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Abstract
Preservation of local similarity structure is a key
challenge in deep clustering. Many recent deep clus-
tering methods therefore use autoencoders to help
guide the model’s neural network towards an em-
bedding which is more reflective of the input space
geometry. However, recent work has shown that
autoencoder-based deep clustering models can suffer
from objective function mismatch (OFM). In order
to improve the preservation of local similarity struc-
ture, while simultaneously having a low OFM, we
develop a new auxiliary objective function for deep
clustering. Our Unsupervised Companion Objective
(UCO) encourages a consistent clustering structure
at intermediate layers in the network – helping the
network learn an embedding which is more reflective
of the similarity structure in the input space. Since
a clustering-based auxiliary objective has the same
goal as the main clustering objective, it is less prone
to introduce objective function mismatch between
itself and the main objective. Our experiments
show that attaching the UCO to a deep clustering
model improves the performance of the model, and
exhibits a lower OFM, compared to an analogous
autoencoder-based model.

1 Introduction
Deep clustering is a subfield of deep learning [7]
which considers the design of unsupervised loss func-
tions, in order to train deep learning models for
clustering. The loss functions developed in this field
have made it possible to train deep architectures
to discover the underlying group structure in large
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datasets, containing data types with complex ge-
ometrical structure, such as images [22, 2, 5] and
time series [18]. The ever growing amount of unla-
beled data has caused unsupervised learning to be
identified as a main next goal in machine learning
research [7].

Many of the recent deep clustering models include
deep neural networks that have been pre-trained
as autoencoders [20, 1, 21, 10]. In these models,
the unsupervised clustering loss is attached to the
code space of the autoencoder, and the model is
fine tuned using either the clustering loss alone, or
both the clustering loss, and the reconstruction loss
from the autoencoder.
Deep Embedded Clustering (DEC) [20] is a cor-

nerstone method in deep clustering. In DEC, the
network is pre-trained as a denoising autoencoder.
After pre-training, DEC fine-tunes a set of cluster
centroids in order to compute the final cluster assign-
ments. However, Guo et al. [1] argue that discarding
DEC’s decoder in the fine-tuning stage hinders the
preservation of the local similarity structure between
samples. They therefore propose Improved DEC
(IDEC), which aims to alleviate this issue, by re-
taining the decoder and reconstruction loss during
fine-tuning.
Despite the popularity of the autoencoder ap-

proach, we hypothesize that the representation pro-
duced by the autoencoder does not necessarily em-
phasize properties which are desirable for clustering.
These models can therefore suffer from objective
function mismatch (OFM) [12]. OFM occurs when
the optimization of an auxiliary objective (e.g. re-
construction) has a negative impact on the opti-
mization of the main objective (e.g. clustering). In
fact, Mrabah et al. [13, 14] show that the afore-
mentioned IDEC suffers from OFM during training
– supporting our hypothesis on OFM occurring in
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autoencoder-based deep clustering models.
Deep Divergence-based Clustering (DDC) [5] is

another deep clustering approach, which in contrast
to DEC and IDEC, does not rely on an auxiliary au-
toencoder to train its neural network. In fact, DDC
can be trained end-to-end from randomly initialized
parameters using only its clustering loss – outper-
forming DEC on several deep clustering tasks [5, 18].
Despite the promising performance of DDC however,
we do not know whether it is prone to suffer from
the same issues regarding similarity preservation, as
was observed in DEC.

In this paper, we present an Unsupervised Com-
panion Objective (UCO), whose task is to preserve
the similarity structure between samples in deep
clustering models. Inspired by Deeply-supervised
Nets [9], the UCO consists of a set of auxiliary clus-
tering objectives attached to intermediate layers
in the neural network, which encourage a common
cluster structure at the output of these layers. Since
the UCO is based on clustering, we expect a low
OFM between the UCO and the main clustering
objective. Our experiments show that the UCO
both exhibits reduced OFM when compared to a
reconstruction objective, and improves the overall
clustering performance of a deep clustering model.

2 Method
Throughout this paper, we will assume that the
deep clustering model follows this general design:

z = fθ(x), α = gφ(z) (1)

where fθ denotes the neural network producing a
learned representation z, from the input x, and gφ
denotes the clustering module producing the cluster
membership vector α. θ and φ represent the pa-
rameters of the neural network, and the parameters
of the clustering module, respectively. See Figure 1
for an overview of the assumed clustering model.

