	05.10.2	05:0	81	17.29	071 72 00 5	100	N	4710	
255	2	06:2	N 81	24.61	031 32.09 E	196	N	ATTZ	
236	2	5	N	2	031 14.57 E	193			CTD AT200. Nutrient sampling.
277	05.10.2	12:1	81	32.79	070 52 02 5	050			
237	2	5 17·4	N 81	04 99	030 52.02 E	858			CTD after AT800 deployment
238	2	7	N	01.77	030 29.97 E	122	N	KVN1	
	05.10.2	19:0	81	04.99					
239	2	0 10·/	N 81	04 98	030 00.00 E	122	N	KVN2	
240	2	2	N	04.90	029 42.21 E	214	N	KVN3	
	05.10.2	20:4	81	04.99					
241	2	5 21.z	N 01	04.00	029 16.08 E	117	N		CTD to calibrate AT800 CTD sensors
242	2	5	N	04.99	029 16.08 E	351	N	KVN4	
	05.10.2	22:4	81	04.99					
243	2	0	N 01	04.00	028 49.99 E	345	N	KVN5	
244	2	25:5	N N	04.99	028 32.77 E	230	N	KVN6	
	06.10.2	00:2	81	05.00					
245	2	3	N	05.00	028 11.98 E	108	N	KVN7	
246	06.10.2	01:1	81 N	05.00	027 51 17 F	70	N	KVN8	
210	06.10.2	11:5	81	24.35	027 51.17 2	70	.,		
247	2	0	N		031 13.73 E	184	Ν		CTD after AT200 deployment
248	06.10.2 2	22:0 4	/9 N	47.79	029 50 84 F	146	N	KVS1	
210	06.10.2	22:5	79	45.30	027 50.012	110		11131	
249	2	6	N		029 34.76 E	186	Ν	KVS2	
250	06.10.2	23:4	/9 N	45.30	029 16 88 F	209	N	KVS3	
250	07.10.2	00:2	79	45.30	027 10.00 L	207		11135	
251	2	9	N		028 59.09 E	266	Ν	KVS4	
252	07.10.2	01:2	/9 N	45.29	028 40 51 F	214	N	KVS5	
252	07.10.2	02:1	79	45.25	020 10.51 2			1(135	
253	2	2	N		028 22.28 E	157	Ν	KVS6	
254	07.10.2	03:1	/9 N	45.30	028 04 28 F	74	N	KVS7	
231	07.10.2	05:5	79	34.94	020 0 1.20 2	, .	.,	1(13)	
255	2	5	Ν		028 03.89 E	252	Ν		CTD at M1. Nutrient sampling.
256	07.10.2	08:5 8	79 N	34.97	028 04 20 F	252	N		CTD between M1 depl./recovery. After
250	07.10.2	16:1	79	45.06	020 04.20 L	2.52	IN		
257	2	0	Ν		027 36.26 E	83	N	M1T-1	
250	07.10.2	17:1	79	42.76		10	N	M1T 2	
250	07.10.2	17:5	79	40.54	027 43.32 E	40	IN	I*I1-2	
259	2	2	Ν		027 49.75 E	82	Ν	M1T-3	
260	07.10.2	18:3	79	39.26		110	N		
260	2	19.0	N 79	37.99	027 55.94 E	118	IN	M111-4	
261	2	3	N		027 57.22 E	163	N	M1T-5	

