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Abstract

Symmetries in neural networks allow different
weight configurations that lead to the same net-
work function. For odd activation functions, the
set of transformations mapping between such con-
figurations has been studied extensively, but less
is known for neural networks with ReLU activa-
tion functions. We give a complete characteriza-
tion for fully-connected networks with two layers.
Apart from two well-known transformations, only
degenerated situations allow additional transforma-
tions that leave the network function unchanged.
Finally, we present a non-degenerate situation for
deep neural networks in which transformations ex-
ist that leave the network function intact.

1 Introduction

Let fW(x) = wL((. . . (w1x+b1)++b2)++. . .)++bL
denote a neural network with ReLU activation
function (x)+ = max{x, 0}. We consider the map
φ : W→ F from the set of weights to a set of realiz-
able network functions. In other words, for a given
collection of weights W, we denote by φ(W) = fW
the neural network function defined by weights W.
Due to symmetries in the network, this function is
not injective. Following terminology of [3], we call
transformations on the weight space that leave the
network function identical equioutput transfor-
mations.1

Definition 1. Let W denote a weight selection of
a neural network function f . A transformation α
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1In contrast to [3], our transformations are not necessar-
ily analytic.

on the weight space is called an equioutput trans-
formation, if fW(x) = fα(W)(x) for all x and W.

For ReLU networks, there are well-known
equioutput transformations as discussed, for exam-
ple, in [4] and [6].
(1) π: A permutation π of neurons (together with
all its in- and outgoing weights) within a layer.
(2) ρλ: A transformation ρλ given by multiplying
all ingoing weights of a neuron by λ > 0 and mul-
tiplying all outgoing weights by 1

λ . This leads to
the same network function because of the positive
homogeneity of the ReLU function: If λ > 0, then
λ(x)+ = (λx)+, hence for any scalars a, b we have
that a(bx)+ = (aλ)( bλx)+.

Knowledge of these transformations is important
for the understanding of the loss function. For
example, it follows that a global minimum never
comes alone: For a given global minimum W, any
equioutput transformation of W leads to a differ-
ent global minimum. Further, knowledge of these
equioutput transformations can be useful for the
study of properties of neural networks. Assume a
certain property should depend only on the func-
tion, but not on its specific representation. If we
aim to describe this property in terms of its rep-
resentation in form of weights, then this property
must be independent under all equioutput trans-
formations, otherwise the property is somewhat ill-
defined. Such a dependence was observed by Dinh
et al. [4] for the property of generalization and
Hessian-based measures of flatness. While gener-
alization performance only depends on the network
function, the common measures depend on the rep-
resentation given by specific weight values. Simi-
larly, Neyshabur et al. [6] argue that for ReLU net-
works it is not sensible to use the usual gradient de-
scent, because the steepest direction is then defined
by a maximal reduction in loss for equal (infinites-
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imal) step length in the l2-norm. But this measure
of steepness depends on the specific parameteriza-
tion. Hence, in this example, the property of inter-
est is the update rule during optimization (which
should be independent of the representation) but
the direction of gradient descent is dependent on
neuron-wise reparameterizations ρλ.

A natural question that arises is the following:
Are there any other equioutput transformations
than the ones described above? This has been
studied quite thoroughly for odd activation func-
tions, which we recap below. In short, there are
many situation-dependent equioutput transforma-
tions that exist only for specific parameter val-
ues, but there are only the two types of equiout-
put transformations that are analytical and equally
work no matter the given parameter values. To
the knowledge of the authors, there has been lit-
tle work on the case of ReLU activation functions.
Only recently, by considering hyperplane configura-
tions, [8] shows that under certain conditions it is
often possible to compute the network parameters
from the network function up to a composition of π
and ρλ. [2] study whether the proximity of network
functions implies proximity of their parameteriza-
tions. Finally, [7] consider networks of decreasing
width.

Our work gives a complete characterization for
fully-connected 2-layer regression networks with
ReLU activation functions. For these networks, we
outline all situation-dependent equioutput trans-
formations, and we show how networks can be re-
duced to an irreducible form. Up to degenerate
cases, irreducible networks with identical network
function have weights that differ only by a com-
position of transformations π and ρλ. For deep
neural networks, we describe additional situation-
dependent equioutput transformations that are not
degenerate, though unlikely to appear with proper
initialization.

