Modelling Phytoplankton Behaviour in the North and Irish Sea with Transformer Networks

Onatkut Dagtekin *1 and Nina Dethlefs1

1Department of Computer Science and Technology, University of Hull, United Kingdom

Abstract

Climate change will affect how water sources are managed and monitored. Continuous monitoring of water quality is crucial to detect pollution, to ensure that various natural cycles are not disrupted by anthropogenic activities and to assess the effectiveness of beneficial management measures taken under defined protocols. One such disruption is algal blooms, in which the population of phytoplankton increase rapidly, affecting biodiversity in marine environments. The frequency of algal blooms will increase with climate change as it presents favourable conditions for the reproduction of phytoplankton. Machine learning has been used for the early detection of algal blooms previously, with the focus mostly on single closed bodies of water in Far East Asia with short time ranges. In this work, we study four locations around the North Sea and the Irish Sea with different characteristics predicting activity with longer time-spans and explaining the importance of the input with respect to the output of the prediction model. This work aids domain experts in monitoring potential changes to the ecosystem over longer time ranges and taking action when necessary.

1 Introduction

Harmful algal blooms (HABs) occur when the population of phytoplankton increases rapidly, causing environmental changes such as sunlight blocking and oxygen depletion [14]. These changes affect the public health, since the use of water and fish affected by these blooms pose a health risk [10]. HABs occur due to eutrophication caused by nutrient overload.

The occurrence of algal blooms involves the creation of oxygen deprived zones due to the extreme number of deceased plants and animals, resulting in dead zones with no ability to support life which may require external action to revert [5].

With increasing temperatures due to climate change, it is expected that the frequency of algal blooms will increase and will be observed in new regions [27]. In addition to ecological impacts, the occurrence of algal blooms has negative economic impacts. These include drinking water treatment costs and an increase in the cost of preservation of biodiversity [9]. Lower economic activity, related to tourism and fisheries, is observed in locations where algal blooms occur frequently [2, 15].

To prevent this phenomenon from occurring, preventive measures could be taken which include early detection models that benefit from frequent in-situ data and harness the power of machine learning.

Modelling algal blooms has several challenges. Algal blooms are extreme events; therefore positive labelled samples are extremely low (3-5%) in a dataset. This issue needs to be addressed during training with methods such as SMOTE or label weighting and model evaluation with F1 score. Deep learning models require vast amounts of data for training which is solved by continuous and frequent monitoring. The occurrence of algal blooms is inherently complex as the underlying mechanism is influenced by many factors such as nutrient intake of nitrates and phosphates through industrial pollutants or fertilizers, the water temperature, and available light.

In this work, we propose a novel model that improves the detection of anomalous activities in certain locations of the North Sea and the Irish Sea using in-situ data and a flexible labelling method with varying ranges of detection and a longer range...
of time which was not taken into account in the majority of the approaches, with transformer networks and convolution operations. Our approach generates a possible sequence at day $x + i$, $i$ ranging from 1 to 7, using observations at day $x$ with a representation learning approach and filtering the necessary parts of the generated sequence to predict a bloom. In addition, we explain the reasoning behind the predictions using SHapley Additive exPlanations (SHAP) to aid domain experts in understanding the predictions. The scope of this work aims to detect the beginning of these blooms due to the mechanics of the phenomenon. We have observed that using a representation learning approach results in a better model, performing 5% better than current methods for this study area.

2 Related Work

The majority of approaches apply thresholding to categorize labels and forecast future behaviour or apply regression to the problem of HAB detection using dissolved oxygen or chlorophyll-a (chl-a) as the target variable, both of which increase with higher photosynthetic activity from algae, as chlorophyll-a is used to capture sunlight and carry out photosynthesis to produce oxygen and glucose. The chl-a concentration will increase during an algal bloom due to increased photosynthetic activity, whereas the oxygen concentration will increase initially with high photosynthetic activity and drop afterwards due to the increasing decomposer population. It should be noted that the behaviour of inland waters and seawater differ from one another, as seawater bodies can act as large reservoirs so they are less susceptible to change.