	07.10.2	19:3	79	37.00					
262	2	5	N 70	75 07	027 59.98 E	197	N	M1T-6	
263	2	0	79 N	55.07	028 02.35 E	225	N	M1T-7	
	07.10.2	20:4	79	35.10					
264	2	5	Ν		028 04.02 E	249	Ν	M1T-8	CTD after AT200 deployment
265	07.10.2	21:4	79 N	33.78		207	м	M1T 0	
265	2	2 22.4	IN 79	32.10	028 09.68 E	296	N	M11-9	
266	2	6	N	52.10	028 20.13 E	308	N	M1T-10	
	08.10.2	00:0	79	29.96					
267	2	3	Ν		028 34.23 E	336	Ν	M1T-11	
260	08.10.2	02:3	79 N	38.82		170	м		
208	2	0 03·5	IN 79	34.83	027 20.40 E	120	IN	HBA-1	
269	2	8	N	51.05	026 56.61 E	79	N	HBC-1	
	08.10.2	04:3	79	36.24					
270	2	9	Ν		026 54.80 E	119	Ν	HBC-2	
271	08.10.2	05:2	79 N	37.63		177	м		
271	2		IN 79	39.22	020 33.11 E	1/5	IN	пвс-э	
272	2	7	N	JJ.22	026 50.95 E	111	N	HBA-2	
	08.10.2	06:4	79	40.88					
273	2	6	Ν		026 49.23 E	69	Ν	HBC-3	
274	08.10.2	07:5	79	37.09		101	м		
2/4	2	9 09·1	N 79	34 48	026 28.50 E	181	N	HBA-3	
275	2	6	N	51.10	026 10.36 E	133	N	HBA-4	
	08 10 2	10.2	79	33.03					
	00.10.2	10.2		55.05					
276	2	4	N	55.05	025 55.92 E	108	Y	HBA-5	
276	2 08.10.2	4	N 79	31.78	025 55.92 E	108	Y	HBA-5	Nutriont compline
276 277	08.10.2 2 08.10.2 2 08.10.2	4 11:5 7 16:2	N 79 N 79	31.78	025 55.92 E 025 44.20 E	108 114	Y Y	HBA-5 SS-1	Nutrient sampling
276 277 278	08.10.2 2 08.10.2 2 08.10.2 2	4 11:5 7 16:2 5	N 79 N 79 N	31.78 23.23	025 55.92 E 025 44.20 E 025 42.12 E	108 114 83	Y Y Y	HBA-5 SS-1 SS-2	Nutrient sampling
276 277 278	08.10.2 2 08.10.2 2 08.10.2 2 08.10.2	4 11:5 7 16:2 5 17:3	N 79 N 79 N 79 N 79	31.7823.2320.20	025 55.92 E 025 44.20 E 025 42.12 E	108 114 83	Y Y Y	HBA-5 SS-1 SS-2	Nutrient sampling
276 277 278 279	08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2	4 11:5 7 16:2 5 17:3 9	N 79 N 79 N 79 N	31.78 23.23 20.20	025 55.92 E 025 44.20 E 025 42.12 E 025 35.39 E	108 114 83 95	Y Y Y Y	HBA-5 SS-1 SS-2 SS-3	Nutrient sampling
276 277 278 279	08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2	4 11:5 7 16:2 5 17:3 9 18:4 9	N 79 N 79 N 79 N 79 N 79 N	 31.78 23.23 20.20 19.75 	025 55.92 E 025 44.20 E 025 42.12 E 025 35.39 E	108 114 83 95	Υ Υ Υ Υ	HBA-5 SS-1 SS-2 SS-3 SS-4	Nutrient sampling
2776 2777 2778 2779 2800	08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2	4 11:5 7 16:2 5 17:3 9 18:4 9 19:5	N 79 N 79 N 79 N 79 N 79 N 79	31.78 23.23 20.20 19.75 18.49	025 55.92 E 025 44.20 E 025 42.12 E 025 35.39 E 025 12.89 E	108 114 83 95 65	Y Y Y Y Y	HBA-5 SS-1 SS-2 SS-3 SS-4	Nutrient sampling
2776 2777 2778 2779 280 281	08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 2	4 11:5 7 16:2 5 17:3 9 18:4 9 19:5 9	N 79 N 79 N 79 N 79 N 79 N 79 N	 31.78 23.23 20.20 19.75 18.49 	025 55.92 E 025 44.20 E 025 42.12 E 025 35.39 E 025 12.89 E 025 38.13 E	108 114 83 95 65 103	Y Y Y Y Y	HBA-5 SS-1 SS-2 SS-3 SS-4 SSO-1	Nutrient sampling
276 277 278 279 280 281	08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2	4 11:5 7 16:2 5 17:3 9 18:4 9 19:5 9 21:0	N 79 N 79 N 79 N 79 N 79 N 79 N 79	 31.78 23.23 20.20 19.75 18.49 15.40 	025 55.92 E 025 44.20 E 025 42.12 E 025 35.39 E 025 12.89 E 025 38.13 E	108 1114 83 95 65 103	Y Y Y Y Y Y	HBA-5 SS-1 SS-2 SS-3 SS-4 SSO-1	Nutrient sampling
276 277 278 279 280 281 282	08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2	4 11:5 7 16:2 5 17:3 9 18:4 9 19:5 9 21:0 3	N 79 N 79 N 79 N 79 N 79 N 79 N 79 N	 31.78 23.23 20.20 19.75 18.49 15.40 	025 55.92 E 025 44.20 E 025 42.12 E 025 35.39 E 025 12.89 E 025 38.13 E	108 114 83 95 65 103 134	Y Y Y Y Y Y Y	HBA-5 SS-1 SS-2 SS-3 SS-4 SSO-1 SSO-2	Nutrient sampling
276 277 278 279 280 281 282 283	08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2	4 11:5 7 16:2 5 17:3 9 18:4 9 19:5 9 21:0 3 22:0 8	N 79 N 79 N 79 N 79 N 79 N 79 N 79 N 79	 31.78 23.23 20.20 19.75 18.49 15.40 12.33 	025 55.92 E 025 44.20 E 025 42.12 E 025 35.39 E 025 12.89 E 025 38.13 E 025 44.57 E	108 114 83 95 65 103 134	Y Y Y Y Y Y Y	HBA-5 SS-1 SS-2 SS-3 SS-4 SSO-1 SSO-2 SSO-3	Nutrient sampling
276 277 278 279 280 281 282 282 283	08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2	4 11:5 7 16:2 5 17:3 9 18:4 9 19:5 9 21:0 3 22:0 8 23:2	N 79 N 79 N 79 N 79 N 79 N 79 N 79 N 79	31.78 23.23 20.20 19.75 18.49 15.40 12.33 07.45	025 55.92 E 025 44.20 E 025 42.12 E 025 35.39 E 025 12.89 E 025 38.13 E 025 44.57 E	108 114 83 95 65 103 134 186	Y Y Y Y Y Y Y	HBA-5 SS-1 SS-2 SS-3 SS-4 SSO-1 SSO-2 SSO-2	Nutrient sampling
276 277 278 279 280 281 282 282 283 284	08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2	4 11:5 7 16:2 5 17:3 9 18:4 9 19:5 9 21:0 3 22:0 8 22:2 8	N 79 N 79 N 79 N 79 N 79 N 79 N 79 N 79	31.78 23.23 20.20 19.75 18.49 15.40 12.33 07.45	025 55.92 E 025 44.20 E 025 42.12 E 025 35.39 E 025 12.89 E 025 38.13 E 025 44.57 E 025 50.93 E	108 114 83 95 65 103 134 186 229	Y Y Y Y Y Y Y Y	HBA-5 SS-1 SS-2 SS-3 SS-4 SSO-1 SSO-2 SSO-2 SSO-3	Nutrient sampling
276 277 278 279 280 281 282 283 283	08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2	4 11:5 7 16:2 5 17:3 9 18:4 9 19:5 9 21:0 3 22:0 8 23:2 8 00:4	N 79 N 79 N 79 N 79 N 79 N 79 N 79 N 79	 31.78 23.23 20.20 19.75 18.49 15.40 12.33 07.45 02.88 	025 55.92 E 025 44.20 E 025 42.12 E 025 35.39 E 025 12.89 E 025 38.13 E 025 44.57 E 025 50.93 E	108 114 83 95 65 103 134 186 229	Y Y Y Y Y Y Y Y	HBA-5 SS-1 SS-2 SS-3 SS-4 SSO-1 SSO-2 SSO-3 SSO-3	Nutrient sampling