2 Odd activation functions

For neural networks with all activation functions
given by the tangens hyperbolicus tanh(), equiout-
put transformations have been studied in several
works. In this case, the well-known equioutput
transformations are given by permutations π as
above and by sign-flips. The latter is the negative-

scalar variant ρ−1 and uses tanh(−x) = −tanh(x).
Sussmann [9] considers 2-layer networks. For cer-
tain weight-configurations, he identifies natural re-
duction steps that allow removing nodes while
keeping the network function constant. Two irre-
ducible networks then determine the same network
function if and only if one weight configuration can
be transformed to the other one by a composition
of permutations π or sign-flips ρ−1. Chen et al. [3]
extended the result of Sussman to deeper networks
to show the following theorem.

Theorem [3] For parameter values W and in-
put x, let fW(x) denote a neural network function
with all activation functions tanh(). All analytical
(i.e. expandable in a power series around points)
equioutput transformations on the weight space
W are compositions of interchanges of neurons π
within a layer and sign flip transformations ρ−1.

The restriction to analytical transformations
aims at the exclusion of equioutput transforma-
tions that only exist for specific parameters W.
We will call transformations that rely on certain
weight values situation-dependent. In Sussmann
[9], these situation-dependent transformations were
excluded by the reduction steps to irreducible form.
Since the transformations π and ρ−1 always exist,
they have relevant consequences in practical appli-
cations. Situation-dependent transformations that
exist only in degenerate cases are less likely to play
a significant role in practice. However, effects are
still possible when the degenerate situations only
hold approximately.

Considering activation functions other than
tanh(), Albertini et al. [1] extended the analy-
sis to infinitely differentiable functions satisfying
σ(0) = 0, σ′(0) = 0, σ′′(0) = 0. Kurková and
Kainen [5] generalize the result for two layer regres-
sion networks where the activation functions need
not to be continuous, but bounded and asymptoti-
cally constant (this includes sigmoids, for example).

3 Two-layer ReLU regression
networks

This section investigates fully connected ReLU neu-
ral networks for regression with one linear output
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neuron and one hidden layer,

f(x) = v · (w · x + b)+ + c =
∑
j

vj(nj(x))+ + c

with w ∈ Rm×d, v ∈ R1×m,b ∈ Rm, c ∈ R,x ∈ Rd
and neuron pre-activation functions nj(x) = wj ·
x + bj . We call a neural network reducible, if
nodes can be removed without changing the net-
work function, possibly by a redefinition of some
weights. Two types of reducibility are as follows:

(R1) If all ingoing or outgoing weights of a neuron
are zero, then this neuron is never active or
never processed and can be removed without
changing the network function. If all ingoing
weights except for the bias are zero, then the
neuron can be removed and its contribution to
the next layer can be added to the biases of
the following layer.

(R2) If n1(x) = λn2(x) for some λ > 0 (two neu-
rons in the hidden layer are equal up to a
positive multiplicative factor), then one of the
nodes can be removed using a linear combi-
nation of the corresponding outgoing weights,
e.g. v1,new = v1+λv2 for n1(x) when removing
the second one.

Many equioutput transformations exist for non-
reduced neural networks. If all weights into a neu-
ron are zero, then the outgoing weights can be
changed arbitrarily. If λ · n1(x) = n2(x) for some
λ > 0, then weight be can be shifted from the out-
going weights of one neuron to the other neuron (i.e.
v1(n1(x))+ +v2(n2(x))+ = (v1−z)(n1(x))+ +(v2 +
z
λ )(n2(x))+ for all z). We investigate in this sec-
tion whether there exist other symmetries than the
one just named after reducing two-layer fully con-
nected ReLU regression networks to an irreducible
form. Our working hypothesis, which later needs to
be adjusted slightly, is that ReLU networks show
the same behavior as neural networks with odd ac-
tivation functions.

Working hypothesis: Let fW1 and fW2 denote
a pair of (R1,R2)-irreducible two-layer fully con-
nected ReLU regression networks. If fW1

(x) =
fW2

(x) for all x, then W1 can be attained from
W2 by a composition of an arbitrary number of
symmetries π and ρλ as above.

We will take advantage of two short lemmas and
the definition an of activation pattern.

