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Abstract

Multi-channel acoustic source localization evalu-
ates direction-dependent inter-microphone differ-
ences in order to estimate the position of an acous-
tic source. We here investigate a deep neural net-
work (DNN) approach to source localization that
improves on previous work with learned, linear lo-
calizers. DNNs with depths between 4 and 15 lay-
ers were trained to predict the direction of target
speech in an isotropic, multi-speech-source noise
field. Several system parameters were varied, in
particular number of microphones in the bilateral
hearing aid scenario was set to 2, 4, and 6, respec-
tively. Results show that DNNs provide a clear
improvement over the linear classifier reference sys-
tem. Increasing the number of microphones from
2 to 4 results in a larger increase of performance
for the DNNs than for the linear system. 6 micro-
phones provide only a small additional gain. The
DNN architectures perform better with 4 micro-
phones than the linear approach does with 6 micro-
phones, thus indicating that location-specific infor-
mation in source-interference scenarios is encoded
non-linearly in the sound field.

1 Introduction

The human auditory systems routinely performs
acoustic source localization, a task is important
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also in technical systems since it permits detection
of relevant event such as speech, facilitates recon-
figuration of (auditory) spatial signal processing,
and may trigger subsequent actions such as obsta-
cle avoidance in robots.

Location-specific information as measured with
multi-channel microphone arrays is encoded in rel-
ative transfer functions (RTFs, [8]), dominated
by, but not limited to, time-differences of arrival
(TDOA) of the direct-path component of the acous-
tic signal. Classic approaches for source local-
ization are based on TDOA analysis which com-
monly uses the generalized cross-correlation (GCC)
method to yield robust TDOA estimates [2, 9].

Data adaptive systems that form an implicit
RTF representation through learning on training
data, have been proposed as systems that do not
rely on direct TDOA estimation. In some real-
world scenarios, e.g., when amplitude modulation
is characteristically present in target and interfer-
ence source, they have shown robust localization
performance [7, 1, 11, 4].

The present work evaluates a non-linear exten-
sion of an earlier linear approach [5] by employing
deep feed-forward networks that learn the transfor-
mation from multi-channel audio signals to a prob-
abilistic location map. Specific emphasis is put on a
systematic comparison across several deep network
architectures and with a linear reference network
that serves as baseline. We investigate the question
as to what extent the density of spatial sound field
sampling, i.e., number of microphone sensor chan-
nels, influences localization accuracy and whether
there might be a trade-off between number of sen-
sors and complexity of the classifiers’ architecture.
In conclusion, the results presented here for speech
sources embedded in isotropic noise are indicative
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of a qualitative difference between non-linear (deep
network) and linear localizers that cannot be over-
come by the inclusion of additional sensor channels.

2 Methods

2.1 Probabilistic Acoustic Source
Localization with Deep Nets

The discriminative approach to source localization
builds on a standard classification framework that
is employed to build decision models for directional
sound source presence. Relevant acoustic parame-
ters are learned implicitly, thus no direct impulse
response measurements and no additional assump-
tion on the acoustics are required.

Source presence is indicated by cross-correlation
function features ρij(τ), cf. section 2.2, contain-
ing a main peak centered around the TDOA τij(ζ)
corresponding to location ζ. The cross-correlation
functions should therefore permit a classifier to
adaptively learn to discriminate patterns that im-
ply source presence from those that occur when no
source is active in the direction of interest. They
are denoted by

φij = [ρij (−Dij) , . . . , ρij (0) , . . . ρij (Dij)]
>
, (1)

φ =
{
φij
}
i=1,...,M ; j=i+1,...,M

, (2)

where Dij is the maximum absolute delay between
two sensors that is included and φ denotes the fea-
ture vector concatenating all cross-correlation vec-
tors from all pairs of M sensors i, j.

During classifier training, example feature vec-
tors φ are labeled as positive examples for their
respective source direction ζ, whenever a source is
present at the corresponding location during the
time-frame across which the feature vector has been
computed. We here employ deep feed-forward neu-
ral network classifiers in order to build implicit
direction-dependent models during training. Their
output layer contains a set of N output units, one
for each direction ζ.