276 277 278 279 280 281 282 283 283 284 285	08.10.2 2 09.10.2 2 09.10.2 2 09.10.2 2 09.10.2 2	4 11:5 7 16:2 5 17:3 9 18:4 9 19:5 9 21:0 3 22:0 8 22:0 8 23:2 8 00:4 0	N 79 N 79 N 79 N 79 N 79 N 79 N 79 N 79	31.78 23.23 20.20 19.75 18.49 15.40 12.33 07.45 02.88	025 55.92 E 025 44.20 E 025 42.12 E 025 35.39 E 025 12.89 E 025 38.13 E 025 44.57 E 025 50.93 E 025 59.93 E	108 114 83 95 65 103 134 186 229 185	Y Y Y Y Y Y Y Y Y	HBA-5 SS-1 SS-2 SS-3 SS-4 SSO-1 SSO-2 SSO-2 SSO-3 SSO-4 SSO-5	Nutrient sampling
276 277 278 279 280 281 282 283 283 284 285 286	08.10.2 2 09.10.2 2 09.10.2 2 09.10.2 2	4 11:5 7 16:2 5 17:3 9 18:4 9 19:5 9 21:0 3 22:0 8 23:2 8 00:4 0 01:5 5	N 79 N 79 N 79 N 79 N 79 N 79 N 79 N 79	 31.78 23.23 20.20 19.75 18.49 15.40 12.33 07.45 02.88 57.60 	025 55.92 E 025 44.20 E 025 42.12 E 025 35.39 E 025 12.89 E 025 38.13 E 025 44.57 E 025 50.93 E 025 59.93 E 026 09.10 E	108 114 83 95 65 103 134 186 229 185	Y Y Y Y Y Y Y Y Y Y	HBA-5 SS-1 SS-2 SS-3 SS-4 SSO-1 SSO-2 SSO-3 SSO-3 SSO-4 SSO-5 SSO-6	Nutrient sampling
276 277 278 279 280 281 282 283 283 284 285 286	08.10.2 2 09.10.2 2 09.10.2 0 0 0 0 0 0 0 0 0 0 0 0 0	4 11:5 7 16:2 5 17:3 9 18:4 9 19:5 9 21:0 3 22:0 8 22:0 8 23:2 8 00:4 0 01:5 5 03:1	N N 79 N 78 N 78	31.78 23.23 20.20 19.75 18.49 15.40 12.33 07.45 02.88 57.60 54.26	025 55.92 E 025 44.20 E 025 42.12 E 025 35.39 E 025 12.89 E 025 38.13 E 025 44.57 E 025 50.93 E 025 59.93 E 026 09.10 E	108 114 83 95 65 103 134 186 229 185 148	Y Y Y Y Y Y Y Y Y	HBA-5 SS-1 SS-2 SS-3 SS-4 SSO-1 SSO-2 SSO-3 SSO-3 SSO-4 SSO-5 SSO-6	Nutrient sampling
2776 2777 279 280 281 282 283 283 284 285 286 287	08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 09.10.2 2 09.10.2 2 2	4 11:5 7 16:2 5 17:3 9 18:4 9 19:5 9 21:0 3 22:0 8 22:0 8 22:2 8 00:4 0 01:5 5 03:1 3	N 79 73	31.78 23.23 20.20 19.75 18.49 15.40 12.33 07.45 02.88 57.60 54.26	025 55.92 E 025 44.20 E 025 42.12 E 025 35.39 E 025 12.89 E 025 38.13 E 025 44.57 E 025 50.93 E 025 59.93 E 026 09.10 E 026 18.13 E	108 114 83 95 65 103 134 136 229 185 148 73	Y Y Y Y Y Y Y Y Y Y	HBA-5 SS-1 SS-2 SS-3 SS-4 SSO-1 SSO-2 SSO-3 SSO-3 SSO-4 SSO-5 SSO-6 SSO-6	Nutrient sampling
2776 2777 2778 2779 2800 281 282 283 284 285 284 285 286 287	08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 09.10.2 2 09.10.2 2 09.10.2	4 11:5 7 16:2 5 17:3 9 18:4 9 19:5 9 21:0 3 22:0 8 23:2 8 00:4 0 01:5 5 03:1 3 04:4	N 79 78 78 78 78 78 78 78 78	 31.78 23.23 20.20 19.75 18.49 15.40 12.33 07.45 02.88 57.60 54.26 47.88 	025 55.92 E 025 44.20 E 025 42.12 E 025 35.39 E 025 12.89 E 025 38.13 E 025 50.93 E 025 50.93 E 026 09.10 E 026 18.13 E	108 114 83 95 65 103 134 186 229 185 148 73	Y Y Y Y Y Y Y Y Y Y Y	HBA-5 SS-1 SS-2 SS-3 SS-4 SSO-1 SSO-2 SSO-3 SSO-3 SSO-4 SSO-5 SSO-6 SSO-7	Nutrient sampling
2776 2777 2779 2800 281 282 283 283 284 285 286 285 286 287 288	00.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 09.10.2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	4 11:5 7 16:2 5 17:3 9 18:4 9 19:5 9 21:0 3 22:0 8 22:0 8 22:0 8 22:2 8 00:4 0 01:5 5 03:1 3 04:4 8	N N 79 N 78 N 78 N 78 N 72	 31.78 23.23 20.20 19.75 18.49 15.40 12.33 07.45 02.88 57.60 54.26 47.88 	025 55.92 E 025 44.20 E 025 42.12 E 025 35.39 E 025 12.89 E 025 38.13 E 025 44.57 E 025 50.93 E 025 59.93 E 026 09.10 E 026 18.13 E	108 114 83 95 65 103 134 186 229 185 148 73 80	Y Y Y Y Y Y Y Y Y Y Y	HBA-5 SS-1 SS-2 SS-3 SS-4 SSO-1 SSO-2 SSO-2 SSO-3 SSO-4 SSO-5 SSO-6 SSO-6 SSO-7 SSO-7	Nutrient sampling Image: Ima
2776 2777 2779 2800 281 282 283 284 285 286 286 287 288	00.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 09.10.2 2 09.10.2 2 09.10.2 2 09.10.2 2 09.10.2 2	4 11:5 7 16:2 5 17:3 9 18:4 9 19:5 9 21:0 3 22:0 8 23:2 8 00:4 0 01:5 5 03:1 3 04:4 8 06:1 2	N 79 78	 31.78 23.23 20.20 19.75 18.49 15.40 12.33 07.45 02.88 57.60 54.26 47.88 45.00 	025 55.92 E 025 44.20 E 025 35.39 E 025 35.39 E 025 38.13 E 025 38.13 E 025 50.93 E 025 50.93 E 026 09.10 E 026 18.13 E 026 25.36 E	108 114 83 95 65 103 134 186 229 185 148 73 80	Y Y Y Y Y Y Y Y Y Y Y	HBA-5 SS-1 SS-2 SS-3 SS-4 SSO-1 SSO-2 SSO-3 SSO-3 SSO-4 SSO-5 SSO-6 SSO-6 SSO-7 SSO-7 SAD-1	Nutrient sampling
2776 2777 278 279 280 281 282 283 283 284 285 284 285 286 287 288 289	00.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 08.10.2 2 09.10.2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	4 11:5 7 16:2 5 17:3 9 18:4 9 19:5 9 21:0 3 22:0 8 23:2 8 00:4 0 01:5 5 03:1 3 04:4 8 00:1 2 3	N 79 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78	 31.78 23.23 20.20 19.75 18.49 15.40 12.33 07.45 02.88 57.60 54.26 47.88 45.00 42.05 	025 55.92 E 025 44.20 E 025 35.39 E 025 35.39 E 025 38.13 E 025 38.13 E 025 50.93 E 025 59.93 E 026 09.10 E 026 18.13 E 026 25.36 E 026 00.98 E	108 114 83 95 65 103 134 186 229 185 148 73 80 106	Y Y Y Y Y Y Y Y Y Y Y Y	HBA-5 SS-1 SS-2 SS-3 SS-4 SSO-1 SSO-2 SSO-3 SSO-3 SSO-4 SSO-5 SSO-6 SSO-7 SSO-7 SSO-7 SAD-1 SAD-1	Nutrient sampling

