
Controlling Blood Glucose For Patients With Type 1 Diabetes

Using Deep Reinforcement Learning – The Influence Of

Changing The Reward Function

Abstract

Reinforcement learning (RL) is a promising direc-
tion in adaptive and personalized type 1 diabetes
(T1D) treatment. However, the reward function –
a most critical component in RL – is a component
that is in most cases hand designed and often over-
looked. In this paper we show that different reward
functions can dramatically influence the final result
when using RL to treat in-silico T1D patients.

1 Introduction

Reinforcement learning (RL) is a separate direction
in machine learning where the aim is to understand
and automate goal-directed learning and decision-
making [13]. In combination with recent advances
in deep learning, deep reinforcement learning has
emerged as a very powerful tool for difficult control
tasks [11, 6].

The artificial pancreas (AP) is a system involving
an insulin pump, a continuous glucose monitor and
a control algorithm to release insulin in response to
changing blood glucose (BG) levels mimicking a hu-
man pancreas. Several works have shown promis-
ing results using RL for the AP [2, 7, 8, 12], but
the main focus of these algorithms have been on
fitting the RL framework to the case of type 1 di-
abetes (T1D). In this work we focus on the reward
function, an often overlooked component of empir-
ical reinforcement learning. It is well known that
the success of a RL application strongly depends
on how well the reward signal frames the goal of
the application’s designer and how well the signal
assesses progress in reaching that goal [18]. In the
diabetes case it is particularly the contrasting prob-
lems of hyper- and hypoglycemia – too high or too
low BG levels – that is problematic for RL appli-

cations. In fact, hypoglycemia is a commonly re-
ported problem and one of the acutest complica-
tions of all types of diabetes. We propose several
new reward functions suited for (T1D), and per-
form in-silico experiments testing different reward
functions on the trust-region policy optimization
(TRPO) algorithm [9] using the Hovorka model [4].

Our experiments demonstrate that focusing on
reward functions that contain more domain knowl-
edge, such as stronger penalties for reaching low
BG levels, is crucial.

2 Deep reinforcement learn-
ing: Policy optimization
and TRPO

Policy gradient algorithms consider parametric
policies which are optimized using gradient ascent
on a given performance measure. The most com-
mon choice for the performance measure is the
expected return of the start state s0, given as
J(θ) = vπ(s0) = Eπ

[
R0 + γR1 + γ2R2 + · · ·

]
.

Using policy gradient algorithms yield several
benefits: the policy gradient theorem, application
of RL to continuous action spaces and a naive ex-
tension to deep learning using neural network to
parameterize the policies.

Furthermore, a key point of using policy gradient
algorithms is the policy gradient theorem [13]:

∇J(θ) ∝
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a|s, θ).

This states that the gradient of the performance
measure is proportional to the gradient of the pol-
icy itself. This allows the use of any differen-
tiable policy parameterization. Furthermore, the
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policy gradient theorem is constructive, so it di-
rectly yields a simple sample-based algorithm, RE-
INFORCE [16], omitted here for brevity. This al-
gorithm has been well studied and a number of im-
provements and suggestions have been proposed,
see e.g. [9, 10, 5]. The current state-of-the-art in
model free policy gradient algorithms is Trust Re-
gion Policy Optimization (TRPO) by Schulman et
al. [9] and a simplified version, Proximal Policy Op-
timization [10]. In this work we restrict our atten-
tion to TRPO.

Trust region policy optimization is a policy gra-
dient algorithm where each update of the policy is
guaranteed to improve the performance. This guar-
antee is achieved, by enforcing the Kullback-Leibler
divergence between the old and the updated policy
to be small:

maximize
θ

Es,a∼πθold

[
πθ(a|s)

πθold(a|s)
Qθold(s,a)

]
subject to Es,a∼πθold [DKL(πθold , πθ)] ≤ δ.

(1)

We refer the reader to Schulman et al. [9] for further
details. The policy πθ(a|s) is a Gaussian policy:

πθ(a|s) =
1

σ(s, θ)
√

2π
exp

(
− (a− µ(s, θ))2

2σ(s, θ)2

)
,

where σ(s, θ) and µ(s, θ) are feature extractors. We
use neural network feature extractors in this work.

