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Abstract

In this paper we present the usage of PointNet, a
deep neural network that consumes raw un-ordered
point clouds, for detection of grape vine clusters in
outdoor conditions. We investigate the added value
of feeding the detection network with both RGB
and depth data, contradictory to common practice
in agricultural robotics which to-date relies only on
RGB data. A total of 5057 pointclouds (1033 man-
ually annotated and 4024 annotated using geomet-
ric reasoning) were collected in a field experiment
conducted in outdoor conditions on 9 grape vines
and 5 plants. The detection results show overall
accuracy of 91% (average class accuracy of 74%,
precision 48% recall 53%) for RGBXYZ data and
a significant drop in recall for RGB or XYZ data
only. These results suggest the usage of depth cam-
eras for vision in agricultural robotics is crucial for
detection in crops where the color contrast between
the crop and the background is complex. The re-
sults also suggest geometric reasoning can be used
to increase training set size, a major bottleneck in
the development of agricultural vision systems.

1 Introduction

The interest in development of agrobots, robots sup-
porting or replacing humans in agricultural oper-
ations (e.g. harvesting and weeding), has grown
lately due to the lack of workforce and growing food
demands [3]. One of the challenges preventing com-
mercialization of agrobots is the low detection rates
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Figure 1: Experimental setup including five vine
plants with a black background behind.

of the targets (e.g. fruit) due to occlusions (foliage)
and accurate localization of the target [3].

RGB cameras are low priced and show reliable
performance in outdoor conditions [3, 4]. As a
result, current detection efforts in agrobots are
mainly based on color information extracted from
RGB cameras [2, 22, 12]. Color based detection al-
gorithms shown remarkable results for objects with
high color-background contrast (e.g. red fruit on
green leaves) but perform poorly for low contrast
objects (e.g. green peppers and grapes on green
leaves) [2, 20, 22, 6] or in complex lighting [2]. Us-
age of hyperspectral, multispectral, [1], or thermal
cameras [9] for detection were also explored, but
often overruled in agrobots integration due to high
weight and costs. Depth sensors have not been
used extensively for crop detection in agriculture
[13]. This can partly be attributed to the high
cost of reliable outdoor 3D depth sensors, or be-
cause of the too low point density provided by even
high-end 3D LiDaR sensors for typical agricultural
operation (e.g. detection of crops, leaves, stems).
Detection based on a color-depth combination, in
outdoor conditions, has been problematic to-date
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due to the lack of RGB-D sensors reliably perform-
ing outdoors [21].

Reasonably priced commercial RGB-D cameras
showing unprecedented performance in outdoor
conditions [18, 21] have recently started to enter
the market. So far they were mostly used for local-
isation in world coordinates [4] of RGB based de-
tected items [17], an operation that was previously
done through visual servoing (e.g. [5, 17]). Pres-
ence of accurate RGB-D sensors with high point-
cloud (PCD) density, allows development of detec-
tion algorithms based on both color and depth data
for agrobots. Since reliable indoor RGB-D sensors
are on the market for a while now (e.g. Kinect,
RealSense) the literature provides a variety of de-
tection algorithms developed for dense PCD data
[7]. These algorithms provide a starting point for
development for outdoor detection, but for it to be
relevant for agricultural robotics the following chal-
lenges should be addressed:
Single frame detection. Due to the dynamic
and highly occluded conditions in agriculture, reg-
istration of multiple frames is challenging and intro-
duces additional error and therefore not applicable.
Furthermore, most agrobots are equipped with an
eye-in-hand sensor configuration [3, 4, 15], leading
to increased cycle times for collection of multiple
frames of the same object, and limiting commer-
cialization of the agrobot [3, 14, 15]. Therefore,
single frame detection is critical for fast and reli-
able operation of agrobotic vision.
Low resolution detection. Commercially avail-
able sensors to date still have sparse depth density
and low registered resolution [18, 21]. Therefore,
the detection must work well on sparse data.
Limited training data. Labeling is a significant
bottleneck preventing rapid acquisition and learn-
ing procedures [19]. Acquiring data and ground
truth in agri-robotics poses an extra challenge due
to the harsh conditions. Furthermore, there is large
variability between objects [3] and growing con-
ditions, seasons and even within the same crop
[3, 4, 15]. As an evident, current agricultural vi-
sion datasets often lack proper labeling [12].
To address these challenges, we chose PointNet [7]
- a deep neural network developed for classifica-
tion and semantic segmentation that consumes raw
point clouds. PointNet has been widely used in
indoor applications [23, 8] for dense multi-view ob-
ject scans, and has shown good classification results