	09.10.2	08:5	78	39.59					
291	2	1	Ν		024 13.20 E	132	Y	SAD-4	
	09.10.2	10:3	78	36.69					
292	2	1	Ν		023 39.05 E	75	Y	SAD-5	
	09.10.2	21:4	79	42.91					
293	2	1	Ν		020 56.18 E	96	Y	WBHL-1	
	09.10.2	22:5	79	41.51					
294	2	0	Ν		020 29.98 E	148	Y	WBHL-2	
	10.10.2	00:3	79	37.52					
295	2	1	Ν		019 40.13 E	267	Y	WBHL-3	
	10.10.2	02:1	79	37.22					
296	2	1	Ν		018 51.81 E	314	Y	WBHL-4	
	10.10.2	06:5	80	07.00					
297	2	0	Ν		017 08.01 E	383	Y	WBHL-5	At site of Nansen 1912 CTD

Appendix C. Nutrient samples

 Table 7: Nutrient water samples collected during the cruise.

Station	Date	Source	Bottle no.	Depth [m]	Event ID
AT-800	04.10	CTD bottles	1	890	b0b40082-3fe4-11ed-b665-
81,5517N	2022.				b827eb22bac7
30.9223E	07:17	CTD bottles	2	500	b0b40640-3fe4-11ed-b665-
CTD #224					b827eb22bac7
		CTD bottles	3	300	b0b40d48-3fe4-11ed-b665-
					b827eb22bac7
		CTD bottles	4	200	b0b41310-3fe4-11ed-b665-
					b827eb22bac7
		CTD bottles	5	150	b0b418ba-3fe4-11ed-b665-
					b827eb22bac7
		CTD bottles	6	120	b0b41e64-3fe4-11ed-b665-
					b827eb22bac7
		CTD bottles	7	90	b0b42562-3fe4-11ed-b665-
					b827eb22bac7
		CTD bottles	8	60	b0b42e18-3fe4-11ed-b665-
					b827eb22bac7
		CTD bottles	9	30	b0b43412-3fe4-11ed-b665-
					b827eb22bac7
		CTD bottles	10	20	b0b439d0-3fe4-11ed-b665-
					b827eb22bac7
		Ship intake		4	b0b43f7a-3fe4-11ed-b665-b827eb22bac7
AT-200	05.10	CTD bottles	1	195	b0b4452e-3fe4-11ed-b665-
81,4102N	2022,				b827eb22bac7
31.2428E	06:25	CTD bottles	2	150	b0b44ae2-3fe4-11ed-b665-
CTD #236					b827eb22bac7
0.0		CTD bottles	3	120	b0b450c8-3fe4-11ed-b665-
					b827eb22bac7
		CTD bottles	4	90	b0b45690-3fe4-11ed-b665-
					b827eb22bac7
		CTD bottles	5	60	b0b45c62-3fe4-11ed-b665-
					b827eb22bac7
		CTD bottles	6	50	b0b46234-3fe4-11ed-b665-
					b827eb22bac7
		CTD bottles	7	40	b0b467de-3fe4-11ed-b665-
					b827eb22bac7
		CTD bottles	8	30	b0b46d92-3fe4-11ed-b665-
					b827eb22bac7

		CTD bottles	9	20	b0b47346-3fe4-11ed-b665-
					b827eb22bac7
		Ship intake		4	b0b47904-3fe4-11ed-b665-
					b827eb22bac7
M1	07.10,	CTD bottles	1	255	b0b47ea4-3fe4-11ed-b665-
79,5823N	2022,				b827eb22bac7
28,0648E	05:55	CTD bottles	2	200	b0b48444-3fe4-11ed-b665-
CTD #255					b827eb22bac7
		CTD bottles	3	150	b0b489ee-3fe4-11ed-b665-
					b827eb22bac7
		CTD bottles	4	120	b0b48fb6-3fe4-11ed-b665-
					b827eb22bac7
		CTD bottles	5	90	b0b4956a-3fe4-11ed-b665-
					b827eb22bac7
		CTD bottles	6	60	f39e715c-3fe4-11ed-a879-b827eb22bac7
		CTD bottles	7	50	f39e7f30-3fe4-11ed-a879-b827eb22bac7
		CTD bottles	8	40	f39e85c0-3fe4-11ed-a879-b827eb22bac7
		CTD bottles	9	30	f39e8b7e-3fe4-11ed-a879-b827eb22bac7
		CTD bottles	10	20	f39e913c-3fe4-11ed-a879-b827eb22bac7
		Ship intake		4	f39e98a8-3fe4-11ed-a879-b827eb22bac7
Storis-	08.10	CTD bottles	1	115	f39e9e7a-3fe4-11ed-a879-b827eb22bac7
straumen	2022,	CTD bottles	2	90	f39ea424-3fe4-11ed-a879-b827eb22bac7
glacier	11:57	CTD bottles	3	60	b0b40082-3fe4-11ed-b665-
front					b827eb22bac7
/9,529/N		CTD bottles	4	50	b0b40640-3fe4-11ed-b665-
25,7367E					b827eb22bac7
CTD #277		CTD bottles	5	40	b0b40d48-3fe4-11ed-b665-
					b827eb22bac7
		CTD bottles	6	30	b0b41310-3fe4-11ed-b665-
					b827eb22bac7
		CTD bottles	7	20	b0b418ba-3fe4-11ed-b665-
					b827eb22bac7
		Ship intake		4	b0b41e64-3fe4-11ed-b665-
					b827eb22bac7

Appendix D. Outreach

Content from the cruise posted underway through NPI's social media channels.

Historian Harald Dag Jølle joined the cruise as part of the preparation for a book about past and current polar research.

Planned: Short text to be published in appropriate channel (*forskning.no* or similar).

Figure 8: Social media posts published during the cruise.

oceanseaicenpi

oceanseaicenpi TOURING MOORINGS - Last Sunday, Kronprins Haakon set off from Longyearbyen on this @nansenlegacyresearch mooring cruise north and eu Svalbard. The ship is used to service ocean moorings instruments that continuously collect ocean and sea neasurements.

ea ice extent in the Arctic is at its minimum in late s W Kronprins Haakon has not encountered any sea i ruise. This makes the mooring work easier, although complicated operation even in ice-free waters. A mo eleased from the bottom of the ocean by sending a ignal from the bit to a release device next the oce luoyant floats, usually colored bright yellow or orany the mooring to the surface, where it is carelluly lifted hip. The measurement data is then recovered from 1 nstruments, and a new mooring is put back into the R/V Kri

While the ship will return the researchers to shore so moorings will continue collecting data through winte of next year. This gives us valuable insight into how t and sea ice behave in an area that is difficult to accer extended periods of the year.

