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Abstract

This paper presents fast, accurate, and automatic
methods for detecting seafloor pipelines in multi-
beam echo sounder data with deep learning. The
proposed methods take inspiration from the highly
successful ResNet and YOLO deep learning models
and tailor them to the idiosyncrasies of the seafloor
pipeline detection task.

We use the area between lines and Hausdorff line
distance functions to accurately evaluate how well
methods can localize (pipe)lines. The same func-
tions also show promise as loss functions compared
to standard mean squared error, which does not
include the regression variables’ geometrical inter-
pretation.

The model outperforms the highest likelihood
baseline by more than 35% on a region-wise F1-
score classification evaluation while being more
than eight times more accurate than the baseline
in locating pipelines. It is efficient, operating at
over eighteen 32-ping image segments per second,
which is far beyond real-time requirements.

1 Introduction

Seafloor pipelines are critical infrastructure to
transport oil and gas. As pipeline failures can re-
sult in high economic and environmental costs, the
pipeline’s integrity must be verified through inspec-
tion. Specifically, the objective of external inspec-
tion of seafloor pipelines is to determine the degree
of burial and to detect potential free spans, buck-
les, debris, or damages from human activities such
as trawling and anchoring [1].

Traditionally, Remotely Operated Vehicles
(ROVs) perform external pipeline inspection,
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but Autonomous Underwater Vehicles (AUVs)
are emerging as a more efficient and less costly
solution, particularly when the AUV operates
without constant supervision from a mothership
[2]. Typical payload sensors for these AUVs
include Multi-Beam Echo Sounder (MBES), Side
Scan Sonar (SSS), and an optical camera. In order
to collect high-quality sensor data for inspection,
the AUV must be able to follow the pipeline at the
specified relative distance and height. Global posi-
tion estimates from the vehicle’s inertial navigation
system will not be sufficient due to inevitable drift
and to uncertainties in prior pipeline position.

One solution is to automatically detect pipelines
in the sensor data to provide real-time input to the
vehicle’s control system to maintain the desired rel-
ative position, and orientation [2], [3]. Consider-
able variability in the appearance of pipelines in
the payload sensor data, however, makes designing
automatic detection algorithms a challenging task.
There can be substantial variations in, e.g., data
quality, sensing range and geometry, pipeline di-
ameter and coating, deliberate or natural pipeline
burial, marine growth, and seafloor characteristics.
The data may also contain multiple pipelines.

This work investigates whether we can use deep
learning methods to detect seafloor pipelines in
MBES data. Ideally, we would use all payload sen-
sors simultaneously during a seafloor pipeline in-
spection mission. However, the MBES and SSS
have complementary fields of view while the MBES
and the optical camera supplement each other. We
expect the MBES data to facilitate more robust
detection than the camera images because MBES
provides a significantly wider swath, and the water
visibility does not limit its data quality.

To the best of our knowledge, deep learning has
never been used for object detection in MBES data
before. Moreover, we define a novel label and pre-
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diction format, representing the pipeline location
with line segments. Therefore, we need a measure
for line similarity to evaluate our model. We pro-
pose to use the Hausdorff Line Distance (HLD) or
the area between lines (AbL) functions.

The paper is organized as follows. In section 2,
we introduce the dataset used to train and evaluate
the model. Section 3 presents the model, along
with the necessary details for training the model.
Finally, sections 4 and 5 evaluate and summarize
how well our proposed model solves the seafloor
pipeline detection task.

2 Dataset

2.1 Multibeam Echo Sounder

A multibeam echo sounder (MBES) is an active
sonar used to gather information on the seafloor.
A MBES consists of a transmitter and a receiver
array, which is mounted below a vehicle. The
sensor transmits a broad across-track and narrow
along-track, fan-shaped sound pulse, called a ping.
Through beamforming [4], in both the transmitter
and receiver array, the MBES can capture informa-
tion at multiple angles in a swath below the vehicle,
called beams.

The MBES records the time delay between sound
pulse transmission and echo reception giving the
relative depth to the seafloor from the AUV. The
sensor also records compensated echo strength,
called reflectivity.