Definition 2. Let g denote a non-zero linear func-
tion Rd → R. (i) The activation pattern of g is de-
fined by the set of x ∈ Rd such that g(x) > 0, which
we denote by R+, i.e. R+(g) = {x ∈ Rd | g(x) >
0}. (ii) The zero value-hyperplane of g is denoted
by H(g) = {x | g(x) = 0}. (iii) The hyperplane
H(g) divides Rd into the two regions R+(g) and
R−(g) := Rd \ (R+(g) ∪H(g)).

Lemma 1. Let n1(x), n2(x) : Rd → R be two linear
functions with n1(x) = w1 ·x+ b1, n2(x) = w2 ·x+
b2. Then the following properties are equivalent.

(1) w1 = λw2 and b1 = λb2 for some λ > 0.

(2) n1(x) = λn2(x) for some λ > 0.

(3) (n1(x))+ = λ(n2(x))+ for some λ > 0.

(4) R+(n1) = R+(n2).

We show a strong form of linear independence for
neuron functions with activation (ni(x))+ assuming
a little more than pairwise different activation pat-
terns. This strong form of linear independence was
named in Albertini et al. [1] as the independence
property (IP): The set of functions {(ni(x))+ | i =
1, . . . ,m} has (IP) if pairwise inequality of the func-
tions (ni(x))+ 6= (nj(x))+ implies linear indepen-
dence of {1, (ni(x))+ | i = 1, . . . ,m}. This prop-
erty is required to find a pair of neurons with the
same zero hyperplane whenever neurons are lin-
early dependent after their activation. The proof
of Theorem 1 will take advantage of this property
by matching neurons in different representations of
the same network function.

After exclusion of a degenerate case, we obtain
property (IP) for {(ni(x))+} even when the con-
stant function 1 is replaced by an arbitrary non-
zero linear function. The degenerate case we ex-
clude consists of two neurons nk, nl with identical
zero hyperplanes, i.e., Hk = Hl with Hk = H(nk).

Lemma 2. Let `(x) be a non-zero linear function.
Suppose that ni(x) = wi · x + bi, 1 ≤ i ≤ m
are non-constant linear functions with pairwise dif-
ferent hyperplanes Hi. Then the set of functions
{`(x), (ni(x))+ |1 ≤ i ≤ m} is linearly indepen-
dent.
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We now give an example that the assumption
of pairwise different hyperplanes Hj was necessary
and it would not have been sufficient to assume
pairwise different activation patterns. If Hk = Hl

for some k 6= l, then we still have a pairwise differ-
ent activation pattern when R+

k = R−l . In words,
neuron k is active exactly when neuron l is inactive
and the other way around (except for the points on
the hyperplane Hk = Hl where none of the neu-
rons is active). We say that nk, nl are a pair of
neurons with opposite activation pattern.

Example 1. In the network in Figure 1 all neu-
rons have nontrivial and pairwise different activa-
tion patterns, yet the network implements the con-
stant zero function.

This example shows two things: (i) In such a
situation where Hk = Hl for some k 6= l, we see
that new situation-dependent equioutput transfor-
mations can appear. (ii) Single layers of neural net-
works with ReLU activation can implement linear
functions.

If Hk = Hl for two neurons k, l with opposite
activation pattern, then we can transform them
into a linear neuron (no activation function) and
a neuron with ReLU activation function as fol-
lows: With outgoing weights v1 and v2, we have
v1(nk(x))+ + v2(−λnk(x))+ = v1nk(x) + (λv2 +
v1)(−nk(x))+. But we could have equally well de-
composed the sum into a linear function plus rest
to get λv2nk(x) + (v1 + λv2)(nk(x))+. More gener-
ally, we can flip the activation region of a neuron
ni(x) by introducing a linear neuron: (ni(x))+ =
ni(x) + (−ni(x))+. Accordingly, irreducible ReLU
networks will only be defined up to the (optional)
existence of a single non-constant linear neuron
N(x) (i.e., the linear function may only consist of
the bias of the output layer).

(R3) Write each pair of neurons with opposite ac-
tivation pattern as above as sum of a linear
neuron {Ni} and a neuron with ReLU acti-
vation function. Add all linear neurons plus
output bias to a single linear neuron N(x) =
αx + c, which is subsequently split into two
ReLU neurons with opposite activation pat-
tern (αx)+ − (−αx)+ and bias c.

