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Abstract

The ability to automatically outline anomalies in
brain Magnetic Resonance Images (MRIs) is of great
importance in computer-aided diagnosis. Unsuper-
vised anomaly detection methods work primarily
by learning the distribution of healthy images and
identifying abnormal tissues as outliers. In this
paper, we propose a slice-wise detection method
which first trains a pair of autoencoders on two
different datasets, one with healthy individuals and
the other one with images of both normal and tu-
moural tissues. Next, it classifies slices based on the
distance in the latent space between the encoding
of the image and the encoding of the reconstruc-
tion obtained through the autoencoder trained on
healthy images only. We validate our approach with
a series of preliminary experiments on the HCP and
BRATS-2015 datasets, showing the capability of
the proposed method to classify brain MRIs into
healthy and unhealthy.

1 Introduction

Automatic analysis of medical images is of great
relevance for developing reliable systems that can
assist physicians in diagnosing pathologies. The im-
portance of the task is given by the fact that an ac-
curate diagnosis is time consuming and investigator-
dependent. In this context, the study conducted by
Drew et al. [5] showed the vulnerability to inatten-
tional blindness which can lead to high miss rates
of anomalies. Deep learning technologies have been
extensively employed for analysing medical images,
with impressive results [9]. However, annotations
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for large amounts of data are difficult to collect. For
this reason, there is a need for designing unsuper-
vised or semi-supervised methods that can outline
anomalous regions in medical images.

In this paper, we propose a slice-wise tumour
detection algorithm based on Variational AutoEn-
coders (VAEs) and we evaluate it on Magnetic
Resonance Images (MRIs) of brains from two pub-
licly available datasets: HCP [14] and BRATS-2015
[10, 7]. The characteristic of our proposed algorithm
is that it discriminates slices based on the computa-
tion of a distance in the space of the approximate
posteriors of a VAE trained on both healthy (or
normal) and tumoural tissues. The distance is com-
puted between the encoding of an original image
and the encoding of its reconstruction through a
VAE which has been trained only on healthy images.
From this perspective we can describe our approach
as semi-supervised, indeed even if the algorithm
does not need to access any label from the dataset
containing both normal and tumoural images, it
needs to have access to a dataset of images which
are guaranteed to be of healthy individuals.

VAEs [6, 12] are flexible generative models which
can be used for performing inference on complex
datasets. In the literature there are several applica-
tions of VAEs in the medical field, such as segmen-
tation of tumours in brain MRIs [8, 11], estimation
of the brain age from MRI scans [4, 15], or identi-
fication of mental disorders such as schizophrenia
[13]. VAEs have been successfully used in numer-
ous anomaly detection tasks, for instance to outline
tumoural areas or other lesions in brain scans. The
majority of these approaches are reconstruction-
based, i.e., they detect abnormal pixels by quan-
tifying the difference between the original image
and its reconstruction [1, 2, 3]. Chen et al. [2, 3]
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employed VAEs and Adversarial AutoEncoders to
detect tumours and stroke lesions in MRIs. In [2] an
additional penalty was added to the loss function of
the autoencoders to obtain a better representation
in the latent space for healthy and unhealthy im-
ages. Zimmerer et al. [17] proposed an alternative
to the reconstruction error for detecting anomalous
pixels, based on the derivative of the log-likelihood
with respect to the inputs, which was shown to
outperform reconstruction-based anomaly scores.
In [16] a context-encoding mechanism was intro-
duced in VAEs to improve the anomaly detection
performance.

The paper is organized as follows. In Section 2 we
present a brief overview of VAEs. Section 3 describes
the proposed method, while in Section 4 we present
the experimental setting for our experiments. In
Section 5 we show that our method can discriminate
between images containing tumours and healthy
scans. Finally, Section 6 outlines the conclusions
and future directions of research.

2 Variational AutoEncoders

VAEs [6, 12] are a specific type of autoencoders
which consist of two neural networks. The first one is
the encoder, which maps the input to the parameters
θ of a probability density function qθ over the latent
space, the second one is the decoder, which maps
the latent representation to a probability density
function pφ over the space of the observations. VAEs
are usually trained using principles from variational
inference, by maximizing a lower bound for the
log-likelihood, which consists of two terms. The
first one is the reconstruction error, measured as
the expected log-likelihood with respect to samples
obtained from the approximate posterior, while the
second one is a Kullback-Leibler penalty term which
forces the approximate posterior to be close to the
prior, i.e.,

Eqθ(z|x)[log pφ(x|z)]−KL(qθ(z|x)||p(z)) . (1)

For each input x, a VAE returns an approximate
posterior qθ(z|x) from which the latent variables
are sampled. This implies that differently from a
regular autoencoder, it is possible to compare the
encodings of two different inputs also by comput-
ing a dissimilarity or a distance function between

probability density functions in the space of the
approximate posteriors.