2.2 Data and labels

The dataset is a collection of fifteen seafloor
pipeline inspection missions gathered from differ-
ent HUGIN AUVs by Kongsberg Maritime and the
Norwegian Defence Research Establishment at vari-
ous locations around the world [1], [3]. The relevant
information can be considered a three-dimensional
tensor of pings, beams, and channels. The number
of pings varies between missions, depending on, for
example, mission length. The number of beams is
constant within missions but can vary depending
on sensor type and configuration. Fourteen mis-
sions have 400 beams per ping, while one mission
has 254 beams. We consider the reflectivity and
depth channels. Figure 1 shows a 1000 ping im-

(a) Reflectivity channel (b) Depth channel

Figure 1: Example of a rescaled 1000-ping image
segment with a superimposed labeled pipeline. The
ping number, and equivalently time, is read from
top to bottom, while the beam number goes from
left to right. Here, the depth ranges from 3.5-6.5
meters.

age segment example with superimposed labels for
both channels, courtesy of Kongsberg Maritime.

The labels are created by manually marking
points in MBES image segments, typically 1000
subsequent pings. The points are selected to rep-
resent the top of a pipeline, spanning a single
beam for each ping. The annotation process was
made more efficient and coherent by letting marked
points represent endpoints of consecutive line seg-
ments. This makes the labeled pipeline top intrinsi-
cally locally linear, which we exploit when defining
the pipeline localization task and the corresponding
loss and evaluation functions.

2.3 Training, validation and test sets

The dataset is split into three, a training set, a
validation set, and a test set. The test set contains
three missions, while the training and validation
sets contain the rest.

The validation set is created by extracting 10%
of consecutive pings at a random ping offset within
each mission of the training set.

There are 3607340 pings in total, where the train-
ing and test set contains approximately 10% of
pings each.
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3 Model and Implementation

3.1 Architecture

We use ResNet50 [5] without the last two layers,
average pooling, and dense layer, as the backbone
to our pipeline detection model. Other compu-
tationally cheaper or more costly backbone net-
works, however, can replace ResNet50 with a possi-
ble trade-off between detection accuracy and com-
putational cost.

Our model’s single input has shape 32× 400× 2,
representing pings, beams, and channels, respec-
tively. We consider 32 pings because this is the
amount of spatial reduction imposed on the input
to ResNet50.

Object detection and tracking with deep learn-
ing commonly use bounding boxes to infer object
location. As explained in Subsection 2.2, however,
there is inherent linearity in our labels, i.e., that
subsequent annotated points define endpoints of
line segments. Therefore, instead of making our
model infer location by predicting coordinates to
bounding boxes, we make the same coordinates
represent endpoints of line segments. This makes
our localization contain more information than a
bounding box for two reasons; (i) the predicted line
segment is a dense representation of the pipeline
top (ii) the relative orientation of the pipeline is
also indirectly available.

The ResNet50 backbone is fully-convolutional
and therefore commutes with translation [6]. In
other words, shifting a pipeline in the input will
shift its feature representation by an amount pro-
portional to its striding factor in the feature map.
We call a mutually exclusive region of the input,
corresponding to a feature vector in the feature
map for a grid cell.

Our model’s final layers infer information on each
grid cell through five output variables in a simi-
lar fashion to single-shot detection models such as
YOLO [7], and SSD [8]. One variable is used for the
binary classification task c on whether the grid cell
contains pipeline or not, while the remaining four
regression variables represent two two-dimensional
(pipe)line segment endpoints x1 = (x1, y1) and
x2 = (x2, y2) for locating the pipeline. We restrict
the model to one detection per grid cell because
multiple pipelines are rare, especially in nearby
beams. Our model is summarized in Figure 2.

ResNet50

Concatenate([C,X1,X2])

ZeroPadding(0,9)

Conv2D(filters=1, 
kernel_size=(k,1), 

activation='sigmoid')

Conv2D(filters=2, 
kernel_size=(k,1), 
activation=None)

Conv2D(filters=2, 
kernel_size=(k,1), 
activation=None)

k

32

Figure 2: Illustration of the pipeline detection
model. k denotes the input image segment length,
in factors of 32 pings. b denotes the mini-batch size.
f = 2048 is the number of features after the final
layer of ResNet50.

