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Abstract

In recent years there has been a growing interest
in image generation through deep learning. While
an important part of the evaluation of the gen-
erated images usually involves visual inspection,
the inclusion of human perception as a factor in
the training process is often overlooked. In this
paper we propose an alternative perceptual reg-
ulariser for image-to-image translation using con-
ditional generative adversarial networks (cGANs).
To do so automatically (avoiding visual inspection),
we use the Normalised Laplacian Pyramid Distance
(NLPD) to measure the perceptual similarity be-
tween the generated image and the original image.
The NLPD is based on the principle of normalising
the value of coefficients with respect to a local es-
timate of mean energy at different scales and has
already been successfully tested in different exper-
iments involving human perception. We compare
this regulariser with the originally proposed L1 dis-
tance and note that when using NLPD the gener-
ated images contain more realistic values for both
local and global contrast.

1 Introduction

Deep learning methods have become state-of-the-
art in conditional and unconditional image genera-
tion [14] , achieving great success in numerous ap-
plications. Image-to-image translation is one such
application, where the task involves the translation
of one scene representation into another representa-
tion. Neural network architectures are able to gen-
eralise to different datasets and learn various trans-
lations between scene representations. For instance

obtaining realistic scenes from segmented labels for
training autonomous car system [7].

Most state of the art methods in image-to-image
translation typically use a Generative Adversarial
Network (GAN) loss with regularisation. This reg-
ularisation is typically with functions such as the
L1, L2 or mean squared error (MSE) [7]. However,
these do not account for the human visual system’s
perception of quality. For example, the L1 loss uses
a pixel to pixel similarity which fails to capture the
global or local structure of the image.

The main objective of these methods is to gen-
erate images that look perceptually indistinguish-
able from the training data to humans. Despite
this, metrics which attempt to capture different as-
pects of images that are important to humans are
ignored. Although neural networks seem to trans-
form the data to a domain where the Euclidean dis-
tance induce a spatially invariant image similarity
metric, given a diverse enough training dataset [19],
we believe that explicitly including key attributes
of human perception is an important step when de-
signing similarity metrics for image generation.

Here we propose the use of a perceptual distance
measure based on the human visual system that
encapsulates the structure of the image at vari-
ous scales, whilst normalising locally the energy
of the image; the Normalised Laplacian Pyramid
Distance (NLPD). This distance was found to cor-
relate with human perceptual quality when images
are subjected to different perturbations [8]. The
main contributions of this paper are as follows; we
argue that human perception should be used in the
objective function of cGANs and propose a reg-
ulariser that measures human perceptual quality
called NLPD; we evaluate the method comparing
with L1 loss regularisation using no-reference im-
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age quality metrics, image segmentation accuracy
and Amazon Mechanical Turk survey; we show im-
proved performance over L1 regularisation, demon-
strating the benefits of image quality metric in-
spired by the human perceptual system in the ob-
jective function.

2 Related Work

Image-to-image translation systems designed by ex-
perts can only be applied to their respective repre-
sentations, unable to learn different translations [6].
Neural networks are able to generalise and learn a
variety of mappings and have proven to be success-
ful in image generation [14].

Generative Adversarial Networks (GANs) aim to
generate data indistinguishable from the training
data [5]. The generator network G learns a map-
ping from noise vector z to target data y, G(z) −→ y
and the discriminator network D learns mapping
from data x to label [0, 1], D(x) −→ [0, 1] corre-
sponding to whether the data is real or generated.
GANs have become successful in complex tasks
such as image generation [14]. Conditional GANs
(cGANs) learn a generative model that will sam-
ple data according to some attribute e.g. ‘generate
data from class A’ [7].

An application of cGANs is image-to-image
translation, where the generator is conditioned on
an image to generate a corresponding output im-
age. In [7] the cGAN objective function has a
structured loss, the GAN considers the structure
of the space and pixels are conditionally-dependent
on all other pixels in the image.