QV

e: Harald Dan Jallo (@

Norsk Polarinstitutt // Norwegian Polar ... @Nors... - Oct 10, 202: Masterstudent Julie Sortland (UIT) markerer Nansens fødselsdag m ta en CTD på nøyaktig samme posisjon som #Nansen tok sine nordøstligste vannprøver i 1912.

Mer om Nansen: polarh

@nansenlegacy

Foto: Harald Dag Jølle / Norsk Polarinstitutt

Planned Nansen Legacy datasets Appendix E.

Table 8: Planned Nansen Legacy datasets. NPDC: Norwegian Polar Data Centre. NMDC: Norwegian Marine Data Centre

PI	Dataset	Planned analysis	RF	Sharing within project	Publishing	Embargo
Sundfjord, Lundesgaard	Water column data from M1-4	2023	RF1	Summer 2023 (raw data	2023/2024 (NPDC)	N
(NPI)	mooring			request)		
Sundfjord, Lundesgaard (NPI)	Sea ice data from M1-4 mooring	2023	RF1	Summer 2023	2023 (NPDC)	Y (planned paper)
Chierici (IMR)	CO2/pH/oxygen data from moored sensors on M1-4	Contact Pl	RF2	Contact PI	Contact PI	Contact PI
Ingvaldsen (IMR)	Bioacoustics from M1-BioAc-2	Contact Pl	RF3	Contact Pl	Contact Pl	Contact Pl
Reigstad (UIT)	Nutrients from water samples	2023	RF2	Contact Pl	Contact Pl	Ν
Sundfjord, Lundesgaard (NPI)	CTD data (processing by IMR)	2023 (IMR)	RF1	Raw data available on NIRD	2023 (NMDC)	Ν

Data collected from the ship (underway TSG and weather, raw CTD and ADCP, navigational data, etc.) are available to NL members on NIRD (NS9530K/nansen_legacy/raw_data/kph/S2022712_PKRONPRINSHAAKON_9566).

Appendix F. Diagrams of recovered moorings

Rigg Satt ut	M1-4 10.11.2021,	k1	79 34.974] 20:05	N(79.5829) 028 04.302	Dyp: 2 E(28.0717)	Fra bur	m: Ut:		
			Nortek S500	SNR. 812		22	230	19:47	
	۳ŧ		RBR Concer	to	NR.60600		23	229	19:47
	\circ		2 Glasskuler	i 2 m Kjetting	galv.				
	ĥ		SeaPhox	NR.2035		26	226	19:47	
			RBR CL + P 2 m Kevlar 0,5 m Kjettin 20 m Kevlar 10 m Kevlar	AR ng galv.	SNR. 20499	1	27	225	19:47
	<u> </u>		RBR Concer	rto	SNR. 20140	5	57	195	19:36
			HF36			58	194		
	P		Svivel 2 m Kevlar						
	1		Aural Hvally	d	SNR. 288		61	191	19:35
			2 m Kevlar						
			4 Glasskuler	i 2 m Kjetting	galv.				
			0,5 m Kjettin 20 m Kevlar RBR Concert 50 (51) m Ke	g galv. to vlar	SNR. 60591		87	165	19:27
	•		RBR SOLO	SNR. 102486	5	150	102	19:26	
	I₹		RBR Concer	to	SNR. 60592		170	82	19:24
	Ť		40 (41) m Ke	evlar					
	1		RBR SOLO 20+10(11)	SNR. 102473 m Kevlar	7	210	42	19:22	
	¢		ADCP150	SNR. 16640		240	12	19:20	
	Ĩ		SBE 37	SNR. 23180		242	10	19:20	
			Contros CO2	SNR. 1220-0	02		244	08	19:20
			AR861B2S	SNR. 2426	Ping on: Release	1B47 1B55			
	4		3 m Kevlar.		Arm:	1BDF			
	g		2 m Kjetting	galv.					
	0		ANKER	825/(700)kg		252	0		

Figure 9: M1-4

-							1					
Shi	p plat orm:	КРН					\sim	\sim	\sim	~~~~~	$\sim\sim$	- 0 m
Sta	t on name:	M1-BIC	DAC				Weight	Vol	Length	Material / Object		
Lat	tude:	N 79°	35.178	Longitue	le:	E 28° 24.974	[kg]	[1]	[m]	Wateriary Object		
80	t om depth [m] 265		lotal he	ight (m)							
Ou	tgoing date:	10.11.	21	Outgoin	g t me:	07:40utc						0
Inc	oming date:			Incomin	g t me:		ļ					Um
Ag	205			S/N:		181	1					
PT	r TID:	1577		Hex:								
Ao	oust c Release	Ixblue										
Typ	be:	R5		S/N:		21350035						
Ba	t type:	Alk. original		Bat exp	:	Approx june2025						
Ra	nge code:	3524		Release	code:	3555						
							1					
Co	mments for de	ployment ope	erat ons:									
Sta	rt recording 1	1novkl1800ut	с									
C -							-					
0	mments for rea	covery operat	ons:									
Ba	t ery on next re	elease must b	e change	ed af er ne	xt recove	ery						
]					
		Ins	trument	s/sensors								
#	Brand	Туре		S/N	Depti	h Comment						
1	Nortek	Signature 10	00	101764	244	2års utset						
2	Novatech	Blinkelys		F10-062	244	New bat						
3	SIS	ArgoTx		181	244	New saf LS20						
4	t											
5	t											
6	t											
7	t											
_								110		cienatura 100		257.00
	Taralan	Inst	truments	s cont g int	0	6		110	'	signature 100		237 m
#	Type/sn	Ping/ Time/cell	interv	d Bate al info	ery	Comment						
1	Sig100adcp	180s/10m	2t	lithiu	Im	2xlithium						
2	Sig100echo		20sek			400m range					Y	
З	t								2	21 strap		
4	t											
5	t											
6	t											
			Rigging	t parts			1 I					
#	Туре					Qty	15		1	aqoust c release		
1	Shackle galva	nized steel										
2	Shackle stain	less steel 3.25	т									
3	Kevlar tau										Ψ	
4	Strope											
5	Ring (plast c/	metal)							2	2T strap		
6	Strope											
7	Ring (plast c/	metal)									d d	
D-	manalhia fac d						1				¥.	
r(e	sponsible for d	epioymentor	recover	γ operat o	ris:		370		Ι,		Ÿ	
							5/0		1			265 m
							777	777	777	1111111	TITT	1111
									111			1111