For generality, we define blocks to be generic com-
putational units in a deep neural network. Layers
are perhaps the most familiar examples of blocks,
but a block can also represent, for instance, a col-
lection of adjacent layers, or individual components
within a specific layer. Since fθ represents a neural
network, it can be decomposed block-wise as:

fθ = fLθL
◦ fL−1

θL−1
◦ · · · ◦ f1θ1

(2)

where f lθl
is the mapping performed by block l, and

L is the number of blocks in f .
If we let yl be the output of block l, we have:

yl = f lθl
(yl−1) (3)

with y0 = x and yL = z.
Finally, we assume that fθ and gφ are optimized

jointly with a clustering loss, Lcluster, which is com-
puted by a clustering module. The focus of this
work is on the proposed UCO, and the neural net-
work f , to which it is attached. We therefore use
the clustering module and loss from DDC [5], and
treat this as fixed.

2.1 Unsupervised companion objec-
tive

The unsupervised companion objective, LUCO, con-
sists of the terms L1

UCO, . . . ,LL
UCO, which are added

to the final clustering loss, in order to help preserve
the similarity structure between samples. All of
these terms are designed to encourage the same clus-
ter structure at their respective blocks, as the one
found by the clustering module. Following [5], we do
this by maximizing the Cauchy-Schwarz divergence
[4] between clusters in the space of intermediate
representations. For block l, we have

Ll
UCO =

k−1∑
i=1

k∑
j=i+1

`ij (4)

with

`ij =

(
k
2

)−1 n∑
a=1

n∑
b=1

αaik
l
abαbj√

n∑
a=1

n∑
b=1

αaiklabαbi

n∑
a=1

n∑
b=1

αajklabαbj

. (5)

Here, k denotes the number of clusters, αai is the
soft assignment of sample a to cluster i. klab denotes
a Gaussian kernel evaluated at (yl

a,y
l
b):

klab = exp

(
−||flat(yl

a)− flat(yl
b)||2

2σ2

)
(6)

where σ is a hyperparameter. Since the intermediate
representations can be arrays with more than one
dimension (e.g. 3 for convolutional layers), we apply
the flat(·) function to reshape the arrays into vectors
before evaluating the Gaussian kernel.
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Figure 1: Overview of a deep clustering model augmented with the UCO. Gray, blue, and red elements
indicate components of the neural network, clustering module (Clust. mod.), and our proposed UCO,
respectively.

The UCO can now be obtained as a weighted sum
of the terms for each block:

LUCO =

L∑
l=1

wlLl
UCO (7)

where wl is the weight for the term attached to
block l. In order to avoid that the number of hyper-
parameters (weights) scales linearly with the depth
of the network, we adopt the alternative weighting
strategy:

wl = λ · ω(l) (8)

where λ is a base weight, and ω : {1, . . . , L} → [0, 1]
is a function computing the relative weight for block
l.

3 Experiments

3.1 Setup
Models. In order to evaluate the performance of
the proposed unsupervised companion objective, we
train the DDC model with and without the UCO,
using the same network architecture and hyperpa-
rameter setup for both models. We refer to these
configurations as DDC-UCO and DDC, respectively.
Drawing inspiration from IDEC [1], we also train
an autoencoder-based DDC model, which includes

Block Layer
type

Filter
size Filters Batch-

norm [3]

1
Conv 5× 5 32 5
Conv 5× 5 32 3

MaxPool 2× 2 – 5

2
Conv 3× 3 32 5
Conv 3× 3 32 3

MaxPool 2× 2 – 5

Table 1: Layers in the CNN used to train DDC,
DDC-AE, and DDC-UCO. All Conv layers use ReLU
activation functions. Layers using batch-norm apply
the normalization before the activation function.

a decoder network whose task is to reconstruct the
input data. We refer to this model as DDC-AE.
Implementation. As in [5], we use a small con-
volutional neural network for our experiments. Our
CNN consists of two sequential blocks, both having
two convolutional layers, followed by max pooling
operations. An overview of the layers in the net-
work is shown in Table 1. In DDC-AE, we create
the decoder network by mirroring the CNN, and
replace convolutions with transpose convolutions,
and max-pooling operations with nearest-neighbor
upsampling.
The models are implemented in the PyTorch

framework [16]. All models are trained on stochastic
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Name Image size Color n k