[7, 23]. Limited work was applied in the agricul-
tural domain for LiDar data [10], but to the best
of our knowledge the network has not been tested
for sparse PCDS and single frame detection.

We use PointNet for detection of grape vine clus-
ters in outdoor conditions. Due to the lack of open
access RGB-D agricultural dataset, we performed
a data collection where grapes were scanned using
a commercial RGB-D camera mounted on a mobile
robot. Only single framed detection was em-
ployed. A subset of the frames were labeled manu-
ally. The rest were labeled by geometrical reasoning
to address the limited training data problem.

2 Methods

To achieve the goals defined above, data collec-
tion is performed in outdoor conditions on vineyard
plants. Next, the data is processed and labeled by
human annotators and geometrical reasoning meth-
ods. Finally, the labeled dataset is fed into the net-
work for detection of grapes and evaluation of the
algorithm performance.

2.1 Data collection

An Intel Realsense D435 depth camera was fixed
to the front left corner of a Greenhouse Spraying
Robot (GSR) platform at 625 mm above ground
level (Fig. 1). The Realsense D435 is an active
stereo vision camera which is equipped with two
RGB sensors and an active IR pattern projector
[11]. This technology allows depth reading in out-
door lighted conditions.

The experimental setup (Fig. 1) included 5 vine
plants in pots, placed outdoors 0.5 meter apart.
A total of 9 grape clusters just harvested from a
commercial vineyard were placed on the vines in
both easily visible and occluded locations. A ra-
tio of 1:1 between the occluded and non occluded
grapes for a front view (camera centered to plant).
Due to the camera’s continues movement the visi-
bility in each frame is dependant on camera view-
point. The clusters were attached to the stem in
a free hanging form. The robot was moved man-
ually parallel to the plants at 1.5 meter distance
while continuously acquiring RGB-D images with
1280×720 resolution at 30 fps. Six videos were
acquired, each between 30-90 s, from three differ-
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a) RGB w/o back-
ground

b) Filtered point cloud
w/o background

c) RGB with back-
ground

d) Filtered point cloud
with background

Figure 2: Acquired RGB and point cloud with
and w/o background using an Intel Realsense D435
RGB-D camera.

ent viewpoints (left/front/right) with and without
background. The background consisted of a black
cover that was hanged behind the plants. The back-
ground is expected complicate the depth based de-
tection by having similar range readings for the tar-
get and the background, which are difficult to filter,
while the RGB detection is expected to be simpler
due contrasting background. Fig. 2 presents the
influence of the background on RGB and PCDs.

2.2 Data pre-processing and labeling

In the pre-processing phase, every single frame of
the video is parsed into a single PCD using Intel’s
Realsense SDK1. The extracted PCDs are visually
reviewed to locate frames where the plant of inter-
est is centered (x = [−0.5, 0.5]). Each such PCD is
filtered to remove background (0.3 < Z < 2∩−1 <
X < 1), based on the experimental setting (Fig.
1). Results of pre-processing in Fig. 2 (right).

From the pre-processed PCDs, 3D labeled grape
clusters are segmented in a three step process.