Optimising for the GAN objective alone creates
images that lack outlines for the objects in the se-
mantic label map and a common practice is to use
the L2 or L1 loss as a reconstruction loss. Isola
et al. preferred the L1 loss, finding that the L2
loss encouraged smoothing in the generated images.
The L1 loss is a pixel level metric, meaning it only
considers the distance between single pixel values
ignoring the local structure that could capture per-
ceptual similarity.

When the output of a algorithm will be evalu-
ated by human observers, the image quality metric
(IQM) used in the optimisation objective should
take into account human perception.

In the deep learning community, the VGG loss [4]

has been used to address the issue of generating
images using perceptual similarity metrics. This
method relies on using a network trained to pre-
dict perceptual similarity between two images. It
has been shown to be robust to small structural
perturbations, such as rotations, which is a down-
fall of more traditional image quality metrics such
as the structural similarity index (SSIM). How-
ever, the architecture design and the optimisation
takes no inspiration from human perceptual sys-
tems and treats the problem as a simple regression
task; given image A and image B, output a simi-
larity that mimics the human perceptual score.

There is a long tradition of IQMs based on hu-
man perception. The most well know is the SSIM or
its multi scale version (MS-SSIM) [18]. These dis-
tances focus on predicting the human perceptual
similarity, but their formulation is disconnected
from the processing pipeline followed by the human
visual system. On the contrary, metrics like the
one proposed by Laparra et al. are inspired by the
early stages of the human visual cortex and show
better performance in mimicking human perception
than SSIM and MS-SSIM in different human rated
databases. In this work we use this metric, the
Normalised Laplacian Pyramid Distance (NLPD),
proposed by Laparra et al. [8].

3 NLPD

The Laplacian Pyramid is a well known image pro-
cessing algorithm for image compression and encod-
ing [2]. The image is encoded by performing convo-
lutions with a low-pass filter and then subtracting
this from the original image multiple times, each
time downsampling the image. The resulting fil-
tered versions of the image have low variance and
entropy and as such can be expressed with less stor-
ing information.

Normalised Laplacian Pyramid (NLP) extends
the Laplacian pyramid with a local normalisation
step on the output of each stage. These two steps
are similar to the early stages of the human vi-
sual system. Laparra et al. proposed an IQM
based on computing distances in the NLP trans-
formed domain, the NLPD [8]. It has been shown
that NLPD correlates better with human percep-
tion than the previously proposed IQMs. NLPD
has been employed successfully to optimise image
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processing algorithms, for instance to perceptually
optimised image rendering processes [9]. It has also
been shown that the NLP reduces the correlation
and mutual information between the image coeffi-
cients, which is in agreement with the efficient cod-
ing hypothesis [1], proposed as a principle followed
by the human brain.

Specifically NLPD uses a series of low-pass fil-
ters, downsampling and local energy normalisation
to transform the image into a ‘perceptual space’.
A distance is then computed between two images
within this space. The normalisation step divides
by a local estimate of the amplitude. The local
amplitude is a weighted sum of neighbouring pixels
where the weights are pre-computed by optimis-
ing a prediction of the local amplitude using undis-
torted images from a different dataset. The down-
sampling and normalisation are done at N stages,
a parameter set by the user. An overview of the
architecture is detailed in [8].

After computing each y(k) output at every stage
of the pyramid, the final distance is the root mean
square error between the outputs of two images:

LNLPD =
1

N

N∑
k=1

1

N
(k)
s

||y(k)1 − y(k)2 ||2, (1)

where k defines the stage, N is the number of stages

in the pyramid, N
(k)
s is the square root of number of

pixels at scale k, and y
(k)
1 and y

(k)
2 are the outputs

for the training and the generated images respec-
tively.

Qualitatively, the transformation to the percep-
tual space defined by NLPD transforms images
such that the local contrast is normalised by the
contrast of each pixels neighbours. This leads to
NLPD heavily penalising differences in local con-
trast. Using NLPD as a regulariser enforces a more
realistic local contrast and, due to NLPD observing
multiple resolutions of the image, it also improves
global contrast

In image generation, perceptual similarity is the
overall goal; fooling a human into thinking a gen-
erated image is real. As such, NLPD would be an
ideal candidate regulariser for generative models,
GANs in particular.