When trained with the categorical cross-entropy
cost-function, network outputs converge to a-
posteriori probability estimates for the respective
classes. Hence, the output of a trained deep
network localization algorithm provides us with
a spatio-temporal probabilistic localization map

Figure 1: Processing diagram of the proposed algo-
rithm. Multi-channel audio data from between two and
six microphones is transformed into GCC-PHAT fea-
ture vectors that are used to train and evaluate three
different deep network architectures and a linear refer-
ence net on the task of predicting the correct source
position in 72 azimuth angle directions. The output of
each network is a probabilistic spatio-temporal localiza-
tion map, estimating the probability of source activity
for each time-point and direction.

P̂source(ζ, t) that indicates the probability of a
source being active for each time frame t and each
direction ζ. Maximum a-posteriori estimates are
computed from the probabilistic location map ac-
cording to

ζ̂(t) = argmaxζ

[
P̂source(ζ, t)

]
. (3)

Multi-source DOA estimation is achieved by evalu-
ation of the J most probable occurrences of sound
source positions. Note that estimation of the num-
ber of sound sources is not attempted here although
the probabilistic information about the directional
source distribution may lend itself to such an ap-
proach.

2.2 Feature Extraction
Deep-network localization is based on input fea-
tures that capture the spatial covariance structure
of the sound field as observed at the microphones,
using generalized cross-correlation phase transform
(GCC-PHAT) [10] functions

ρij(τ) =
1

Ω

Ω∑
ω=0

Ψ(ω) ·Xi(ω)X∗j (ω) · e2πiωτ/Ω, (4)

Xi(ω) denotes the Fourier-transform of the i-th mi-
crophone signal xi(t), ω frequency and Ψ(ω) =
Hi(ω)H∗j (ω) a spectral weighting. The phase trans-
form (PHAT) weighting has been shown to be ro-
bust against noise and reverberation, and is of-
ten used in direction-of-arrival (DOA) estimation
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#Mic Chan. left Chan. right #GCC

G1 2 front-left front-right 193

G2 4 front-left front-right 579
rear-left rear-right

G3 6 front-left front-right 1158
center-left center-right
rear-left rear-right

Table 1: Top: Geometries of the bilateral hearing
aid setup with two to six microphones and the re-
sulting number of GCC-PHAT coefficients that cap-
ture the pairwise spatial cross-correlation functions.
Bottom: Depiction of microphones’ geometric arrange-
ment relative to the head (not to scale) and the micro-
phones pairs for computation of cross-correlation func-
tions (red). In-the-ear microphones No. 1 and No. 2
were not used in this study.

[7, 1, 3], resulting in the choice

Ψ(ω) =
1

|Xi(ω)X∗j (ω)|
. (5)

Thus, Ψ(ω) equalizes the amplitude of the signals
with a uniform spectral weighting.

3 Experimental evaluation

3.1 Training and Evaluation Data
Data for training and evaluation of the pro-
posed algorithm was generated from a database
of multi-channel head-geometry room impulse re-
sponse function [6] and the TIMIT speech corpus.
Target speech sources were placed in 5 degree inter-
vals at one of 72 azimuth angles at distance 80cm
for which impulse responses were available. Single-
channel speech signals from the TIMIT corpus were
convolved with 6-channel behind-the-ear hearing
aid impulse responses set to obtain multi-channel
sound field data for the corresponding speaker lo-
cation. Depending on the experiment, between two
and six channels were used during training and test-
ing, resulting in three different array geometries
G1, G2, G3, as described in Table 1. Isotropic,

layer & size

layer in 2 3...N -1 out

Net 1 4 #GCC 800 1 x 1000 72
Net 2 5 #GCC 600 2 x 600 72
Net 3 7 #GCC 600 4 x 300 72
Net 4 15 #GCC 600 12 x 100 72

Net R 2 #GCC n/a n/a 72

Table 2: Deep network architectures compared in the
experiments. Size of the input layer (#GCC) depends
on the size of the GCC-PHAT feature vector associated
with the respective microphone geometry, cf. Table 1.
The output layer size of 72 corresponds to number az-
imuth directions, number of hidden layers varied be-
tween 2 and 13. Net R denotes the linear reference
network.

input layer: min. 193 ... max. 1158 units
hidden layers: min. 2 ... max. 13 layers

hidden layer size: min. 100 ... max. 1000 units
output layer: 72 units

dropout: 50% of units per layer
activation function: rectifying linear (ReLU)

output non-lin.: softmax
optimizer: adam

cost-function: categorical-cross-entropy

Table 3: Parameters of DNN architectures used in
training and evaluation, also cf. Table 2.

