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Abstract

Tomographic reconstruction is concerned with com-
puting the cross-sections of an object from a finite
number of projections. Many conventional methods
represent the cross-sections as images on a regular
grid. In this paper, we study a recent coordinate-
based neural network for tomographic reconstruction,
where the network inputs a spatial coordinate and
outputs the attenuation coefficient on the coordinate.
This coordinate-based network allows the continu-
ous representation of an object. Based on this net-
work, we propose a spatial regularization term, to
obtain a high-quality reconstruction. Experimental
results on synthetic data show that the regulariza-
tion term improves the reconstruction quality signif-
icantly, compared to the baseline. We also provide
an ablation study for different architecture configu-
rations and hyper-parameters.

1 Introduction

Computed tomography (CT) is a versatile imaging
technique allowing the study of interior structures of
objects and has many applications, ranging from clin-
ical to industrial applications [5]. In CT, a procedure
known as tomographic reconstruction aims to recon-
struct the material properties from measurements,
called projections, based on the interaction of objects
and penetrating radiation such as X-ray. Specifically,
the projections are obtained by line integrals of an at-
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tenuation coefficient function along straight lines and
reconstructing an attenuation function is the goal of
tomographic reconstruction.

Although the measurements are finite, we can con-
sider different ways to represent the attenuation func-
tion. Among them, a discrete image on a regular grid
has been popular in most of existing works includ-
ing model-based [3, 14] or recent deep learning-based
works [1, 8, 19]. In those works, the attenuation value
within one pixel is typically assumed to be constant.
From this image representation, conventional recon-
struction works are based on solving a system of lin-
ear equations with some regularization terms.

Recently, there has been growing interest in
coordinate-based neural networks to represent con-
tinuous functions [12, 16, 15]. Such networks in-
put continuous spatial coordinate and output the
signal on the coordinate. To represent high fre-
quency features, a feature mapping of input coor-
dinates was suggested in [12, 16] and another work
called SIREN [15] used the sine function as the acti-
vation function with a specific initialization scheme.

In this paper, we study a coordinate-based neural
network for tomographic reconstruction. We use the
same architecture as in SIREN [15], to reconstruct
a continuous attenuation function. We use the neu-
ral network, but our method does not require any
training data. Our main contribution is to propose
a regularization term to impose spatial smoothness.
We also provide an ablation study with various con-
figurations of the network and hyper-parameters.

Concurrent to our submission, there is a recent pa-
per [16], which applied a coordinate-based network to
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different tasks including tomographic reconstruction.
Our method differs in that we use another neural net-
work architecture [15] and introduce a spatial regu-
larization term. Our experimental results in Sec. 3
show that the regularization term improves the per-
formance significantly.

1.1 Related works

Methods for tomographic reconstruction using deep
neural networks can be classified into two cate-
gories: learning-based and learning-free approach.
The learning-based approach utilizes the available
data in a supervised or unsupervised manner. Zhu
et al. [19] proposed a general method to train neural
networks from pairs of projection data and ground
truth reconstruction images. He et al. [8] considered
two neural networks, where the first network simulate
the filtered backprojection method [5] and the output
of the first network is refined by the second convolu-
tional neural network. The idea of filtered backpro-
jection is also used in [10, 18]. Another approach is
to combine conventional iterative methods and neu-
ral networks, called learned iterative methods [1, 2].
In this approach, convolutional layers replace some
parts of the iterative methods and receive the for-
ward projection operator and its adjoint as part of
the inputs.

A learning-free approach does not need any train-
ing data, but still harnesses the power of neural net-
works. Gadelha et al. [7] extended Deep Image Prior
(DIP) [17] to 2D tomographic reconstruction. DIP
represents an image by the output of a learnable con-
volutional neural network on a fixed random input
and have an implicit regularization effect. The dis-
advantage of [7] is that it requires early-stopping to
prevent overfitting to noisy data.

As our method belongs to the learning-free ap-
proach, we compare our method to [7] shown in
Sec. 3. The main difference of our work, compared
to image-based methods, is that the outcome of our
method is a continuous function, instead of discrete
image, and the forward model does not depend on
regular grid, which will be explained in the next
section. Moreover, as we include the regularization
term, our method does not need early-stopping.

2 Method

The aim of tomographic reconstruction is to recon-
struct an attenuation coefficient function f from a
finite number of projections. We first explain the rep-
resentation of solution f based on a coordinate-based
neural network and the forward model to connect the
solution and measurements. Then, we introduce a
regularization term and define our loss function.

2.1 Continuous representation of the
attenuation function

To represent a continuous function, we employ a
coordinate-based neural network, called SIREN [15].
As shown in Fig. 1, SIREN is a multi-layer perceptron
whose input x = (x, y) is a spatial coordinate and the
output fΘ(x) represents the signal at that coordinate
where Θ represents neural network parameters – the
weight matrices and the bias vectors. In our case,
the output corresponds to the attenuation coefficient.
The key feature of SIREN is to use the sine function
as the activation in the network and a principled ini-
tialization, which allows the representation of high
frequency features.
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Figure 1: The coordinate-based neural network maps
a spatial coordinate x = (x, y) to the attenuation
coefficient fΘ(x).