First, a subset of frames is generated by extract-
ing every 5th frame. For each such frame, a hu-
man annotator, who first observed the approximate
location of the clusters in overview images of the

1https://github.com/IntelRealSense/librealsense

Figure 3: Example of manual and interpolated la-
bels. Left and right - labeled manually; Middle -
one of the 4 interpolated frames. While changes
are subtle, the reader is advised to pay attention to
the changes in pot location.

scene, draws a rectangle around the grape cluster
in XY projection of the PCD (Fig. 3). Then, the
marked labels are interpolated for the 4 frames be-
tween two consecutive labeled frames (Fig. 3), by
linear interpolation of the XY coordinates of the
rectangle corners initially drawn by the annota-
tor. Finally, by including the points from the PCD
that correspond to the marked 2D region, a labeled
grape cluster PCD is created.

2.3 Train-test for grape detection

As mentioned, we use the deep-net PointNet [7] for
detection (Fig. 4)2. The network is designed to in-
put un-ordered PCDs and can be trained for PCDs
with or without RGB. To comply with the network
data formatting requirements, the PCDs are down-
sampled to 2 cm voxel resolution and the 4096 most
central voxels in X and Y are used. Only frames
with at least one labeled cluster were included. A
total of 5057 such PCDs (1033 manually annotated
and 4024 interpolated) were analyzed according to
the train-test splits in Table 1. The train-test split
was done in order of acquisition, to ensure plants
used for training were not used for testing. The
training dataset always included the interpolated
dataset (the labels generated using geometrical rea-
soning) while the test set was examined on both in-
terpolated and non-interpolated labeled data. Ad-
ditionally, results were examined for frames with
and without background (Fig 2).

The network was evaluated under 3 different data
configurations - PCD consisting of XYZ data only,

2We used the open source Python implementation-
https://github.com/charlesq34/pointnet
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Table 1: Detection results for training-testing splits and types of sensory data. Reported results for best
combined P and R as extracted from P-R curves (Fig. 5)

RGBXYZ XYZ RGB
Training Set Test Set A AC P R A AC P R A AC P R

Interpolated all data
(2757 PCDs)

Non interpolated all data
(482 PCDs)

91 74 48 53 92 62 53 25 93 61 77 24

Interpolated all data
(2757 PCDs)

Interpolated all data
(2300 PCDs)

92 69 59 40 92 61 57 24 93 61 82 22

Interpolated bg
(1467 PCDs)

Non interpolated bg
(331 PCDs)

91 65 65 33 90 61 61 23 91 60 74 21

Interpolated no bg
(1290 PCDs)

Non interpolated no bg
(151 PCDs)

92 77 30 60 96 60 44 21 97 66 72 34

PCD=point-cloud; A = Accuracy; AC=Average Class Accuracy; P = Precision; R = Recall

Figure 4: Schematic architecture of PointNet. For
original architecture refer to [7]

RGB data only, or both (XYZRGB). Each detec-
tion evaluated by overall accuracy (A), average
class (grape/background) accuracy (AC), precision
(P), and recall (R). Each train-test and data con-
figuration was trained max 50 epochs.

3 Results

The best precision-recall (P-R) rates for each data
configuration (XYZ, RGB and RGBXYZ) are re-
ported in Table 1. Since grape detection can be
used for several agri-robotic applications, there is
no clear priority for lower FP or lower FN and
therefore the chosen best combination is the one
maximizing both precision and recall as shown in
the P-R curves in Fig. 5.
For RGBXYZ data, the highest average ac-

curacy is achieved for the no-background dataset
(77%). This training-testing split provides the low-
est precision rate (30%) and the highest recall rate
(60%), suggesting that for no background data the
vines are detected to a high degree but many non-
vine regions were falsely detected as grapes. The
data with background yields lowest average accu-
racy (65%), highest precision (65%) and lowest re-
call (30%) suggesting with background a lot of the
grapes were missed but non grape regions were less

likely to be mis-classified.

The most variable dataset that includes PCDs
acquired both with and without a background pro-
vides a good balance between the two detection
rates with average class accuracy of 74%, precision
of 48% and recall of 53%. The red P-R curve in
Fig. 5 presents rather constant levels of precision
for a range of recall values.