3.2 Loss function

Similarly to one-shot detection, we want to solve
both classification and localization simultaneously.
Therefore we need both a classification and a re-
gression loss term and a method to combine them,
collectively called a multi-task loss function.

The multi-task loss function in object detection
commonly combines cross-entropy, and some vari-
ation of mean squared error (MSE) [8], [9]. Cross
entropy is used to learn classification, including a
no-object class, while mean squared error measures
the dissimilarity between predicted and labeled re-
gression variables.

However, individual regression variable dissimi-
larity measures, such as MSE, do not consider the
dissimilarity between the regression variables’ col-
lective representation. This makes MSE a poor
measure for model evaluation. Furthermore, while
a zero MSE would ultimately lead to the desired
model prediction independent of the regression
variables’ geometrical interpretations, we imagine
that this is a too crude description of the model’s
objective. Hence we also propose two additional
functions for measuring the dissimilarity of labeled
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and predicted (pipe)lines.

The classification part of our task is binary,
i.e., does a grid cell contain a pipeline or not?
Hence we can use the binary cross-entropy (BCE)
as our classification loss function LC . However,
pipelines are unevenly distributed among grid cells,
and most grid cells are biased towards not contain-
ing pipeline. Therefore, we dynamically rescale the
BCE loss to be equal in size for both classes, in-
dependent of each class’s frequency, based on grid
cell pipeline occurrence within mini-batches.

The regression loss function LR can be formu-
lated through mean squared error as

MSE =
1

2N

B−1∑
i=0

S−1∑
j=0

cij

(
d21 + d22

)
(1)

where N is the number of non-zero cij ’s aggre-
gated across the fourteen grid cells S and mini-
batch size B. d1 and d2 are the Euclidean dis-
tances between predicted and labeled line segment
end points, as illustrated in Figure 3 and used in
Equation 1.

As argued at the start of this Subsection 3.2,
MSE does not consider what the regression vari-
ables represent. The regression variables represent
lines, and we therefore instead propose to use a
variant of the Hausdorff Line Distance (HLD) [10],
which we express as

HLD =
1

N

B−1∑
i=0

S−1∑
j=0

cij max
x∈X

d̃x (2)

where X = {x1, x2, x̂1, x̂2} are the end points of
the line segments, and the corresponding distances
d̃x are as illustrated in Figure 3. Specifically, by
letting l and l̂ be line segments on a vector space,
we can find the projection and subsequently the
rejection of each x ∈ X onto the opposite lines
spanned by l and l̂. The length of the rejection
vector then gives the distances d̃x.

Alternatively, we can measure line segment simi-
larity as the area between the labeled and predicted
lines on the image segment interval (AbL). We cal-
culate this by converting the line representation to
the slope-intercept form and integrating the differ-
ence between the two terms, giving

l

l̂

A

x1 x2

x̂1 x̂2

d1 d2d̃x̂1 d̃x1
d̃x2

d̃x̂2
ε

M1 M2

Figure 3: Illustration of a predicted line l̂ which
is similar to a labeled line l, but with dissimilar
points defining the lines. Assuming that ε is small
and that M1 and M2 are large, then, MSE (red) is
large ≈ (M2

1 +M2
2 )/2, while HLD (green) is small

= ε. A gives the area between the two lines l and
l̂, here at the interval defined by the endpoints of
the line segment of l.