Figure 10: M1-BioAC-2

Figure 11: AT500-2

Rigg	ATV	WAIN20	0-6	81 24.630N(81.4105)	Dyp:	Over bunn:	I vannet:
Ut	09.11	.2021, kl 19	9:39	031 14,598E	(31.2433)			
Opp	.20	kl						
$igodoldsymbol{ig$		ADCP Nortek	SNR: 802		40	162	19:38	
		6 Glasskuler 3 m Kjetting C	falv.		41	161		
		SBE16/ECO	SNR. 50241/	5803		45	157	19:38
		1 m Kjetting g 0,5 m Kjetting	galv. ; galv.					
ľ		SBE37 10 m Kevlar	SNR. 20773		49	153	19:38	
		Hvallydopptak	ker 236			59	143	19:30
Ī		2 m Kevlar						
g		0,5 m Kjetting	galv.					
Ť		50 m Kevlar						
d i		SBE37	SNR. 15252		113	89	19:30	
Ţ		20 m Kevlar						
		50(51) m Kev	dar					
¢		ADCP150	SNR: 24619		185	17	19:20	
		5 m Kevlar						
		SBE37	SNR. 9293		190	12	19:20	
		4 Glasskuler i	2 m galvaniser	t kjetting				
8		0,5 m Kjetting	; syrefast					
Í		Svivel						
ğ		AR861CS	SNR. 1454 Ri	Arm: elease: Arm	09AB + 0955			
		3 m Kevlar						
8		3 m Chain						
		ANCHOR	900/(800) kg		202		0	

.

Figure 12:AT200-6

Satt	ut 9.11.2021 , kl 11:20	030 52,662E(3	0,8777)			
	Nortek Sign 250 SNR 10082	8 1:	3(1)	867	19:20	
	4 glasskuler					
	SUNA SNR. 0294	4	11	839	19:20	
T	RBR Concerto CL+PAR SN 2 m Kevlar	I. 204992	45	835	19:20	
1		97 78	3	19:10		
8	0,5 m Kjetting Galv.					
f	50 m Kevlar					
	4 glasskuler 2 m Kjetting					
မြုမ	0,5 m Kjetting Galv.					
Ť	RBR Concerto SNR. 60595	9	9	781	19:10	
٩.	100 m Kevlar					
	RBR Concerto SNR. 201413	3 1	51	729	18:59	
l	RBR Concerto SNR.201414	2	01	679	18:55	
8	0,5 m Kjetting Galv.					
1	50 + 50(51)m Kevlar					
8	RBR Concerto SNR.201403 4 Glasskuler 2 m Kjetting Gulv. 0.5 m Kjetting Galv. 100 (102) m Keylar	3 .	302	578	18:47	
Ļ	RBR Solo SNR.102492	2 4	408	472	18:40	
1	RBR Solo SNR 102482	7	615	265	18-33	
4	50(51) m Kevlar	, , , , , , , , , , , , , , , , , , ,		205	10.55	
Ī	100+100(104) m Kevlar					
	NORTEK Sig 55	SNR: 200130		304	576	18:47
्र 	SBE37 SNR. 23177 2 m Kevlar	7				
1	Contros SNR. 1220-	-001				
2	Suivel					
	AR861B2S SNR. 263	30 Arm: Release: 2B55	2BE9)		
P	3 m Kevlar					
8	2 m Kjetting ANKER 1100 kg		880		0	

Figure 13: AT800-7

Shi	p plat orm:	KPH						$\sim \sim$	~~~	~~~~~~	~ 0 m
Stat	t on name:	Atw	ain-Ateros	-BIOAC-0)2		Weight	Vol	Length	Material / Object	
Lat	tude:	N 81	L° 32.892	Longitu	ude:	E 30°53.358	[kg]	[1]	[m]	Material/Object	
Bot	om depth (m	n] 872	m	Total he	eight (m)						
Out	tgoing date:	09.1	NOV.2021	Outgoi	ng t me:	13:51utc					0.m
Inco	oming date:			Incomi	ng t me:						011
Arg	os			S/N:		154	1				
PTT	1 D :	29532		Hex:			11				
Acc	oust c Release	Ixblue					11				
тур	e:	R5		S/N:		21350035]				
Bat	type:	Alk. origin	al	Bat ex	p:	Aprox. june2025					
Ran	ige code:	3525		Release	e code:	3555	J				
Cor	mments for de	ployment	operat ons				1				
Inst	trument start	10.11.21 k	12utc								
Cor	nments for re	covery ope	rat ons:								
All	rope from NP	should be	change out	with 200	+200m		11				
Bat	ery on releas	e must be (changed ne	st recover	nacing						
			Instrument	s / sensor	5						
#	Brand	Туре		S/N	Depth	Comment					
1	Nortek	Signature	100	101598	395	2års utset					
2	Novatech	Blinkelys		F10-061	395	New bat					
з	SIS	ArgoTx		154	395	New saf LS20					
4	t										
э	L										
6	t										
7	t										
			instrument	s conf g in	fo						
#	Type/sn	Ping/	Recor	d Bat	ery	Comment					
	First 00s days	11me/ce	ii interv	al into		Tudttlatures		110	2	Singature100	395 m
2	Sig100sdep	1609/10	m 20 mk		um	2xinnium 400m range					
2	t		2000			HOOM TONBE		25	2	Vitrovex glass sphere	
4	t									<u>w</u>	399 m
5	t										
6	t										
_		_	Dissis		_				460	(np tau360+40+20)+(40hi rope)	
-11	Tupo		Rigging	g parts		Obv	<u> </u>	50	-	Vita and and a second sec	
1	Shackle gabo	unized steel				uny			ľ	witrovex Biass sphere	859 m
2	Shackle stein	less steel 3	.25 T							6	
3	Kevlar tau								2 21	strap	
4	Strope						ļ				
5	Ring (plast c/	(metal)					22		0.8	Acoust c release	
6	Strope										
7	Ring (plast c/	(metal)								Ö	854 m
Rec	nonsible for d	feniowneni	for recover	v operat (0051				6 2t:	trap	
nes	portanzie rol t	~ proprietti	Con recover	y operation			500		2	railway wheel and chain	
							1		ľ.		872 m
							777	111	777	++++++++++++++++++++++++++++++++++++++	77777