Another important property of VAEs is related
to the presence of the KL term which acts as a
regularization. This is a characteristic property
of VAEs for which the latent representations are
more well-behaved, differently from an AutoEncoder
(AE), in which no assumption can be made a priori
on the distribution of the latent representations.

Since we are interested in defining robust mea-
sures in the space of the latent representations (ei-
ther the space of the approximate posteriors or its
sample space), due to the intrinsic features we have
briefly highlighted, we consider VAEs to be more
robust with respect to traditional AEs.

3 Proposed Methodology

Most of the unsupervised anomaly detection ap-
proaches for brain scans require the training of a
single AE on healthy individuals, then use a dis-
similarity between the original image and its re-
construction in order to detect possible anomalies
[1, 2, 3, 16]. Nowadays, in medical imaging we have
access to large (possibly unlabelled) datasets, which
include individuals which may or may not have tu-
moural tissues. However such datasets cannot be
directly used in training if we follow this classical
approach.

In this section we introduce an alternative pro-
cedure based on training two different VAEs on
two different datasets, the first one containing only
healthy subjects and the second one containing
brain scans which may or may not contain tumoural
regions. Our proposed method is presented in Al-
gorithm 1. While we expect the first autoencoder,
VAE-H, to learn structural patterns characteristic of
healthy brain tissues, the second autoencoder, VAE,
is trained to learn more variegate representations
of both tumoural and non-tumoural tissues. To
detect an anomaly at test time we propose to re-
construct a given image through the model trained
on healthy data and compute the distance between
the original image and the reconstructed one, in
the latent space of the encodings associated to the
second autoencoder. Given the fact that VAE-H is
trained on the healthy images to reconstruct the
normal structure of the brain, we expect that the
distance between the two encodings will be larger
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for images containing abnormal regions.
Unlike other approaches in the literature that

consider the discrepancy between reconstructions
in the input space, our algorithm relies on the com-
putation of a distance in the space of the latent
representations of the model trained on healthy and
unhealthy data.

We expect that by learning specific representa-
tions for tumoural tissues as done by VAE, we can
better discriminate healthy and unhealthy images.

Algorithm 1: Classification of brain MRIs

Input: Let d be a distance defined over the
latent space of a VAE

Data: MRI-H: dataset of MRI slices of healthy
individuals

Data: MRI: dataset of MRI slices of individuals
which may have tumoural tissues

1 Let VAE-H be a VAE trained on MRI-H

2 Let VAE be a VAE trained on MRI

3 Let xh = VAE-H.rec(x) be the reconstruction of
x through VAE-H

4 Let VAE.enc(x) be the encoding of x through VAE

5 Let dx = d(VAE.enc(x),VAE.enc(xh))
6 Compute the distribution of the distances dx,

with x in the validation set of MRI-H and let d∗
be a threshold selected based on a percentile

7 Compute dx, with x in the test set of MRI and
classify the slice healthy if dx < d∗

4 Experimental Setting

In this section we provide a description of the two
datasets we have used for our experiments, including
aspects related to data preprocessing. Moreover, we
describe the network topologies used for the two
VAEs and details about the training process.

4.1 Datasets

For the dataset of healthy individuals, we have
chosen the HCP dataset [14], while for the dataset
of both normal and tumoural tissues we considered
the BRATS-2015 dataset [10, 7].

The HCP dataset represents a mixture of several
imaging modalities along with behavioural and ge-
netic data gathered from 1,200 subjects [14]. We
used in our experiments one of the subsets available
for this dataset, which contains 100 T2-weighted
MRI scans of unrelated subjects. For each scan, we

have removed the black slices and we have kept 190
slices containing brain tissue. The training, valida-
tion and test datasets contain 70, 15, and 15 scans
respectively, so that the total number of 2D images
used as training data is 13,300, the total number of
images used as validation, and test is 2,850 each.

The BRATS dataset is composed of a mix of pre-
therapy and post-therapy multi-contrast magnetic
resonance scans from glioma patients [10, 7]. Since
we had access only to the training set, we have split
it into train, validation, and test, with 192, 41, and
41 patients, respectively and selected the middle 130
slices from each scan. The total number of images
used in train, validation, and test is therefore 24,960,
5,330, and 5,330, respectively.