The results in Table 1 also show that inclusion of
interpolated data in the test sets slightly harms the
results (69% average accuracy compared to 74%),
while the gap between precision and recall slightly
increases. This might be explained by errors in-
cluded in the dataset by interpolation of labels,
where regions that were not grape, and were classi-
fied as non grapes were mistakenly labeled as grape.

For XYZ data the results show similar overall
accuracy but significantly lower average class accu-
racy then for RGBXYZ (60-62% compared to 65-
77%). The blue curve in Fig. 5 shows similar pre-
cision was achieved for the XYZ data compared to
the RGBXYZ with significantly lower recall rates.
This suggest that the use of XYZ retained the num-
ber of FPs but significantly increased the FNs,
which means the XYZ network detected signifi-
cantly less grapes then the RGBXYZ.

The RGB data showed similar results in aver-
age accuracy to the XYZ data (∼60%) but a sig-
nificantly higher precision for the same recall levels
(74-82% precision compared to 57-61% for 20-35%
recall). This suggests that for the same ratio of
undetected grapes the number of falsely detected
grapes was significantly lower and in general the
true positive rate is high. This means that RGB
data is a more vital cue for grapes detection as com-
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Figure 5: Precision-Recall curve for RGBXYZ,
XYZ and RGB based detection for full dataset.
The marked data points are the chosen best config-
uration reported(first row Table 1)

pared to XYZ data. Comparing the RGB data to
the RGBXYZ data using the P-R curves (green and
red respectively in Fig. 5) shows a decrease in preci-
sion with the usage of XYZ in addition to RGB but
increase in recall. This suggests that the RGBXYZ
network is less conservative than the RGB network
(RGBXYZ assigns more regions to be grapes then
RGB) with lower FNs but higher FPs.

4 Conclusions

This paper presents the use of a commercial grade
RGB-D camera for detection of grape vines in out-
door conditions, for agrobotics applications. De-
tection results show overall best accuracy of 91%
(average class accuracy of 74%) when using both
RGB and XYZ data. The results were obtained
from a single frame detection configuration with
limited manually annotated data (1033 PCDs),
based on low spatial resolution data. The results
also show an expected increase in accuracy when
both RGB and XYZ data are used compared to
solely RGB or XYZ. Usage of uniform background
yielded higher precision but lower recall for RG-
BXYZ based detection. For XYZ detection, recall
remained similar for both background and no back-
ground data but a higher precision for frames with
background. Hence XYZ info contributes more for
detection when using a background. For RGB de-
tection, increase in recall was observed for no back-
ground data suggesting lower number of FN when
no background is present. These conclusions con-

tradict with the initial assumption that placing a
uniform background will increase the complexity
for depth detection and decrease the complexity of
RGB detection and should be investigated further.

To give the results a context, a review of pre-
vious research on grape detection shows similar or
slightly better results. Nuske et al. [16] used K-
NN and obtained 63.7% precision and 98% recall.
Berenstein et al. [6] used morphological operations
resulting with an accuracy of 90% (no precision or
recall reported). Zemmour et al. [22] used adaptive
thresholds and achieved 89% recall. The authors
did not report precision or accuracy but reported
33% TPR. Compared to other field crops with a
more prominent color contrast to background (e.g.
[2, 3, 20, 22]) grape detection has overall lower de-
tection results which shows the task complexity.

Our results show that addition of depth infor-
mation to RGB data can lead to improved grape
vines detecting results with respect to some met-
rics. With more sensors providing better RGB-D
data, detection rates are expected to rise. Fur-
thermore, we present the importance of automatic
annotation. Nevertheless, the detection rates pre-
sented are similar or slightly lower then the re-
ported numbers in the literature, that are based on
RGB only. This is most probable due to an impor-
tant aspect of RGB that is lost with the analysis of
PCD data: the spatial order of the image. A pos-
sible continuation of the work would include usage
of ordered PCD detection networks.
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