speech-simulating noise field data was generated
by placing 72 randomly selected speech sources si-
multaneously at all 72 azimuth positions, ensuring
spectral and temporal properties of each interfer-
ing source to be (on average) identical to those of
the target source. 6-channel speech- and noise-
fields were superimposed at signal-to-noise-ratios
(SNR) of clean (∞ dB), 20 dB, 10 dB, 0 dB, and
−10 dB. In total, 10 hours of multi-channel train-
ing data were generated from the training portion
of the TIMIT dataset for each SNR condition ,
comprising 144 unique speaker-utterance combina-
tions (72 male, 72 female) per direction. Evalu-
ation data amounted to 5 hours from 72 unique
speaker-utterance combinations (36 male, 36 fe-
male) from the testing portion of TIMIT. Thus, the
total amount of data for training and evaluation
was of sufficient size to train large deep-network
architectures.
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Figure 2: Performance with 2 behind-the-ear microphones (geometry G1 ) and 10 ms temporal resolution of
localization. F1-scores given for different network architectures, different azimuth resolutions and different SNR
conditions.

Figure 3: Performance with 6 behind-the-ear microphones (geometry G3 ) and 100 ms temporal resolution of
localization. F1-scores given for different network architectures, different azimuth resolutions and different SNR
conditions.

3.2 Algorithm setup

GCC-PHAT coefficients were computed from 10 ms
windows and band-limited with an upper cut-off
frequency of 4 kHz. A moderate window-shift of
5 ms was chosen to generate training and test
data for the evaluation setting. After reducing
the length of the GCC-PHAT vectors to 4 ms
around the center, limiting their maximum delay
to ±2 ms, feature vectors with dimensionality be-
tween 193 and 1158 were obtained as input vectors
for DNN processing. Depending on the number
of microphones, we used 1, 3, or 6 pairwise cross-
correlations that were subsequently arranged in a
single feature vector, cf. Table 1 for a summary.

A number of deep feed-forward network architec-
tures were chosen with different depths and number
of units per layer, while holding the total number of
neuron units approximately constant. In total, four
networks (Net 1, ..., Net 4 ) as indicated in Table 2,
with parameters listed in Table 3, were evaluated
for each scenario. A linear reference network Net R
served as a baseline for comparison with linear dis-
criminative source localization [5].

3.3 Performance evaluation
Performance of the trained localizers was evaluated
as its F1 score, the harmonic mean of precision and
recall, the latter being averaged across all azimuths,

F1 =
( 1

2 · precision
+

1

2 · recall

)−1

. (6)

To compute relative effects across architectures and
geometries, van Rijsbergen’s effectiveness E, de-
fined as

E = 1− F1, (7)

was used, which attains a value of zero for perfect
classification.

3.4 Experiments
Experiments were carried out with the goal to sys-
tematically investigate the effect that different sen-
sor geometries and deep network architectures as
outlined above have on localization performance.
Several additional parameters were varied in the ex-
periments: Signal-to-noise ratio (SNR) ranged from
clean to −10 dB. The maximum a-posteriori direc-
tion estimate has been computed on (unaveraged)
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localization probability outputs of the networks on
a 10 ms time-scale, as well as after temporal pool-
ing of probabilities across 100 ms frames. Spatial
precision with which a correct vs. false localization
decision of the systems was evaluated ranged from
±2.5

◦
, i.e., within a single azimuth bin, to ±15

◦
,

permitting an azimuth range around the true loca-
tion as a faithful estimate. Results from a subset
of experiments are reported below, which highlight
the observed effects in a number of typical acoustic
scenarios.

3.5 Results

Results obtained with deep networks architectures
Net 1, ..., Net 3 and the linear reference network
Net R are shown in Fig. 2 for the 2-microphone
behind-the-ear geometry (G1) without temporal
pooling, and in Fig. 3 for the 6-microphone behind-
the-ear geometry (G3) with temporal pooling of
100 ms. These two scenarios also represent the
hardest and least-hard settings in which the algo-
rithms have been evaluated, with all other scenarios
(data not presented here due to space limitations)
achieving performance measures in between. Net-
work Net 4 with the largest number of layers, but
the smallest number of units per layer, resulted in
poor performance on the localization task (data not
shown here), likely indicating that wider processing
layers are required, given the parameters in Table 3
which include 50% dropout units. Thus, Net 4 was
excluded from subsequent analysis.