In the following, we represent an (R1,R2,R3)-
irreducible network as fW(x) =

∑
j vj(nj(x))+ +

N(x) with N(x) a linear function and all nj(x) hav-
ing pairwise different zero hyperplanes Hj . We also
find an additional equioutput transformation ψ−
which operates on a single neuron and the linear
function: ψ− multiplies all incoming weights of a
neuron ni(x) by −1, leaves the outgoing weights
intact, and adds vini(x) to N(x). More generally,
for each subset of indices J ⊆ {1, . . . ,m}, we define
ψJ− as the application of ψ− to all neurons nj(x)
with j ∈ J . Note that ψJ− may add two neurons
with opposite activation pattern (forming a linear
neuron) to the hidden layer when it is applied to a
network representation without opposite activation
patterns (N(x) = bL a constant) and the resulting
larger network can still be (R1,R2,R3)-irreducible.
We discuss later how we can recover a representa-
tion with constant N(x) as bias whenever it exists.

The following theorem states that irreducible
two-layer ReLU-networks are unique up to equiout-
put transformations π, ρλ and ψJ−. The proof can
be found in the appendix.

Theorem 1. Let fW1
and fW2

denote a pair of
(R1, R2, R3)-irreducible two-layer fully connected
ReLU regression networks. If fW1

(x) = fW2
(x)

for all x, then W2 can be obtained from W1 by a
composition of an arbitrary number of equioutput
transformations π, ρλ and ψJ− as above.

For any subset J of indices, applying ψJ− twice
yields the identity function. Further, ψJ− is the only
equioutput transformation that can change the lin-
ear function N1(x) in fW1

(x) =
∑
j v

j
1(nj1(x))+ +

N1(x). This implies that a (R1,R2,R3)-irreducible
ReLU network function fW1(x) has a represen-
tation fW2

(x) =
∑
j v

j
2(nj2(x))+ + N2(x) with a

constant N2(x) = bL, if and only if there is a
transformation ψJ− that cancels N1(x) up to a con-
stant. In other words, we can find a representa-
tion without opposite activation patterns if and
only if there exists a subset J of indices such that
N1(x) +

∑
j∈J v

j
1n
j
1(x) = c for a constant c. In

this case, we apply ψJ− and change the bias at the
output layer to c. (R1 subsequently removes the
ReLU neurons that were used for the linear func-
tion N1(x).) These observations prove the following
result that, apart from degenerate situations, π and
ρλ are the only equioutput transformations.2

2A degenerate pair of ψJ
−-equivalent networks violating

(ii) is given in the appendix.
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Figure 1: ReLU network with non-trivial activation pattern implementing network function x+−(−x)++
y+ − (−y)+ − (x+ y)+ + (−x− y)+ = x+ y − (x+ y) = 0.

Theorem 2. Let fW1
=
∑m1

j=1 v
j
1(nj1(x))+ + b1

and fW2
=
∑m2

j=1 v
j
2(nj2(x))+ + b2 denote a pair

of (R1, R2)-irreducible two-layer fully connected
ReLU regression networks such that for i = 1, 2

(i) all nji (x) have pairwise different zero hyper-
planes; and (ii) there exists no non-empty subset of
indices Ji ⊆ {1, . . . ,mi} such that

∑
j∈Ji v

j
i n
j
i (x) =

c is constant for all x.

If fW1(x) = fW2(x) for all x, then W2 can be
obtained from W1 by a composition of equioutput
transformations π and ρλ as above.

LeakyReLUs The same results analogously hold
more generally for networks with LeakyReLU ac-
tivation defined by σµ(x) = x for x > 0 and
σµ(x) = µx for x < 0 (µ 6= 1) by use of the identity
σµ(x) = (1 + µ)x + σµ(−x).

4 Deep neural networks

In the proof for the 2-layer case, we take advantage
of the assumption that the input is all of Rd. In
deeper layers, we lose this property, because ReLU
activations reduce the domain for future layers to
the first quadrant where all coordinate values are
positive. Neurons for which all ingoing weights are
positive behave like linear neurons in deeper lay-
ers. This considerably complicates the treatment
of reducibility and symmetries in the case of deep
neural networks. There are now more than merely

degenerate situations in which different parameter
choices induce the same network function.

Example 2. Suppose two neurons in a layer with
index l > 1 (i.e., not the first hidden layer) have
only positive weights. Since the output of the pre-
vious ReLU layer with index l − 1 is always pos-
itive, this implies that these two neurons are al-
ways active and hence behave like linear neurons.
Let A ∈ Rnl−1×2 denote the incoming weights into
these two neurons and C ∈ R2×nl+1 denote the out-
going weights. Then for any positive invertible ma-
trix B ∈ R2×2

+ , we can replace A by BA and C by
CB−1. Since B is positive, the neurons still have
only positive incoming weights BA and still behave
like linear neurons. Together, they implement the
same function CAx = (CB−1)(BA)x.