MNIST [8] 28× 28 Gray 60000 10
USPS 16× 16 Gray 9298 10
F-MNIST [19] 28× 28 Gray 60000 10
COIL-100 [15] 128× 128 RGB 7200 100

Table 2: Overview of the datasets used for evalua-
tion. n and k denote the total number of images,
and the number of categories, respectively.

mini-batches of size 120, using the Adam optimizer
[6], with a learning rate of 0.0001. Following [5], we
train each model 20 times, and report the accuracy
(ACC) and normalized mutual information (NMI) of
the model resulting in the lowest value of the total
loss function. For each block, the σ hyperparameter
is set to 15% of the median pairwise distance be-
tween the intermediate outputs for samples in the
minibatch [5].

Since hyperparameter tuning can be difficult when
labeled data is unavailable, we set λ = 0.1 and
ω(l) = 10l−L for all datasets. This choice is further
investigated below.

Datasets. We test the models on the MNIST,
USPS, Fashion-MNIST (F-MNIST), and COIL-100
datasets. These datasets represent clustering tasks
which are often encountered in computer vision, and
are thus widely used in the deep clustering literature
[20, 1, 17, 5, 22]. An overview of the datasets can
be found in Table 2.

3.2 Results

Quantitative results. Table 3 shows the cluster-
ing results for DDC, DDC-AE, and DDC-UCO on
the baseline datasets. These results indicate that
adding the UCO to DDC tends to improve the clus-
tering performance of the model. Adding a decoder
and a reconstruction loss however, leads to a drop
in performance on all datasets. Finally, we observe
that DDC-UCO outperforms DEC and IDEC on
MNIST and USPS.

Objective function mismatch. In order to
demonstrate that the UCO leads to reduced OFM
when compared to an autoencoder-based method,
we use the following metric to measure the OFM
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Figure 2: OFM in DDC-AE and DDC-UCO during
training.

during training:

OFM =
1−∆FD

2
(9)

where ∆FD is the feature drift [13]:

∆FD = cos (∇θLcluster,∇θLpretext) . (10)

∆FD measures the “agreement” between the gra-
dient of the clustering objective, Lcluster, and a
pretext task, Lpretext, with respect to the weights
in the network, θ. For DDC-AE, the pretext task
is reconstruction, and for DDC-UCO, it is the set
of auxiliary clustering objectives introduced by the
UCO. OFM is a re-parametrization of ∆FD, which
is scaled to be in the range [0, 1], and negated, such
that higher values indicate a larger degree of mis-
match between the objectives.

Figure 2 shows the observed OFM when training
DDC-AE and DDC-UCO. The models were trained
on 2000 randomly selected images from the first four
digits of the MNIST dataset. The plots indicate
that the OFM is significantly lower in DDC-UCO,
compared to DDC-AE, at all epochs. This both
confirms our hypothesis about the presence of OFM
in autoencoder-based deep clustering models, and
shows that replacing the reconstruction loss with
the UCO reduces the OFM.

Interestingly, we observe that the OFM in DDC-
UCO tends to increase during training. We hypoth-
esize that this is because, in the early stages of
training, the clustering loss and UCO work together
to strengthen the cluster structure at intermediate
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MNIST USPS F-MNIST COIL-100
ACC NMI ACC NMI ACC NMI ACC NMI

DEC 86.6 83.7 74.1 75.3 – – – –
IDEC 88.1 86.7 76.1 78.5 – – – –
DDC 87.3 84.7 77.0 78.5 67.1 60.9 62.3 82.9
DDC-AE 84.7 83.7 74.2 77.3 62.1 58.9 55.9 78.8
DDC-UCO 88.6 87.0 76.9 79.9 61.2 57.3 62.6 83.7

Table 3: Clustering results (ACC [%] and NMI [%]) for MNIST, USPS, F-MNIST, and COIL-100. The
results for DEC and IDEC were obtained from [1]. Best results are highlighted in bold.

outputs throughout the network, and determine the
appropriate cluster memberships. Later in the train-
ing, the clustering loss encourages the clusters to
be as compact and separable as possible, which can
be achieved by mapping one or more clusters to a
single point. The UCO counteracts this behavior
by enforcing the cluster structure to be more simi-
lar to the cluster structure found at earlier blocks
in the network, and thus is more reflective of the
cluster structure found in the input data. This, in
turn, leads to a mismatch between the clustering
objective and the UCO in later stages of training.
This hypothesis will be further investigated in future
work.