The dominant effect of increased performance
shown in Fig. 3 is due to the combination of tem-
poral pooling and an increased number of sensors.
Note that chance level is at 1/72, thus most of the
datapoints shown fall well above chance. Scenario
G3 shows localization performance near or above
90% for SNRs at 10 dB or better, which may be
the most relevant range for real-world applications.
For subsequent analysis, we have chosen to closer
investigate results at 10 dB with an azimuth accu-
racy of ±5

◦
due to its relevance in practice.

Table 4 shows van Rijsbergen’s effectiveness E
3.3, indicating that DNN architectures perform sig-
nificantly better than the linear reference net, al-
beit the differences between DNN architectures be-
ing minor. The improvement with 6 microphones
(G3) instead of 4 microphones (G2) appears small,
with the linear network in situation G3 still per-

τ = 10ms
Net 1 Net 2 Net 3 Net R rel. imp.

G1 0.60 0.60 0.61 0.65 8.3%
G2 0.31 0.32 0.32 0.42 26.7%
G3 0.30 0.30 0.31 0.39 23.8%

τ = 100ms
Net 1 Net 2 Net 3 Net R rel. imp.

G1 0.28 0.29 0.33 0.36 22.0%
G2 0.06 0.07 0.07 0.12 46.7%
G3 0.06 0.07 0.07 0.11 41.5%

Table 4: Relative improvement of best DNN architec-
ture compared to linear reference network Net R (right
column). Van Rijsbergen’s effectiveness E = 1 − F1

in acoustic scenario with 10 dB SNR and ±5
◦
azimuth

resolution, computed for all combinations of temporal
resolution τ (10 ms, 100 ms), network architecture (Net
1, 2, 3, R), and microphone geometry (G1, G2, G3 ).

forming poorer than the DNN localizers in situation
G2. Thus, information about source location in an
interfering noise field may require non-linear pro-
cessing for decoding, an effect that linear methods
cannot compensate for by denser spatial sampling,
cf. situation G3 with Net R. Table 5 investigates
the effect of increasing the number of recording
channels, showing relative improvement of geome-
tries G2 and G3 over the 2-microphone geometry
G1 (with the respective network architecture and
pooling time-constant being held equal). The re-
sults show that DNN=processing obtains a larger
benefit from an additional microphones compared
to the linear network Net R.

4 Summary and Discussion

In the present contribution, we have proposed a
deep network approach to acoustic source localiza-
tion in a hearing aid scenario with multiple behind-
the-ear microphones mounted bilaterally on a head.
While our previous work has shown that source
localization in this setup can be carried out with
high accuracy using learned linear filters, results
presented here show that performance can be fur-
ther increased through the use of non-linear learn-
ing algorithms such as deep feedforward networks.
While the specific network architecture appeared to
be of lesser significance, it may be of interest that
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τ = 10ms
Net 1 Net 2 Net 3 Net R

G2 48.1% 47.6% 47.3% 35.0%
G3 50.3% 49.8% 49.4% 40.1%

τ = 100ms
Net 1 Net 2 Net 3 Net R

G2 76.5% 76.4% 78.4% 65.6%
G3 77.6% 77.1% 79.3% 70.1%

Table 5: Effect of increasing number of recording chan-
nels from 2 microphones (geometry G1 ) to 4 (G2 ) and
6 (G3 ), respectively. Relative improvement in effective-
ness E compared to baseline geometry G1. Non-linear
processing with DNNs more effectively extracts infor-
mation conveyed in the additional channels than linear
reference network Net R.

the improved performance of non-linear localization
cannot be achieved with linear methods even if the
sensor number is increased further: Linear models
on 6-channel data were incapable of reaching the
performance that non-linear networks achieved on
4-channel data. A saturation effect at 4 microphone
setups that had been observed in previous studies
with linear classifiers, i.e., use of 6 microphones
would lead to only a comparably small increase
in localization performance, has been confirmed in
the present study for non-linear networks. Thus,
practical applications should consider a reasonable
number of microphones and devote additional re-
sources to non-linear signal processing approaches
in order to achieve optimum performance. Doing so
has been shown here to result in relative improve-
ments of effectiveness E of up to 46.7% over linear
approaches. Depending on the specific situation,
this is approximately equivalent to a 5 dB increase
in signal-to-noise-ratio (SNR) of the recording con-
dition.
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