To be specific, each layer with the input z from the
previous layer is constructed as

sin (ω(Wz + b)) (1)
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where W is a weight matrix and b is a bias vector
in the layer and ω is a hyper-parameter to control
the spatial frequency. We use Rectified Linear Unit
(ReLU) as the last layer activation, to impose a non-
negativity constraint.

2.2 Forward model

We model the process of obtaining tomographic mea-
surements from the attenuation coefficient function
f : R2 → R. We follow a common assumption in to-
mographic reconstruction based on Lambert-Beer’s
law [5], where radiation intensity is attenuated expo-
nentially. After pre-processing, the projection data
for a ray can be considered as the line integral of f
along the path. The projection data consist of M
measurements where M is the multiplication of the
number of detector pixels and the number of projec-
tion angles. Each measurement can be assigned to
a ray from the source of X-rays (or other waves) to-
wards the corresponding detector pixel. Consider a
ray i with an origin o and a normalized direction vec-
tor d. Then, the projection pi can be computed as
the line integral of f along the ray:

pi =

∫ b

a

fΘ(o + td)dt (2)

where a and b denote the initial and the last value
for t.

To numerically integrate Eq. (2), we employ the
mid-point rule by dividing the limits of integration
(a, b) into N subintervals:

pi =

N∑
k=1

fΘ(xk) δ (3)

where δ = (b − a)/N and xk is the midpoint of the
intervals defined by

xk = a+
δ

2
+ (k − 1)δ. (4)

The forward projection in Eq. (3) is differentiable
with respect to the neural network parameters and
automatic differentiation tools can be used.

2.3 Regularization and loss function

To deal with noisy data and obtain a more accurate
reconstruction, we introduce a regularization term to
impose spatial smoothness, inspired by total varia-
tion [13]. The total variation term computes a spa-
tial gradient from both the x- and y-direction. In-
stead of two directions, we impose smoothness on one
direction along the ray, for computational efficiency.
Specifically, we aim to minimize the variation on each
point along the ray i:

Ri =
1√
δ

N−1∑
k=1

√
|fΘ(xk+1)− fΘ(xk)| (5)

where we omit the dependency of i in each x, for no-
tational simplicity. We use the square root function
to make the regularization term more robust [4].

From the computed projection p in Eq. (3), we aim
to fit it to the projection data p̂ by minimizing the
L2 norm between them. With this data fitting term
and the regularization term (5), we define the loss
function to minimize with respect to neural network
parameters Θ:

L(Θ) =
1

M

M∑
i=1

‖pi − p̂i‖22 +
λ

M

M∑
i=1

Ri, (6)

where λ is a hyper-parameter to control the weighting
between the data fidelity and regularization term.

To optimize Eq. (6), we use the mini-batch gradient
descent method where at each iteration, we choose B
random measurements among in total M available
measurements.

3 Experimental Results

In this section, we compare our work to other image-
based methods on simulated data qualitatively and
quantitatively. We conduct an ablation study for dif-
ferent neural network settings and the regularization
parameter. We also provide a result for real data.

3.1 Results on simulated data

We use phantom images with the size of 512 × 512
pixels shown in the first column of Fig. 2. These
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Phantoms Projections SIRT TV DIP Ours

Figure 2: Qualitative results on noisy projection data. The first column shows the ground truth phantoms of
Phantom 1, 2, 3 which are used to generate noisy projection data on the second column. The other columns
show the reconstruction results.

Phantoms
PSNR SSIM

SIRT TV DIP
Ours

SIRT TV DIP
Ours

λ = 0 λ 6= 0 λ = 0 λ 6= 0
Phantom 1 23.08 28.12 27.83 25.86 27.36 0.524 0.896 0.941 0.851 0.939
Phantom 2 16.52 19.70 21.20 20.88 22.04 0.468 0.764 0.881 0.820 0.933
Phantom 3 25.59 27.09 27.44 26.05 26.09 0.710 0.944 0.949 0.906 0.958

Table 1: Quantitative comparison to other methods on synthetic data from the phantom images in Fig. 2.
We show two results for our method without regularization λ = 0 and with regularization λ 6= 0.

phantoms are used to generate projection data by an
image-based linear forward model with parallel beam,
shown in the second column. Each projection datum
consists of 512 detector pixels and 30 projection an-
gles. We impose Gaussian noise on the projection
data with the relative noise level 0.02, which is cho-
sen to reflect noise degree in real data.

Experimental details. Our method is imple-
mented in the Julia language and based on a deep

learning library called Flux [9]. Unless explicitly
mentioned, we use a neural network with 3 hid-
den layers where each layer has size 128. That is,
the weight matrix for each hidden layer has size
128 × 128, while the bias vector has 128 elements.
We consider the reconstruction domain bounded into
(−1, 1)×(−1, 1). In this bounded domain, the spatial
frequency parameter ω = 30 yields good performance
overall. We initialize neural network parameters in
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the same way as SIREN did [15] where the distri-
butions of activations are preserved through the net-
work. We use the Adam optimizer [11] with learning
rate 0.0001, batch size B = 512 and iteration number
4,500 (150 epochs) as the solution changes very little
after that. The batch size corresponds to the number
of rays per iteration and the rays are sampled ran-
domly. For the numerical integration (3), we divide
the range of integration into N = 256 intervals.