Figure 14: AT800-BioAc-2

NLEG N	11-5	dybde	268					519,6
	Instrument		Dybde	Element	Lengde	Høyde	Vekt /	Vekt v
			22			246		
	100812	22		Signature 500	1			-50
100 × 10	66091	23	23	Concerto+ci+pa		245		
· ·								
		5 3						
		1. 2. 1		2 Glasskuler	2			-50
			25	No. do a		243		
			27	Kevlar	2	241		
				Kjetting	0,5		1	0,85
- -	102483	42	27,5	Solo	20	240,5		
			47,5	NEVIOR	20	220,5		
				Kevlar	10			
			57,5			210,5		
(aur 💏	204983	58	58,5	Concerto	1	209,5		
				Kevlar	2			
1			60,5			207,5		
1								
1								
	236	5		Aural	2		49	21
			62,5	Kevlar	2	205,5		
			64,5			203,5		
		-						
		C. To						
				4 Glasskuler	2			-100
			66,5	Viatting		201,5		
	102489	78	67	Solo	0,5	201	-	0,00
				Kevlar	20			
Bart Cont	204988	98	87	Concerto Kevlar	50	181		
-	102494	135	137	Solo		131		
				Kevlar	10			
			14/	Kevlar	20	121		
(mar 💏	204989	170	167	Concerto		101		
	102481	205	207	Kevlar Solo	40	61		
				Kevlar	20			
			227			41		
			237	Kevlar	10	31		
		-		Kevlar	10			
			247			21		
	•)							
5	-							
	24637	\square	249	ADCP 150	2	10		-136
	204000	242		Kevlar	2			
			251			17		
		Ť						
	one 1454							
	09AB	4		Utiøser	1		30	22
			252			16		
			254	Kevlar	2	14		
				Kjetting	2		4	3,4
			256		_	12		
			257	Anker	1	11	930	807,5

Appendix G. Diagrams of deployed moorings

Figure 15: M1-5

Shi	ip platform:	KPH	1				\sim	\sim	\sim	~~~~~	\sim	0 m
Sta	ition name:	M1	-BioAC-2				Weight	Vol	Length			
Lat	titude:	N79	9° 35.340	Longitud	le:	E28° 05.319	[kg]	[1]	[m]	Material / Object		
BO	ttom depth [m	n] 261	L	Total hei	ight [m]							
Ou	tgoing date:	07.	10.22	Outgoin	g time:	14:11utc						
Inc	coming date:			Incomin	g time:							0 m
Are	205			S/N:		181						
PT	TID:	1577		Hex:								
Ac	oustic Release	txblue		-								
ту	pe:	AR861		S/N:		2666						
Bat	tt type:	Lith		Batt exp	c	2029 12 april						
Ra	nge code:	3BOA		Release	code:	3855						
0	mments for de	enloyment	operations									
	at mending 0	z ele a acc	operations									
56	irt recording u	7.0Kt 1400	Jute									
Co	mments for re	covery ope	erations:									
\vdash												
			Instrumen	ts / sensors								
#	Brand	Type	morramen	s/N	Deoth	Comment						
1	Nortek	Signatur	e 100	101598	253	2 ars utsett						
2	Novatech	Blinkelys	5	F10-062	253	ok						
з	SIS	ArgoTx		181	253	ok						
4	tt											
5	tt											
6	tt											
7	tt											
			Instrument	ts config info								253 m
#	Type/sn	Pine/	Reco	rd Batte	- HV	Comment						
		Time/ce	ell inter	val info	.,		ļ	110	2	signature 100	Chan I	
1	Sig100adcp	180s/10	0m 2t	lithiu	m	1,5xlithium						
2	Sig100echo		20se	k		250m range				T		
3	π									6		
4	a #								1	12mm tau	1	
6	tt										3.	
										l l	Ţ	
*	Tree		Riggin	ig parts		054	22		1	aqoustic release		
#	Shackle call of	united store	4			Qty					ļ	
2	Shackle stain	less steel :	3.25 T							(
3	Kevlar tau									(P	
4	Strope											
5	Ring (plastic/	(metal)							,	2T strap		
6	Strope								-			
7	Ring (plastic/	(metal)							<u>+</u>		i i	
Pe	soonsible for a	lenlowmen	t or recover	en operation	ns:							
Re:	aponaiole ior c	reproymen	n or recove	ay operation	а.		400		,			
rer	Je											261 m
							777	111	111	///////////////////////////////////////	1117	1////

Figure 16: M1-BioAc-2

								,				~	
Shi	p platform:	K	(PH					\sim	~~~~	\sim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	0 m
Sta	tion name:	4	AT800-B	BioAc-6	500			Weight	Vol	Length	Material (Object		
Lat	itude:	N	V 81° 32	.761	Longitu	ude:	E 30°50.067	[kg]	[1]	[m]	Material / Object		
Bo	ttom depth [n	n] 8	372m		Total h	eight [m]							
Ou	tgoing date:	0	05.OKT.2	2022	Outgoi	ng time:	11:51utc]					-
Inc	oming date:				Incomi	ng time:							0 m
Are	<u>zos</u>				S/N:		277	1					
PT	- TID:	60205			Hex:			11					
Ac	oustic Release	e Ixblue						11					
Тур	e:	AR861			S/N:		2667	11					
Bat	tt type:	Lithiun	n		Batt ex	p:	12april2029	11					
Rai	nge code:	3808			Releas	e code:	3855	11					
	-							;					
CO	mments for d	eployme	ent oper	ations:									
Ins	trument start	05.10.2	2 kl2000	Dutc									
CO	mments for re	ecovery o	operatio	ons:									
Alle	e tau har syre	fast stål	kauser.	au mod	hi kaular	100000	atta ina an kula						
un	der toppkule i	for letter	re oppta	au meu ak	ni keviar	tau og s	ette inn en kule						
			Inche	umonte	. /	~							
=	Brand	Type	insu	uments	c/N	> Denth	Comment						
1	Nortek	Signat	ture 100		101647	601	2ars utsett						
2	Novatech	Blinke	alue		E10-061	601	Batt ok						
2	cic	ArgoT	nys V		154	601	New saft 1520						
	*	Argon	^		134	001	New Salt LS20						
4	u 												
2	u 												
•	u 												
1	u												
			Instru	uments	config in	ífo							
#	Type/sn	Ping/	/ e/cell	Record	d Bat	tery	Comment		110	2	Singature100		602 m
1	Sig100adcp	1805	/10m	2t	lith	ium	2xlithium		_		Ų		
2	Sig100echo			20sek			310m range			6	2t stropp		
3	tt									1	chain		
4	tt							 		1	2t stropp		(1)
5	tt											L	612 M
6	tt												
				Digging	narts						194m dyneema		
#	Type			~66mg	parts		Otv			254	50+10m NPkevlar		
1	Shackle galve	anized d	teel										
2	Shackle stain	anneeu si	el 3 25 7	-					50	-		Г	866 m
2	Keylar tau		1 22.20						50	4	vitrovex glass sphere	L	
	Stropp												
5	Ring (plastic	(metal)						22		1 AC	oustic release		
6	Strong	metal)											
0	Suope Ding (plactic	(motal)								+	k		
1	King (biasoc)	metal)						¦{	+	,	2t stran		
Res	sponsible for (deploym	nent or r	ecover	y operati	ons:		1		-	Tranah.		
Ter	je Hovland							550		1	railway wheel and chain	_	
												8	872 m
								177	111	111	///////////////////////////////////////	///	////