3 Reward functions

We consider hyperglycemia as values above
bghyper = 180 mg/dL, hypoglycemia as values be-
low bghypo = 72 mg/dL and severe hypoglycemia
as values below bghypo− = 54 mg/dL. Thus, normo-
glycemic range are values between [bghypo, bghyper]
mg/dL, with a target value bgref = 108 mg/dL.
The nine different proposed and tested reward func-
tions can be further divided into two categories:
(1) Symmetric reward functions – hyper- and hy-
poglycemia are equally penalized by the rewards.
Absolute reward [17]: |bg − bgref |
Binary: {

1 : bg ∈ [bghypo, bghyper]
0 : otherwise

Binary tight:{
1 : bg ∈ [bgref − 10, bgref + 10]
0 : otherwise

Gaussian reward [2]: exp
(
− 1
σ2 (bg − bgref )

2
)

Squared reward: −(bg − bgref )2

(2) The second category is asymmetric reward
functions – hand-designed reward functions includ-
ing external knowledge from the diabetes disease to
give more penalty to hypoglycemic events.
T1D reward: Linear function with positive re-
ward for normoglycemic range. Exponential func-
tion with negative reward for hypoglycemia, while 0
reward for hyperglycemia. Really negative reward
for severe hypoglycemia.
−100 : bg < bghypo−

exp( log(140.9)
bghypo

bg)− 140.9 : bg ∈ [bghypo− , bghypo]
1
36bg − 2 : bg ∈ [bghypo, bgref ]
− 1

72bg + 5
2 : bg ∈ [bgref , bghyper]

0 : bg > bghyper

Tight T1D reward: Hypoglycemia considered as
values below bghypot = 90 mg/dL in order to be
even more aggressive against hypoglycemic events.
−100 : bg < bghypo−

exp( log(117.5)
bghypot

bg)− 117.5 : bg ∈ [bghypo− , bghypot ]
1
18bg − 5 : bg ∈ [bghypot , bgref ]
− 1

72bg + 5
2 : bg ∈ [bgref , bghyper]

0 : bg > bghyper

Hovorka reward: Based on the nonlinear model
predictive control from [4].
−(bg − y(t))2

y(t) is the desired glucose profile. When BG levels
are above the desired level y(t) linearly decrease,
while for BG values below target value y(t) expo-
nentially increases [4].
Risk reward [1]: −10(1.509(log(bg)1.084−5.381))2

4 Experimental setup

Simulation environment We use the Hovorka
simulator as described in Wilinska et al. [15] and
Hovorka et al. [4]. The simulator is implemented
in Python and the TRPO agent is trained us-
ing the open source reinforcement learning toolbox
garage1 [3].

Experiment protocol and scenarios Each
episode of the simulations consists of a single day

1https://github.com/rlworkgroup/garage.
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plus 12 hours into the next day. Four meals are
given at [08:00, 12:00, 18:00, 22:00] with a uni-
form chance of moving the meal back or forward
30 minutes. Each meal is fixed at 40, 80, 60 and 30
grams of carbohydrates with a uniform ±20 gram
disturbance. Finally, we have a ±30% carbohy-
drate counting error, meaning that the carbohy-
drate amount used to calculate the bolus insulin
dose might be 30% higher or lower than the true
carbohydrate amount.

Performance measures and testing We test
the algorithm on a fixed scenario consisting of
100 random meal-days generated with a fixed ran-
dom seed. To measure the performance of our
simulations, we use time-in-range and time-in-
hypoglycemia as the performance measures, where
we want to maximize the former and minimize the
latter. We also include low blood glucose risk index
(LBGI), high blood glucose risk index (HBGI), risk
index (RI) and the coefficient of variation (CoV),
all described in Clarke and Kovatchev [1].

5 Results and discussion

In this work we test and compare different reward
functions using TRPO on the original Hovorka in-
silico patient, [4], in order to show the importance
of the reward function design.

In the experiments we consider two cases, with
different insulin-to-carbohydrate ratio (ICR) used
to calculate pre-meal bolus insulin doses. This ra-
tio specifies the number of grams of carbohydrate
covered by each unit of insulin, see e.g. [14].