Ã =
1

2
(a− â)(x̃22 − x̃21) + (b− b̂)(x̃2 − x̃1) (3)

where a and b denotes the slope and intercept,
respectively. x̃1 and x̃1 is the start and end ping
(zero and 31) of the image segment. See Figure
3 for an illustration, but note that the endpoints
defining l do not have to be equal to the start and
end pings of an image interval. It is also necessary
to check whether the lines intersect within the im-
age interval, in which case we have to calculate Ã1

and Ã2 for the intervals [x̃1, x
∗] and [x∗, x̃2], where

x∗ is the point of intersection. Subsequently, we
add the two absolute areas and aggregate across
mini-batches and grid cells, which can be summa-
rized as

AbL =
1

N

B−1∑
i=0

S−1∑
j=0

cij

(∣∣∣Ã1

∣∣∣+
∣∣∣Ã2

∣∣∣) (4)

3.3 Combining Regression and Clas-
sification

There are several options for aggregating the loss
from multiple objective functions dynamically [11],
[12]. However, the dominant approach to multi-
task learning in object detection with deep learning
is to select a scaled linear combination of the losses
manually [7], [8], [13], [14]. In the two-task learning
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scenario with a classification LC and regression loss
LR function, this can be written as

L = λ1LC + λ2LR. (5)

where λ1 and λ2 are some chosen scalars. Ren,
He, Girshick, et al. [13] sets λ1 = 1 and λ2 = 10 to
roughly give equal weight to both terms. Follow-
ing and expanding upon this equal-weighting prin-
ciple, we set λ1LC = λ2LR which enforces equal
loss magnitude for each term dynamically through-
out the training. Assuming that the scales sum to
one, the multi-task loss function becomes the har-
monic mean which we can write as

L = sg

(
LR

LC + LR

)
LC + sg

(
LC

LC + LR

)
LR (6)

where sg(·) is the stop gradient operator. This is
necessary to prevent the model from minimizing the
loss L by minimizing one term while maximizing
the latter.

Although interesting, we consider an extensive
comparison of multi-task loss scaling methods out-
side the scope of this work.

3.4 Additional details

A 5x1x1 median filter smoothes image segments be-
fore inputting it to the deep learning model.

The diversity of the training data is enhanced
with two data augmentation methods. First, im-
age segments have a static start index, but training
examples are drawn with a discrete, uniformly sam-
pled offset to the start index. Second, each image
segment is augmented with Gaussian noise sampled
from N (0, α), where α ∼ U{0, 10} which is redrawn
for each image segment. Before applying Gaussian
noise, each channel of an image segment is stan-
dardized, i.e., shifted and scaled with its channel
sample mean and standard deviation.

The model is trained with the Adam opti-
mizer [15] with default parameters from Tensor-
Flow 2.0.0, except for the initial learning rate,
which we set to 0.2. The learning rate is halved
every tenth epoch through a step decay learning
rate scheduler.

Image segments are assumed to be independent,
which allows us to shuffle image segments between
epochs. Every model (trained with different loss

functions) are trained for a fixed 50 epochs, with
mini-batches of size 64. Our model can learn and
infer information on image segments of variable
length, as indicated by the k variable in Figure 2.
We restrict ourselves to k = 1.

4 Experiments and Results

All experiments and results are run on the AI HUB
provided by the University of Oslo, which consists
of 2 x 14 core Intel CPUs, 4 NVIDIA RTX 2080
Ti GPUs (we only use one), 128GiB RAM, us-
ing Ubuntu 16.04. The model is implemented with
TensorFlow 2.0.0.

The model evaluation takes into account both
classification and regression separately. Classifica-
tion uses standard evaluation measures such as ac-
curacy, true positive rate, precision, and F1-score,
all averaged across image examples and grid cells.

For regression evaluation, we use the regression
loss functions MSE, HLD, and AbL. We especially
emphasize HLD and AbL because they are more ap-
propriate for evaluating line similarity than MSE,
as illustrated in Figure 3.

We create a baseline method or summary statis-
tics that always predict the most likely pipeline
scenario. Specifically, the baseline always predicts
that pings contain one pipeline at beam 201. This is
because 80% pings contain one pipeline, and beam
201 is the most likely location. Beam 201 corre-
sponds to the seventh grid cell, which is also the
only grid cell with a higher than 50% chance of
containing pipeline in the training set.