The question arises whether two neurons that are
always active can be reduced to a single neuron that
is always active, just as we reduced degenerate cases
in the 2-layer case to obtain a minimal network. An
example shows that this is not always possible.

Example 3. We present an example, where two
neurons that are always active cannot be com-
bined to a single ReLU neuron: As before, let
A ∈ Rnl−1×2 denote the incoming weights into two
always-active neurons and B ∈ R2×nl+1 denote
their outgoing weights. For our example, it suffices
to consider nl−1 = 2 and nl+1 = 1:

A2 =

(
1 0
0 1

)
and B2 =

(
1
−1

)
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To combine the two hidden neurons into one single
neuron, we are looking for D ∈ R2×1 and d ∈ R
such that B(Ax)+ = BAx = d(Dx)+. The sign of
d defines the sign of the contribution of d(Dx)+ to
the output neuron independently of x ∈ R2. But
for x = (x1, x2) we have that the contribution of
BAx is positive when x1 > x2 and negative when
x1 < x2. Hence, no such D and d can exist.

In the 2-layer case, all situation-dependent
equioutput transformations appeared at degener-
ate weight constellations. Hence, up to degener-
ate cases, the situation is quite simple. For deep
neural networks, this situation changes drastically.
Example 2 does not describe a degenerate condi-
tion. Within a neighborhood of such a weight con-
figuration, weights can be changed arbitrarily and
the resulting network will still possess two neu-
rons that are always active and hence allow the de-
scribed equioutput transformations. Empirically,
however, the existence of neurons with only pos-
itive incoming weights is very unlikely to appear
with proper initialization. We experimented with a
simple MNIST network with He initialization. Af-
ter training, we consistently observed for each neu-
ron of the network that approximately half of the
incoming weights are negative. This seems to em-
pirically exclude the existence of neurons with only
positive incoming weights. On the other hand, we
note that there are other (more complex) possibil-
ities to obtain neurons that are always active, in
which case equioutput transformations as in Ex-
ample 2 different to π, ρλ and ψJ− exist.

5 Conclusion

Different to the well-studied case with odd activa-
tion functions, the appearance of equioutput trans-
formations of ReLU networks is more complicated.
After removing neurons that are never active and
merging of neurons with identical activation pat-
tern, we have to additionally consider neurons with
opposite activation patterns. These pairs of neu-
rons with opposite activation pattern can imple-
ment linear functions and cannot be completely re-
moved. This allows equioutput transformations dif-
ferent to the well-known ones. Constructing linear
neurons in deep networks by using positive weights
shows that equioutput transformations do not only
exist in degenerate cases.
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A Proof of Lemma 1

Proof. The implications (1)⇒ (2)⇒ (3)⇒ (4) are trivial, so we only need to show that (4) implies (1).
If R+(n1) = R+(n2), then in particular H(n1) = H(n2), so there is x0 such that w1x0 + b1 = 0 =

w2x0 + b2. Suppose w1 6= λw2 (the weight vectors are not parallel), then there exists some z ∈ Rd such
that z is orthogonal on w1 but not on w2, i.e., there is z such that w1 ·z = 0 and w2 ·z 6= 0. By choosing
the sign of z appropriately, we get w2 · z > 0. Then

n1(x0 + z) = w1 · (x0 + z) + b0 = w1 · x0 + b0 + w1 · z = 0, and

n2(x0 + z) = w2 · (x0 + z) + b2 = w2 · x0 + b2 + w2 · z = 0 + w2 · z > 0,

which stands in contradiction to R+(n1) = R+(n2).
Therefore, we must have w1 = λw2 for some λ. Assume λ < 0. We introduce µ ∈ R such that

b1 = µλb2. (This exists without loss of generality, if necessary we can interchange the roles of b1 and
b2.) If λ < 0, then

w1 · x + b1 > 0⇔ 1

λ
w1 · x +

1

λ
b1 < 0⇔ w2 · x + µb2 < 0. (1)

By assumption that R+(n1) = R+(n2), we get that

{x | w2 · x < −µb2}
(1)
= R+(n1) = R+(n2)

Def
= {x | w2 · x > −b2}.