Given the fact that we are in this work consider-
ing a single-hormone AP, the only available action
for the algorithm when the BG is too low or ap-
proaching low levels is to turn off the insulin pump.
Due to this the actual ICR used during meals will
have a strong influence on the overall result. Espe-
cially the severity of carbohydrate counting errors,
which we include in our simulations, will be affected
by different ICRs.

5.1 Case 1: 30g/U ICR

We start with a 30g/U ICR. This translates to the
in-silico Hovorka patient taking 1 unit of insulin
for each 30 grams of carbohydrate intake. We run

the TRPO algorithm for 100 iterations using all
the reward functions described in Section 3. Fig-
ure 1 shows mean BG level values for the differ-
ent reward functions used within TRPO and the
basal-bolus regimen. The mean BG values show
good performance for all the different reward func-
tions and basal-bolus regimen when using 30 g/U
ICR as shown in figure 1, spending most of the
time within range. However, most of the symmet-
ric rewards show lower values than the asymmetric
rewards, resulting in a higher hypoglycemia risk.
Only the tight binary reward function shows com-
parable results to the asymmetric reward functions,
keeping mean BG values closer to the target value.
Results from these experiments are summarized in
Table 1.

TRPO outperforms the basal-bolus regimen in
terms of time-in-range for all the reward functions
tested. However, that is not the case in terms
of hypoglycemic events, where the symmetric re-
wards struggle to avoid hypoglycemia. Only the
symmetric binary tight reward function presents
competitive results avoiding hypoglycemic excur-
sions in similar terms to asymmetric rewards. The
risk reward function actually increases the time
spent in hypoglycemia, showing worse results than
the rest of the asymmetric rewards. The oppo-
site happens with hyperglycemic excursions, where
the symmetric reward functions show better per-
formance avoiding hyperglycemia. This is because
the symmetric reward functions deal equally with
hypo- and hyperglycemia events, while asymmet-
ric reward functions are designed taking into ac-
count external knowledge from the diabetes prob-
lem. In this work, this external information con-
sists of higher penalty to hypoglycemia than to
hyperglycemia, which is translated into safer be-
haviour reducing the time spent in hypoglycemic
events. This is also reflected in the risk factors,
where the asymmetric reward functions are more
robust against risk of hypoglycemia than the sym-
metric reward functions, while both kind of func-
tions show similar performance in terms of hyper-
glycemic risk. Therefore, the overall risk factor
is lower for the asymmetric rewards. Finally, the
asymmetric reward functions where hypoglycemia
is penalized more than hyperglycemia also present
lower CoV, and only the asymmetric risk reward
function show similar results to the symmetric func-
tions.

3



Figure 1: Mean blood glucose levels using TRPO with different reward functions, averaged over 100
episodes. Each test episode runs for one and a half day, a total of 36 hours, to include the effects of the
algorithm after the last meal. The Insulin-to-carbohydrate ratio is fixed at 30 g/U.

Treatment Time-in-range -hypo -hyper LBGI HBGI RI CoV

Basal-bolus 83.45±7.38 2.42±4.9 14.13±7.07 0.87±0.83 4.62±1.45 5.5±1.63 27.61

Absolute 86.45±6.04 4.50±5.74 9.06±4.31 1.30±0.82 4.23±0.96 5.53±1.09 27.31

Asymmetric 88.10±4.78 0.54±1.8 11.36±4.58 0.47±0.31 4.34±0.98 4.81±1.02 25.27

Tight asymmetric 83.57±5.31 0.0±0.0 16.43±5.31 0.12±0.09 4.70±1.17 4.82±1.17 25.13

Binary 86.92±6.47 6.68±6.39 6.40±3.96 2.38±0.6 3.83±0.94 6.20±1.0 29.56

Tight binary 85.03±5.51 0.55±2.09 14.41±5.31 0.41±0.3 4.79±1.11 5.19±1.16 26.43

Gaussian 84.39±7.16 6.15±6.47 9.46±4.13 1.52±0.98 4.24±1.06 5.76±1.44 27.64

Hovorka 88.95±3.94 0.0±0.0 11.05±3.94 0.41±0.16 4.20±0.81 4.61±0.82 25.34

Risk 86.60±5.79 3.75±4.81 9.65±4.31 1.13±0.63 4.35±1.0 5.48±1.06 27.28

Squared 89.81±5.22 4.13±5.12 6.06±3.79 2.30±0.55 3.62±0.89 5.91±0.89 29.01

Table 1: Summary of results for 30g/U insulin-to-carbohydrates ratio. Mean values ± standard deviation
of 100 runs with each episode running for one and a half day, a total of 36 hours.
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Figure 2: Mean blood glucose levels using TRPO with different reward functions, averaged over 100
runs. Each test episode runs for one and a half day, a total of 36 hours. Insulin-to-carbohydrate ratio
fixed to 25g/U.