3.1 NLPD as a Regulariser

For cGANs, the objective function is given by

LcGAN (G,D) =Ex,y[logD(x, y)]+ (2)

Ex,z[log(1−D(G(x, z))]

where G maps image x and noise z to target im-
age y, G : x, z −→ y and D maps image x and
target image y to a label in [0, 1]. With the L1
regulariser proposed by Isola et al. [7] for image-to-
image translation, this becomes

LcGAN (G,D) + λLL1, (3)

where LL1 = Ex,y,z[||y −G(x, z)||1] and λ is a tun-
able hyperparameter.

In this paper we propose replacing the L1 regu-
lariser LL1 with a NLPD regulariser. In doing so
the entire objective function is given by

LcGAN (G,D) + λLNLPD. (4)

In the remainder of the paper Eq. (3) will be de-
noted by cGAN+L1 and Eq. (4) by cGAN+NLPD.

NLPD involves 3 convolutions per stage in the
pyramid, with the same filter convoluted to each
colour channel of the input. This is more compu-
tationally expensive than L1 loss, but relative to
the training procedure of training a GAN, the in-
crease in time is negligible. Using computational
packages, the process of transforming images into
the perceptual space can be appended to the com-
putation graph as extra convolutional layers.

4 Experiments

We evaluated our method on three public datasets;
the Facades dataset [16], the Cityscapes dataset [3]
and a Maps dataset [7]. Colour images were gener-
ated from semantic label maps for the Facades and
the Cityscapes datasets. The Facades dataset is a
set of architectural label drawings and the corre-
sponding colour image for various buildings. The
Cityscapes dataset is a collection of label maps and
colour images taken from the a front facing car
camera. For the Cityscapes dataset, images were
resized to a resolution of 256 × 256 and after gen-
erating the images they were resized to the original
dataset aspect ratio of 512×256. The third dataset
is the Maps dataset constructed by Isola et al.. It
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contains a map layout image of an area taken from
Google Maps and the corresponding aerial image
resized to a resolution of 256× 256.

The objective of all of these tasks is to generate a
RGB image from the textureless label map. For all
datasets, the same train and test splits were used
as in the pix2pix paper, in order to ensure a fair
comparison.

4.1 Experimental Setup

For all experiments, the architecture of the gener-
ator and discriminator is the same as in [7]. The
generator is a U-net with skip connections between
each mirroring layer. The discriminator observes
70 × 70 pixel patches at a time, with dropout ap-
plied at training. Full architecture can be found
in the paper by Isola et al.. As in [7] we used the
Adam optimiser with learning rate 0.0002, trained
each network for 200 epochs, and used batch-size
of 1 with batch normalisation (equivalent to use in-
stance normalization). Random cropping and mir-
roring were applied during training.

We used λ = 100 for the L1 regulariser, the value
used by Isola et al. [7]. We set λ = 15 for NLPD so
that both loss terms have a similar order of magni-
tude. The number of stages was chosen as N = 6.
The normalisation filters were found by optimising
to recover the original local amplitude from per-
turbed images in the McGill dataset [13]. These
weights were found using monochromatic images
so the normalisation is applied to each channel in-
dependently.

4.2 Evaluation

Evaluating generative models is a difficult task [15].
Therefore we have performed different experiments
to illustrate the improvement in the performance
when using NLPD as regulariser. In image-to-
image translation, there is information in the form
of the label map that images were generated with.
A common metric is evaluating the performance of
a network trained on the ground truth at image seg-
mentation using generated images [7, 17]. Gener-
ated images which achieve higher performance can
be considered more realistic. One architecture that
has been used for image segmentation is the fully
convolution network (FCN) [10].

As in [7] we trained a image segmentation net-
work on the Cityscapes dataset and evaluated it on
generated images. 3 image segmentation metrics
are calculated. Per-pixel accuracy is the percent-
age of pixels correctly classified, per-class accuracy
is the mean of the accuracies for classes and class
IOU is the intersection over union, the percentage
overlap between the ground truth and the predicted
label map.