Because the baseline method only predicts one
pipeline, it is non-trivial to evaluate localization
on image segments containing multiple pipelines.
Here, we give the baseline an unfair advantage by
only evaluating it to the closest labeled pipeline.
Thus, the baseline localization evaluation can be
interpreted as the distance to the closest labeled
pipeline.

The results for classification is summarized in Ta-
ble 1, and in Table 2 for the regression.

We see from Table 1 that all model entries, in-
cluding the baseline, achieve high accuracy. The
high baseline accuracy confirms that grid cells sel-
dom contain a pipeline, except for grid cell seven.
Furthermore, the baseline gets a relatively low
TPR, indicating that it fails to predict that a grid
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Acc TPR Precision F1-score

MSE 0.9732 0.8584 0.8422 0.8494
HLD 0.9734 0.8619 0.8420 0.8510
AbL 0.9729 0.8474 0.8477 0.8466
B* 0.9173 0.4375 0.5350 0.4809

Table 1: Region-wise classification summary re-
sults. The three first rows show the model trained
with different regression loss functions, while the
last row B∗ is the baseline. The columns express
different classification evaluation functions. Bold-
font display the best performance in each evalua-
tion function.

cell contains pipeline. Finally, the baseline obtains
a relatively high precision which reveals the pro-
portion of test set examples containing a pipeline
in grid cell seven.

Because accuracy depends on class distribution
which can give a vague classification performance
impression, we instead consider TPR and pre-
cision to summarize model classification perfor-
mance. F1-score calculates the harmonic mean be-
tween TPR and precision and therefore captures
both, making it the favoured classification evalua-
tion function.

All three deep learning models outperform the
baseline in every classification evaluation measure.
In particular, the deep learning models achieve
roughly 35% higher F1-score than the baseline.
The model trained with the HLD regression func-
tions attains the highest F1-score.

Similarly, for the regression evaluation, Table 2
shows that the deep learning models outperform
the baseline in both HLD and AbL by a factor of
about six and eight times, respectively. Conversely,
the baseline achieves a lower MSE evaluation than
the model trained with AbL. In contrast to HLD
and AbL, a high MSE evaluation does not neces-
sarily correspond to line-segment predictions which
are dissimilar to labeled line-segments, only that
their corresponding line-segment endpoints are dis-
similar, as illustrated in Figure 3. We, therefore,
emphasize using HLD or AbL for evaluating regres-
sion performance.

Finally, we measure the average (N = 1000)
amount of 32-ping image segments the model can
forward pass in one second to 18.7. By assuming
an MBES operating at 32Hz, and hardware as de-

MSE HLD AbL

MSE 22.955 2.1757 47.917
HLD 411.81 1.9664 43.576
AbL 802.42 2.1725 44.696
B* 504.22 13.086 377.66

Table 2: Equivalent to Table 1, but for local-
ization. The columns express different regression
evaluation functions, as discussed in Subsection 3.2.
Regression units are in pixels. Specifically, pings
and beams, interchangeably.

scribed at the start of this section, our model can
operate over eighteen times above the real-time re-
quirements.

5 Conclusion & Future work

This work demonstrates that deep learning with
ResNet50 and single-shot detection can efficiently
and accurately detect pipelines in multibeam echo
sounder data. Furthermore, we present two regres-
sion functions that can be used both for training
and evaluating line prediction. The HLD function
also shows promise as a loss function by slightly
outperforming the model trained with MSE and
AbL.

Our model achieves an F1-score of 85%, which
is 35% higher than the most likely baseline, on the
region-wise pipeline classification task. Moreover,
our model is eight times more accurate than the
baseline in locating pipelines. Finally, the model
can operate at over eighteen 32-ping image seg-
ments per second, making it feasible for real-time
operations.

In further work, we envision combining the clas-
sification and regression evaluation into a unified
function. Similar to mean average precision in
main-steam object detection, but replacing the in-
tersection over union with HLD or AbL for classi-
fying when a prediction is a true or false positive.
Further work can also extend the detection model
to combine consecutive 32-ping detections into a
coherent track over arbitrary many pings, for ex-
ample, by setting k > 1 or, by adding RNNs.
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