Since the first set contains γw2 for all sufficiently small γ, but the the set of all γ such that γw2 is
contained in the last set is bounded below, this leads to a contradiction for any µ. Hence λ cannot be
negative.

So we must have w1 = λw2 for some λ > 0, and we again write b1 = µλb2. Then

w1 · x + b1 > 0⇔ 1

λ
w1 · x +

1

λ
b1 > 0⇔ w2 · x + µb2 > 0

Since R+(n1) = R+(n2), {x | w1 · x + b1 > 0} = {x | w2 · x + b2 > 0}, we must have µ = 1, which
completes the proof.

B Proof of Lemma 2

Proof. We consider the hyperplanes

Hj = {x | wj · x + bj = 0},

with each dividing the space Rd into the two regions R+
j = R+(nj) and R−j where nj(x) > 0 and

nj(x) < 0 respectively. By assumption, the regions R+
j are pairwise different. Note that the union⋃

j Hj is a closed set of measure zero.
Suppose

a0`(x) +

m∑
j=1

aj(nj(x))+ = 0 (2)

for some scalar coefficients aj and all x. We need to show that aj = 0 for all 0 ≤ j ≤ m.
For any z we let Iz = {j ∈ {1, 2, . . . ,m} | z ∈ R+

j } denote the set of indices of those R+
j that contain

z . Then (2) reduces to

a0`(z) +
∑
j∈Iz

aj(wj · z + bj) = 0.
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If z0 /∈
⋃
j Hj , then by standard continuity arguments there is ε > 0 such that for any ||z1 − z0|| ≤ ε we

have Iz0
= Iz1

. Therefore,

a0`(z1) +
∑
j∈Iz0

aj(wj · z1 + bj) = 0 and hence a0(`(z0)− `(z1)) +
∑
j∈Iz0

ajwj · (z0 − z1) = 0.

With `(x) = c+ w0 · x, this givesa0w0 +
∑
j∈Iz0

ajwj

 · (z0 − z1) = 0

Since z1 is arbitrary in the neighborhood of z0, this shows that

a0w0 +
∑
j∈Iz0

ajwj = 0 for all z0 /∈
⋃
j

Hj . (3)

Consider a hyperplane Hk and choose a point xk ∈ Hk \
⋃
i6=k Hi. The latter set is non-empty in the

case of our assumption of pairwise distinct hyperplanes.
The R+

i are also pairwise different by assumption, so there is a sufficiently small ball Bε(xk) of radius
ε > 0 around xk with Bε(xk) ∩Hl = ∅ for all l 6= k. For any yk ∈ Bε(xk) ∩R+

k and zk ∈ Bε(xk) ∩R−k
we have zk /∈

⋃
j Hj and

0 = 0− 0
(2)
=

a0`(yk) +
∑
j

aj(nj(yk))+

−
a0`(zk) +

∑
j

aj(nj(zk))+



=

a0w0 +
∑
j∈Izk

ajwj

 · (yk − zk) + ak(wk · yk + bk)

(3)
= 0 + ak(wk · yk + bk).

But yk ∈ R+
k , so (wk · yk + bk) > 0 and we must have ak = 0. As k was arbitrary, this shows that

ak = 0 for all k ≥ 1. Then (3) immediately shows that also a0 unless w0 = 0.
If w0 = 0, then c 6= 0 as we assumed `(x) to be non-zero. Choose an arbitrary x0 with nj(x0) 6= 0 for

some j. Then

0 = a0c+

a0w0 +
∑
j∈Ix0

ajwj ·

x0
(3)
= a0c = 0

Since c 6= 0 we must have a0 = 0.
Concluding the proof, we showed that aj = 0 for all j ≥ 0, hence {`(x), (ni(x))+|1 ≤ i ≤ m} is

linearly independent.