UCO weighting scheme. The base weight λ
and the relative weighting function ω are impor-
tant hyperparameters in the UCO. To investigate
the impact of these hyperparameters, we vary λ
between 0.01, 0.1 and 1. Then, for each of these
values, we train DDC-UCO with the following three
ω-functions: (i) Constant: ω(l) = 1; (ii) Linear:
ω(l) = l/L; and (iii) Exp: ω(l) = 10l−L.
The results for the different configurations are

shown in Table 4. These results show that the
choice of λ and ω does influence the performance
of the model. Setting λ = 1 for instance, leads
to slightly worse overall performance, compared to
λ = 0.01 and λ = 0.1. This shows that equally
weighing Lcluster and LUCO, results in too much
emphasis being put on LUCO, which in turn leads
to a slightly worse final clustering. Despite these
variations in performance, none of the configura-
tions cause the model to fail completely. This is
an important property, due to the difficulties of
validating hyperparameters in a fully unsupervised
setting. Lastly, we note that there is not one best
configuration for all datasets. We could therefore

MNIST

ω � Constant Linear Exp.
λ � ACC NMI ACC NMI ACC NMI

0.01 95.7 91.0 81.2 78.6 87.3 85.9
0.10 80.1 80.8 78.9 79.6 88.6 87.0
1.00 70.9 71.1 87.1 84.3 77.0 74.6

USPS

ω � Constant Linear Exp.
λ � ACC NMI ACC NMI ACC NMI

0.01 74.6 77.6 74.3 76.0 84.8 78.5
0.10 73.8 77.7 69.4 72.8 76.9 79.9
1.00 76.7 80.3 75.9 79.1 75.6 79.4

Fashion-MNIST

ω � Constant Linear Exp.
λ � ACC NMI ACC NMI ACC NMI

0.01 54.7 51.2 54.9 52.4 39.6 43.6
0.10 66.1 60.0 64.6 59.5 61.2 57.3
1.00 63.1 57.6 57.7 54.3 61.2 56.1

COIL-100

ω � Constant Linear Exp.
λ � ACC NMI ACC NMI ACC NMI

0.01 61.5 82.7 61.3 84.1 62.4 82.6
0.10 58.3 80.6 58.3 81.5 62.6 83.7
1.00 54.8 76.8 56.2 75.7 54.8 77.4

Table 4: Clustering results for DDC-UCO with
different base weights (λ), and different weighting
functions (ω). Results from the best configurations
are highlighted in bold. Results from our selected
configuration are underlined.
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Figure 3: Intermediate outputs from the network’s first block in DDC, DDC-AE, and DDC-UCO, trained
on the MNIST dataset. The representations were projected to two dimensions using UMAP [11].

improve the results of DDC-UCO in Table 3 by
tuning the hyperparameters individually for each
dataset. However, we refrain from dataset-specific
hyperparameter tuning as it would not be a viable
option in a general unsupervised setting.
Separability of intermediate representa-
tions. Figure 3 shows the intermediate outputs
from the first block in the neural network, for DDC,
DDC-AE, and DDC-UCO, trained on MNIST. The
plots show that both DDC-AE and DDC-UCO pro-
duce more separable clusters, compared to DDC.
This illustrates that DDC does indeed benefit from
the improved similarity preservation introduced by
the respective auxiliary objectives. When compar-
ing the representations from DDC-AE and DDC-
UCO, we observe that although both models are
able to separate most of the digits from each other,
the clusters corresponding to 4, 7, and 9, seem to
be somewhat more separable in the representation
produced by DDC-UCO.

4 Conclusion

We’ve presented the unsupervised companion ob-
jective (UCO). It is a new auxiliary objective for
deep clustering, which consists of several clustering
losses attached to different blocks in the model’s
neural network. By encouraging a consistent clus-
ter structure throughout the network, we make the

network embedding more preservative of the local
similarity structure in the input space. Furthermore,
the clustering-based nature of the UCO makes the
resulting model less prone to suffer from objective
function mismatch, compared to deep clustering
models based on autoencoders.
Our experiments show that attaching the UCO

to DDC results in an improvement in the overall
clustering performance. We also demonstrate that
the UCO reduces the OFM in DDC, when compared
to an analogous autoencoder-based approach.
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