Figure 17: AT800-BioAc-600

Shi	p platform:	KPH	I				\sim	\sim	\sim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 m
Sta	tion name:	ATS	00-BioAc-	300			Weight	Vol	Length		
Lat	itude:	N 8:	1° 32.878	Longitu	ide:	E 30°53.398	[kg]	Ũ	[m]	Material / Object	
Bot	ttom depth [m	n] 867	m	Total h	eight [m]						
Ou	tgoing date:	04.1	NOV.2022	Outgoi	ng time:	13:18utc					
Inc	oming date:			Incomi	ng time:						0 m
Arg	gos			S/N:		154					
PT	ND:	29532		Hex:							
Ac	oustic Release	txblue									
тур)e:	AR861		S/N:		2368					
Bat	tt type:	Lithium		Batt ex	p:	18teb 2028					
Rai	nge code:	1888		Release	e code:	1855					
Col	mments for de	ployment	operations	:							
Ins	trument start	04 10 22 k	22utc								
Col	mments for re	covery ope	erations:								
2*	100m dyneem	a tau har e	alvaniske k	auser							
Hu	sk å sette inn a	avlaster rin	g under øv	re vitrove	ckule nes	te år					
			Instrument	ts / sensor	s						
#	Brand	Туре		S/N	Depth	Comment					
1	Nortek	Signature	e 100	101121	297	2års utsett					
2	Novatech	Blinkelys		F10-06x	297	Batt ok					
3	SIS	ArgoTx		154	297	Batt ok					
4	tt										
5	tt										
6	tt										
7	tt										
_											
			Instrument	s config in	to		·				
#	Type/sn	Ping/ Time/ce	Recor	rd Batt /al info	tery	Comment		110	2	Singature100	297 m
1	Sig100adcp	1805/10	m 2t	lithi	ium	2xlithium				Ψ	
2	Sig100echo		20sel	¢		300m range			-		
3	tt							25	1	vitrovex glass sphere	
4	tt							 	+	'	302 m
5	tt						1			2*100m dyneema	L
6	tt								560	3*100m Hi kevlar	
			Riggin	g parts						40+20m NPKEVIar	
#	Туре					Qty					
1	Shackle galva	anized stee	1								
2	Shackle stain	less steel 3	3.25 T					_	L		862 m
3	Kevlar tau						_		1	Vitrovex glass sphere 🛛 🙀	302 m
4	Strope										
5	Ring (plastic/	(metal)					22		1 AC	oustic release	
6	Strope										
7	Ring (plastic/	(metal)					<u></u>			6	
									2	2t strap	
Res	sponsible for o	teploymen	t or recove	ry operatio	ons:		l				
Ter	je Hovland						550		1	railway wheel and chain	867 m
							777		777		777777
							\mathbb{Z}		(///		/////

Figure 18: AT800-BioAc-300

ATWAIN AT200 dybde

205

ATIA/AINI ATROO

lr	nstrument		Dybde	Element	Lengde	Høyde	Vekt I	Vekt v
		_	30	[850		
		200						
	66090	33	32	4 Glasskuler ConcertoCIP	2	848		-100
				Kevlar	2	0.45		
			54	Kjetting	0,5	840		
Sec. Sec.	102480	40	34,5	Solo	20	845,5		
-	201402	50	54,5	Concerto	20	825,5		
54 B	102484	60		Solo	50			
-	201408	100	104,5	Concerto	50	775,5		
		CEL						
		200						100
			106,5	4 Glasskuler	2	773,5		-100
	102/20	135	107	Kjetting	0,5			
-	201410	125	107	Concerto		//3		
			207	Kevlar	100	(73)		
			207	Kjetting	0,5	0/5		
(11)	201411	210	207,5	Concerto	100	672,5		
	201415	310	307,5	Concerto	100	572,5		
			308	Kjetting	0,5	572		
			500	Kevlar	100	3/2		
	102485	410	408	Solo		472		
	102470	510		Kevlar	200			
		*	608			272		
	2004.24	$\overline{\Phi}$						
(11)	200130 201145	610	609,5	Signature 55 Concerto	1,5	270,5		-130
				Kjetting	0,5	270		
			610	Kevlar	50	270		
Sec. (82)	102490	710	660	Solo	100	220		
			760	Neviar	100	120		
			260	Kevlar	100	20		
		-	800			20		
		130						
		1.2.4		4 Glasskuler	2			-100
(1	204987	872	862	Concerto	,	18		
		-97	864	NEVIAI	2	16		
		1						
sr	nr 2630,							
2BE9		3	965	Utiøser	1	15	30	22
			605	Kevlar	2	15		
			867	Kiettine		13		
			868	-Jerring	-	12		
			870	Anker	2	10	1000	850

Figure 20: AT800-8

The Nansen Legacy in numbers

6 years

The Nansen Legacy is a six-year project, running from 2018 to 2023.

1 400 000 km² of sea

The Nansen Legacy investigates the physical and biological environment of the northern Barents Sea and adjacent Arctic Ocean.

280 people

There are about 230 researchers working with the Nansen Legacy, of which 73 are early career scientists. In addition, 50 persons are involved as technicians, project coordinators, communication advisers and board members.

10 institutions

The Nansen Legacy unites the complimentary scientific expertise of ten Norwegian institutions dedicated to Arctic research.

>10 fields

The Nansen Legacy includes scientists from the fields of biology, chemistry, climate research, ecosystem modelling, ecotoxicology, geology, ice physics, meteorology, observational technology, and physical oceanography.

>350 days at sea

The Nansen Legacy will conduct 15 scientific cruises and spend more than 350 days in the northern Barents Sea and adjacent Arctic Ocean between 2018 and 2022. Most of these cruises are conducted on the new Norwegian research icebreaker RV Kronprins Haakon.

🔞 🔊 nansenlegacy

nansenlegacy@uit.no

50/50 financing

The Nansen Legacy has a total budget of 740 million NOK. Half the budget comes from the consortiums' own funding, while the other half is provided by the Research Council of Norway and the Ministry of Education and Research.

Norwegian Ministry of Education and Research