We have cropped and resized the images from
both datasets to 200× 200 and down-sampled them
to 64× 64 pixels. To avoid overfitting during train-
ing the left and right hemispheres have been flipped
with probability 0.5. Data augmentation such as
adjustment of brightness and injection of Gaussian
white noise with standard deviation equal to 0.01
has proved to be useful to further improve general-
ization from train to validation.

4.2 Network Architectures

We have trained two VAEs with similar network ar-
chitectures and training parameters. The encoders
are convolutional neural networks with channels
[64, 128, 256, 512] for the model trained only on
healthy data and [16, 64, 256, 1024] for the second
model, kernel size 4× 4 and strides 2, followed by
a stochastic layer of independent Gaussian distri-
butions with size 128. The decoders have output
channels [256, 128, 64] and [256, 64, 16], respectively,
output shapes [8, 16, 32], kernel size 4×4 and strides
2, followed by a logit-normal distribution with a clip
value for the mean equal to 0.01 and a covariance
(scalar for HCP and vectorial for BRATS) with a
minimum value of 0.001. For each input, 3 samples
are generated in the latent space during training.
The models have been trained with Adam for 200
epochs, learning rate 0.0001, and default values for
the β parameters. Batch size has been set to 32.
The global norm of the gradient has been clipped
to 1,000 to avoid numerical instabilities.
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Figure 1: Histogram of the L2 distances between the
means in the space of the approximate posteriors
between the two encodings on the test sets. The
red line corresponds to the threshold associated to
the 99% percentile of the distances computed for
the HCP validation dataset.

5 Results

In this section, we present our preliminary results
related to the evaluation of our proposed algorithm
for the classification of brain MRI slices as being
healthy or unhealthy.

Figure 2: First row: original BRATS images from
the test set. Second row: reconstruction through
VAE-H of the original images. Third row: residual
between original and reconstructed images. Fourth
row: mask of the tumour.

In Algorithm 1, we have chosen as a distance func-
tion d the norm of the difference between the means
obtained with VAE for the encodings of x and xh.
After training the two VAEs, we have computed the
distribution of dx for all x in the validation set of
HCP. This allowed us to fix a value for the threshold
d∗ = 7.29, based on a 99% percentile, see Fig. 1.
Next, the threshold d∗ has been used to classify
images from the test set of BRATS based on the
value of dx. Since not all slices of the individuals in
BRATS contain tumoural tissues, in Fig. 1 we have

Figure 3: First row: original HCP images from the
test set. Second row: reconstruction through VAE-H

of the original images. Third row: residual between
original and reconstructed images.

split the BRATS dataset into healthy and unhealthy
individuals. The histograms show an overlapping
for HCP and healthy BRATS, and a certain level of
separability between normal and abnormal tissues.
Notice that by resizing the images in BRATS to
64×64, the area of the tumour is reduced by a factor
of 9.77. For this reason, to determine whether or
not the slice contains tumoural tissues, we consid-
ered different thresholds for the number of pixels
in the tumour mask (before the resize) to label the
image as unhealthy. We evaluated the algorithm for
different values of this threshold, however, we did
not see a significant difference in the performance
for values up to 50.

Figure 4: (left) Histogram of the L2 distances be-
tween original and reconstructed images through
VAE-H on test. (right) Histogram of the L2 norms
of the mean vectors of VAE-H on test.

In order to evaluate the quality of the reconstruc-
tions xh, we report some examples in Fig. 2, while as
a comparison we show in Fig. 3 the reconstructions
of HCP through VAE-H. It is possible to observe
that the reconstructions obtained with VAE-H for
the HCP dataset are of acceptable quality, while for
BRATS in certain cases we observe margins of im-
provements. The quality of the reconstructions for
BRATS is determinant for our method. We expect
that better reconstructions may lead to increased
separability among healthy and unhealthy slices in
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Fig. 1, and thus an improvement of the performance
of our method. Moreover, as mentioned in [2], the
overlap between healthy and unhealthy slices for
BRATS can be partially explained also by the high
variability present in the MRIs of healthy brains,
which may be larger than the variability caused by
tumoural tissues.