Comparison to other image-based methods.
As our method belongs to a learning-free approach,
we compare our method to conventional model-based
approaches including: SIRT [3] and a Total Varia-
tion (TV)-based method [14]. We also compare to a
method [7] based on Deep Image Prior (DIP) [17]. As
mentioned in Sec. 1.1, DIP needs an early stopping.
For DIP, we iterate 2000 times and save the results
every 50th iteration and among those candidate so-
lutions, we choose the best result.

To compare our result to image-based methods, we
produce images from our implicit solutions by evalu-
ating the network at each pixel position. For quanti-
tative comparison, we employ two image-quality met-
rics: Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity Index Measure (SSIM). We choose
the same configuration for 3 phantoms except for the
regularization parameter λ, which is set 0.0005 for
Phantom 1 and 2 and 0.0001 for Phantom 3.

Fig. 2 provides a visual comparison of the results by
SIRT, TV, DIP and our method and Table 1 shows
the corresponding quantitative results. Due to the
noisy data, the result images have some high values,
which make the images look darker than the ground
truth images. Overall, our method gives competitive
results. Fig. 3 shows some intermediate results of our
method during optimization for Phantom 2.

3.2 Ablation study

In this ablation study, we use projection data without
noise and use the same settings as before.

Effect of network size. We vary the layer size,
but fix the number of hidden layers. As shown in
Table 2, as the layer size increases, the number of
network parameters increases approximately 4 times.
For reference, for an image of size 512 × 512, image-

epoch 1 (iter. 30) epoch 3 (iter. 90)

epoch 10 (iter. 300) epoch 100 (iter. 3000)

Figure 3: Intermediate results of our method during
optimization.

based methods optimize 262,144 pixel values. When
the layer size is 512 with a large number of parame-
ters, the reconstruction quality is shown to degrade.

layer size # params. PSNR SSIM
32 3,296 19.1 0.827
64 12,736 21.2 0.907
128 50,048 23.4 0.953
256 198,400 23.6 0.957
512 790,016 21.5 0.930

Table 2: Effect of network size for the reconstruction
of Phantom 2.

Effect of sampling points N . The number of
sampling points per ray affects both reconstruction
quality and the computational cost. Table 3 provides
the effect of N . As expected, as N increases, the
computation time also increases.

Effect of regularization hyper-parameter λ.
Fig. 4 shows the effect of λ. Without regularization,
some artifacts are observed and, with large regular-
ization λ = 0.0005, our method could not capture
some fine details. The value λ = 0.0001 is shown to
yield the best result in terms of both visual quality
and PSNR.

5



N time per iter. PSNR SSIM
64 0.031 20.03 0.846
128 0.065 22.00 0.927
256 0.110 23.37 0.953
512 0.293 23.61 0.961
1024 1.115 24.48 0.968

Table 3: Effect of the number of sampling points for
the reconstruction of Phantom 2. The computation
time in GPU per iteration is shown in seconds.

λ : 0, PSNR:26.15 λ : 0.00001, PSNR:26.16

λ : 0.0001, PSNR:26.28 λ : 0.0005, PSNR:26.23

Figure 4: Effect of regularization parameter λ.

3.3 Results on real fan beam data

We test our method on cone-beam X-ray CT data
from the SophiaBeads Dataset [6]. The scanned sam-
ple is a plastic tube filled with glass beads. Specifi-
cally, we use the provided central slice of the dataset
“SophiaBeads 1024 averaged”, choose 64 projections
at angles in [0◦, 360◦] and down-sample with a fac-
tor 2 so that each projection is 680 pixels wide. As
a pre-processing, we correct the center-of-rotation by
shifting the projections 12 pixels and remove a high-
intensity edge artifact by subtracting 0.0015 from the
projection. As we use the central slice of a cone-beam
dataset, a fan-beam geometry is used for the recon-

struction.
In Fig. 5, we provide the results of SIRT and our

method. This demonstrates that our method can suc-
cessfully be applied to a real data and that the per-
formance is comparable to that of SIRT.

Projection data SIRT

Ours, λ = 0 Ours, λ = 0.00001

Figure 5: Reconstruction results for real fan beam
data.

4 Conclusion and Discussion

We have proposed a spatial regularization term for
tomographic reconstruction using a coordinate-based
neural network. The experimental results show that
the regularization term improves the reconstruction
quality significantly, although choosing optimal reg-
ularization parameter is not trivial. For a practical
use of our method, the major limitation is the high
demand of memory requirement, which prevents us
from choosing a large number of rays per iteration.
This is an issue, especially in 3D reconstruction where
projection data consist of a large number of measure-
ments. We leave it as future work to improve the
speed. Another future direction would be to include
the encoding of projection data in the network, so
that the network can infer to unseen projection data.

6



References
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