When generating an image from a label map,
the ground truth is just one possible solution and
there exists many feasible solutions. We include
two no-reference image quality metrics to more
thoroughly evaluate the generated images, namely
BRISQUE [11] and NIQE [12] which judge how nat-
ural an image appears.

Our objective is to generate images which look
perceptually similar to the original images. We
have performed an experiment using Amazon Me-
chanical Turk (AMT) asking humans to judge
“Which image looks more natural?”.A random sub-
set of 100 images were chosen from the validation
set of each dataset and 5 unique decisions were
gathered per image.

4.3 Results

Results of images generated, from the test set, using
the proposed procedure and the L1 baseline for the
three datasets are presented in Figs. 1, 2a, and 2b.
Fig. 2a shows aerial images generated from a map:
NLPD produces realistic textures, whereas L1 has
repeating patterns. In the Cityscapes dataset the
contrast appears more realistic, e.g., the white in
the sky is lighter in Fig. 1, which could result in
users preferring these images. In images generated
from the Facades dataset, it is hard to visually find
differences between the methods (Fig. 2b).

Table 2 shows the FCN-scores for the images gen-
erated using the Cityscapes database. The NLPD
images show improvement over the L1 regularisa-
tion in the per-pixel accuracy and class IOU. This
infers that the NLPD images contain more features
of the original dataset according to the FCN net-
work. The ground truth accuracy less than 1 be-
cause the segmentation network is trained on im-
ages of resolution 256 × 256, then resized to the
resolution of the label map, 2048× 1024.

Table 1 shows the scores for both the BRISQUE
and NIQE image quality metrics. A lower value
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Figure 1: Images generated from label maps taken from the Cityscapes validation set. Images were
generated at a resolution of 256× 256 and then resized to the original aspect ratio of 512× 256.

Loss
Function

BRISQUE (NIQE) Scores

Facades Cityscapes Maps

cGAN+L1 30.1 (5.2) 26.6 (3.9) 30.6 (4.7)
cGAN+NLPD 30.1 (5.2) 24.5 (3.6) 29.0 (4.6)

Ground Truth 37.3 (7.3) 25.4 (3.1) 28.5 (3.4)

Table 1: BRISQUE and NIQE scores. The lower
the score, the more natural the image is.

means a more natural image. On average, NLPD
regularisation achieves lower values in both metrics.
For Cityscapes and Maps, NLPD is close to the
ground truth scores. The ground truth scores for
the Facades dataset are worse than the generated
images due to the triangles that are in the Facades
training set, to crop neighbouring buildings.

For AMT experiments, the percentage of users
that found the NLPD images more natural was
above chance for Maps (52.37%) and Cityscapes
(56.16%), and similar for Facades (50.04%).

5 Conclusion

Taking into account human perception in machine
learning algorithms is challenging and usually over-
looked in image generation. We detailed a pro-
cedure to take into account human perception in
a cGAN framework. We propose to modify the
standard objective by incorporating a term that ac-

Loss
Per-Pixel
Accuracy

Per-Class
Accuracy

Class
IOU

cGAN+L1 0.71 ± 0.15 0.25 ± 0.05 0.18 ± 0.04
cGAN+NLPD 0.74 ± 0.09 0.25 ± 0.04 0.19 ± 0.04

Ground Truth 0.80 ± 0.09 0.26 ± 0.04 0.21 ± 0.04

Table 2: FCN-scores for Cityscapes dataset. Re-
ported is the mean and standard deviation across
the test set.

counts for perceptual quality by using the NLPD.
We illustrate its behaviour in the image-to-image
translation for a variety of datasets. The suggested
objective shows better performance in all the evalu-
ation procedures. It also has a better segmentation
accuracy using a network trained on the original
dataset, and produces more natural images accord-
ing to two no-reference image quality metrics. In
human experiments, users preferred for the images
generated using our proposal over those generated
using L1 regularisation.
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