C Proof of Theorem 1

Proof. The functions we consider are (using R2, R3) of the form fWi(x) =
∑
j v

j
i (n

j
i (x))+ + Ni(x)

with neuron functions nji (x) = wj
i · x + bji with pairwise different hyperplanes Hj

i for fixed i. Further
Ni(x) = αix + ci is the linear function given by combining the bias of the output layer with a possible
linear function implemented by neurons with opposite activation pattern.
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By assumption, we have fW1
(x) = fW2

(x) for all x and therefore
∑
j v

j
1(nj1(x))+ + α1x + c1 =∑

j v
j
2(nj2(x))+ + α2x + c2, giving∑

j

vj1(nj1(x))+ −
∑
j

vj2(nj2(x))+ + `(x) = 0

where `(x) = N1(x)− N2(x) is a linear function.
Because of (R1)-irreducibility, the weights vji are nonzero and {`(x), (nji (x))+| i, j} is a set of nonzero

linearly dependent functions. (Remove ` from the set when `(x) = 0.) Applying Lemma 2 (property (IP),
there are two neurons with identical hyperplanes H(nj1i1 (x)) = H(nj2i2 (x)). Using a suitable transformation

ψJ− we can even ensure that R+(nj1i1 (x)) = R+(nj2i2 (x)), which is equivalent by Lemma 1 to wj1
i1

= λwi2
j2

and bj1i1 = λbj2i2 for some λ > 0. By assumption, there are no k1 6= k2 such that (nk11 (x))+, (n
k2
1 (x))+

or (nk12 (x))+, (n
k2
2 (x))+ are linearly dependent. Hence, without loss of generality we must have i1 = 1

and i2 = 2 and the linearly dependent pair
(

(nj11 (x))+, (n
j2
2 (x))+

)
is linearly independent of all other

(nk11 (x))+ and (nk22 (x))+. Therefore, with wj1
1 = λwj2

2 and bj11 = λbj22 we must have vj11 = 1
λv

j2
2 and∑

j 6=j1

vj1(nj1(x))+ −
∑
j 6=j2

vj2(nj2(x))+ + `(x) = 0,

where `(x) might have changed due to an application of some transformation ψJ−. We have reduced the

expression by one summand on each side. Inductively, we can match each (nj1(x))+ with some (nj2(x))+
such that each pair differs only by a positive multiplicative number λ. We consecutively match pairs
until we have reduced the equation to `(x) = 0 since the number of neurons in both representations is
necessarily equal. From `(x) = 0, we obtain (c1 − c2) = 0 ⇔ c1 = c2 , and α1 − α2 = 0 ⇔ α1 = α2.
This shows that one network can be transformed into the other one by a permutation of nodes π in the
hidden layer, transformations ρλ multiplying neuron values by a positive scalar which is corrected by
the outgoing weights λ, and transformations ψJ− flipping activation regions of neurons and changing the
linear neuron.
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D Example of a pair of degenerate (R1,R2,R3)-irreducible net-
works that implement the same network function

The following (R1,R2,R3)-irreducible networks fW(x) =
∑3
j=1 vj(nj(x))+ have each pairwise different

hyperplanes and implement the same network function. They are degenerate in the sense that the sum∑3
j=1 vjnj(x) = 0 adds up to the constant zero.

x

y

f(x, y) = x+ + y+ + (−x− y)+

+1

−1

−1

+1

+1

+1

+1

x

y

f(x, y) = (−x)+ + (−y)+ + (x+ y)+

−1

+1

+1

−1

+1

+1

+1

Figure 2: Two (R1,R2,R3)-irreducible ReLU networks implementing the same network function x+ +

y+ + (−x− y)+ = (−x)+ + (−y)+ + (x+ y)+. The two representations differ by ψ
{1,2,3}
− , which flips the

sign of all weights of the first layer and adds a linear neuron with function x+ y + (−x− y) = 0, which
can be removed by R1.

A more intricate example of two (R1,R2,R3)-irreducible networks fW(x) =
∑4
j=1 vj(nj(x))+ + b with

pairwise different hyperplanes and implementing the same network function is the following. They are
degenerate in the sense that the sum

∑
j∈{1,2,4} vjnj(x) adds up to a constant.
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1

x

y

1

f(x, y)

+1

+
1

+1

+2

−2

+1

−2

−1

−
1

+2

−1

+1

−1

1

x

y

1

f(x, y)

−1

−
1

−1

−2

−1

−1

−1

+1

+2

−1

+2

−1

Figure 3: Two (R1,R2,R3)-irreducible ReLU networks implementing the same network function. The

second representation can be obtained from the first one by ρ2 applied to the 3rd neuron and ψ
{1,2,4}
− ,

which flips the sign of all ingoing weights of neurons 1,2 and 4 and adds a linear neuron with function
2(1 + x)− (2x+ y)− (1− y) = 2 + 2x− 2x− y − 1 + y = 1, which cancels the bias at the output layer.
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