5.2 Case 2: 25g/U ICR

We select a 25g/U ICR for the second set of exper-
iments. That means the in-silico Hovorka patient
uses 1 unit of insulin for each 25 grams of carbohy-
drates intakes. Therefore, in this set of experiments
the patient uses more units of insulin to deal with
the same amount of carbohydrates. The mean BG
level values for the the basal-bolus regimen and the
different reward functions used within TRPO dur-
ing these experiments are shown in figure 2.

TRPO shows good performance with mean BG
values within range most of the time. However,
symmetric reward functions lead to lower BG val-
ues and then higher risk of hypoglycemia, while
asymmetric reward functions stay in safer glucose
levels.

Results summarized in table 2 show TRPO
clearly improving time spent in target range while
reducing hypoglycemic events in comparison with
the basal-bolus regimen, which in this case is not
able to maintain safe BG values.

Furthermore, the asymmetric reward functions
taking into account the importance of avoiding hy-
poglycemia perform better than symmetric reward
functions, reducing hypoglycemic events. This is
also reflected in the reduced overall risk index.
The symmetric reward functions deals better with
high BG values, reducing the time spent in hy-

perglycemia. However, in spite of this reduction
in time spent in hyperglycemia, the risk of hyper-
glycemia is similar for symmetric and asymmetric
reward functions, with the asymmetric T1D reward
function showing the lowest risk. Therefore, asym-
metric reward functions results in lower total risk
factor. Regarding the coefficient of variation, the
asymmetric T1D reward function shows better per-
formance decreasing variance, while symmetric bi-
nary reward function presents a CoV value closer
to the basal-bolus strategy. The rest of the reward
functions present similar results, reducing the CoV
with respect to the basal-bolus regimen.

6 Conclusions

In this work we have shown that changing the re-
ward function will have an impact on the overall
performance of RL agents for the AP framework.
Furthermore, we tested the influence of including
domain knowledge in the reward function, and we
observed that this both reduces the hypoglycemic
events and risk indices in general, ultimately im-
proving the safety of the in-silico T1D patients.
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Treatment Time-in-range -hypo -hyper LBGI HBGI RI CoV

Basal-bolus 79.22±12.14 14.65±12.73 6.14±4.32 2.99±1.98 3.63±1.15 6.62±2.32 29.1

Absolute 91.41±4.69 1.62±3.41 6.98±3.74 0.79±0.42 3.73±0.83 4.52±0.87 24.28

Asymmetric 87.81±4.92 0.08±0.62 12.11±4.85 0.25±0.31 2.87±0.74 3.12±0.79 22.39

Tight asymmetric 86.90±5.4 0.15±0.89 12.95±5.42 0.19±0.21 3.91±1.0 4.11±1.04 23.57

Binary 91.99±5.74 4.86±5.72 3.15±2.70 2.72±0.48 2.93±0.78 5.66±0.85 27.29

Tight binary 90.48±4.82 1.78±3.71 7.74±3.7 0.59±0.45 3.73±0.80 4.33±0.88 23.47

Gaussian 91.44±4.95 1.44±3.27 7.12±3.75 0.70±0.42 3.59±0.8 4.29±0.88 23.71

Hovorka 90.97±4.23 0.09±0.55 8.94±4.23 0.46±0.22 3.66±0.79 4.11±0.80 24.02

Risk 91.52±4.49 1.57±3.08 6.91±3.69 0.74±0.41 3.53±0.76 4.26±0.80 23.85

Squared 92.82±4.73 2.54±4.4 4.64±3.2 1.67±0.45 3.28±0.79 4.95±0.81 25.79

Table 2: Summary of results for 25g/U insulin-to-carbohydrates ratio. Mean values ± standard deviation
of 100 runs with each episode running for one and a half day, a total of 36 hours.
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