To validate our results, we compare with two
different statistics computed using only the autoen-
coder trained on healthy images. The first one is
given by the L2 norm of the difference between the
original image and its reconstruction using VAE-H.
The distribution of the L2 is represented in Fig. 4
(left) which shows a lower degree of separation be-
tween healthy and unhealthy slices for BRATS. The
other statistics that we have computed is the norm
of the mean vector obtained though the encoder of
VAE-H. In Fig. 4 (right) we can see the distribution
of the norms for each dataset. The BRATS dataset
shows a higher variability compared to HCP, which
is given by the fact that these images come from a
different distribution than that of the images used
during training. In particular, we can observe that
unhealthy slices tend to have larger values for the
norm of the mean vector, even if the difference is not
significant. In both cases, our proposed method is
able to better discriminate between the two classes.
In Table 1 we computed the accuracy, F1 score, and
Area Under the Curve for BRATS for our proposed
approach as well as for the baseline computed in
the input space.

Method Accuracy F1 score AUC
L2 input space 0.64 0.62 0.65
Our method 0.74 0.76 0.74

Table 1: Accuracy, F1 score, and Area Under the
Curve for BRATS (test set) for L2 distances com-
puted in the input space versus in the latent space
(our method).

6 Conclusions

In this paper, we have introduced a novel approach
to semi-supervised anomaly detection for brain
MRIs based on the use of two autoencoders, the first
one trained on healthy individuals and the second

one trained on images which include both normal
and tumoural tissues. We have defined a criterion
for the detection of a tumour in a slice based on
the computation of a distance, in the space of the
approximate posteriors of the second autoencoder,
computed between the encoding of the image and
the encoding of its reconstruction through the first
autoencoder. In our preliminary experiments, we
used the HCP and BRATS datasets, respectively,
and computed distances in the latent space by eval-
uating the L2 norm of the difference of the means.
The results validate the goodness of our method.
As expected we have observed that the performance
strongly depends on the quality of the reconstruc-
tions of the autoencoders. For this reason, we be-
lieve further research should be conducted in the
direction of using more powerful autoencoders com-
pared to vanilla VAE. Another direction which has
proved to provide an advantage in the context of
anomaly detection is given by the use of denoising
techniques, cf. [16]. Denoising improves the quality
of the reconstruction of tumoural tissues through
autoencoders trained only with healthy individu-
als, being more robust to input perturbations. One
more remark is that while HCP contains images of
young subjects, BRATS is mainly formed of MRIs
taken from older patients, thus healthy slices may
have structural differences. This is an issue which
we plan to tackle by combining several datasets,
such as ISLES-2015, Cam-CAN, MIDAS, and IXI.

We are currently investigating the possibility to
train a single VAE where the encoder and the de-
coder are conditioned on the type of dataset (i.e.,
healthy versus both normal and tumoural tissues).
Not only this approach would be more efficient since
we expect some of the CNN filters to be shared be-
tween the two VAEs, but also it would allow to easily
cast learning in a more general semi-supervised set-
ting, for instance in presence of limited available
annotations of unhealthy individuals.

Acknowledgements

The authors are supported by the DeepRiemann
project, co-funded by the European Regional
Development Fund and the Romanian Govern-
ment through the Competitiveness Operational
Programme 2014-2020, project ID P 37 714, SMIS
code 103321, contract no. 136/27.09.2016. Data

5



used in the preparation of this work were obtained
from the Human Connectome Project (HCP)
database (https://ida.loni.usc.edu/login.jsp)
and the Multimodal Brain Tumor Seg-
mentation Challenge (BRATS) database
(www.med.upenn.edu/sbia/brats2018/data.html).

References

[1] C. Baur, B. Wiestler, S. Albarqouni, and
N. Navab. Deep autoencoding models for un-
supervised anomaly segmentation in brain mr
images. In International MICCAI Brainlesion
Workshop, pages 161–169. Springer, 2018.

[2] X. Chen and E. Konukoglu. Unsupervised de-
tection of lesions in brain mri using constrained
adversarial auto-encoders. Medical Imaging for
Deep Learning (MIDL 2018), 2018.

[3] X. Chen, N. Pawlowski, M. Rajchl, B. Glocker,
and E. Konukoglu. Deep generative models in
the real-world: an open challenge from medical
imaging. arXiv:1806.05452, 2018.

[4] H. Choi, H. Kang, D. S. Lee, A. D. N. Initiative,
et al. Predicting aging of brain metabolic topog-
raphy using variational autoencoder. Frontiers
in aging neuroscience, 10:212, 2018.

[5] T. Drew, M. L.-H. Võ, and J. M. Wolfe. The
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