The detection time-spans of the current approaches are usually short, ranging from 12 hours to 4 days. [26] uses temporal attention combined with Long Short-Term Memory (LSTM) to predict the chl-a value at most 12 hours ahead in Fujian, China. [23] predicts the chl-a value 1 to 3 days ahead, using a combination of an ensemble of Artificial Neural Networks (ANNs) with Discrete Wavelet Transform. [7] uses sensory data to predict the chl-a in certain locations in South Korea with LSTMs. They aimed to predict the chl-a concentration a day ahead and 4 days ahead using this approach. [19] compares ANN, generalized regression network and Support Vector Machines (SVM) in the context of predicting chl-a values 7 or 14 days ahead for Tolo Harbour, Hong Kong. [20] uses Extreme Learning Machine to predict chl-a values 7 days ahead along several weirs on the Nakdong River, South Korea.

The most common approaches for algal bloom detection are Random Forests (RFs), SVMs and ANNs. [28] uses RF to predict the chl-a concentration in Urayama Reservoir and Lake Shinji, Japan. [29] uses sensory data to predict HABs using AdaBoost with SVM and RF in Yuyuantan Lake, China. [8] uses ANNs combined with correlation and feature selection to predict the dissolved oxygen value in Lake Juam, South Korea. [31] predicts chl-a concentration in Dianchi Lake, China using Wavelet Analysis and LSTMs. [21] uses ANNs and SVMs to predict chl-a concentration in Juam and Yeongsan Reservoir, South Korea, 7 days ahead. [6] uses a merged LSTM model to predict chl-a values over 7-days ahead in Geum River, South Korea.

The study locations of this work differ from the majority since most of the focus is divided between Southeast Asia and the United States whereas our study areas are the North Sea and the Irish Sea [22]. The increased frequency of blooms results in more focus on these areas [12, 1]. The majority of the approaches use models, such as SVM, RF or using LSTMs to analyse the temporal patterns in the data. The approaches that classify the blooms use static values or expert knowledge to classify the responses as in the cases of [20] and [29]. Our approach takes the context of the measurements into account as factors such as temperature affect the cellular activity and oxygen solubility in water [18].

The proposed model predicts anomalous activity in monitored locations ranging from 1 day ahead to 7 days ahead, using only data from a single day, with a flexible labelling approach. Explanation models are used to provide insight into how the input influences the output of the model.

3 Dataset & Preprocessing

The data for this work was collected by ESM2 and ESMx data loggers at four different moorings depicted in Figure 1. The data was collected as a part of The National Marine Monitoring Programme (NMMP) to monitor eutrophication regarding The
Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR) and Marine Strategy Framework Directive (MSFD) assessments. The whole dataset was partitioned into four fractions based on location. Each of the locations has different characteristics such that the Liverpool buoy is near a maritime route, WestGab buoy is near a wind farm, TH1 buoy is near the delta of the River Thames and Dowsing buoy is in the open sea. It is known that the chl-a concentration has been decreasing in certain hotspots in the Southern North Sea [25].

The periodicity and the relationship between the variables were analysed by [4, 3, 13] with varying date ranges and locations by performing wavelet analysis. The periodicities of variables depend on the season and range between 6 hours to 24 hours. The data consists of eight features; chl fluorescence (fluors), turbidity (ftu), dissolved oxygen concentration (o2conc), salinity (sal), temperature (temp) and photosynthetically active radiation (PAR) at depths 0, 1 and 2 meters (depth_0, depth_1, depth_2). The majority of the data was collected at 20-30 minute intervals at each station. The data used spans the range between Jan 2009 and Dec 2019. Before being given as input, the data was normalized with z-score normalization.

Depending on environmental conditions, the maximum amount of dissolved oxygen in a water body can differ. The labelling process used the following equation to calculate the maximum amount of dissolved oxygen concentration in the water given the temperature and salinity [11]:

$$D_O = \ln(A_0 + A_1T + A_2T^2 + A_3T^3 + A_4T^4 + A_5T^5 + A_6T^6 + A_7T^7 + A_8T^8 + A_9T^9 + A_{10}T^{10} + A_{11}T^{11} + A_{12}T^{12} + A_{13}T^{13} + C)$$

where $A_0, ..., A_5$, $B_0, ..., B_3$ and $C$ are coefficients of the equation given in Table 1. $S$ is the salinity and $T$ is $\ln((298.15 - T_O)(273.15 + T_O)^{-1})$ where $T_O$ is the observed temperature value at time $t$. Algal bloom starts with the increased algal activity in a body of water which results in increased dissolved oxygen; therefore, thresholding was used comparing the current dissolved oxygen to the maximum percentage of dissolved oxygen the water can hold at time $t$. If the percentage was 5% above the maximum threshold, the label was 1, else 0. The labelling process was done per day based on mean dissolved oxygen. The positive label percentages for each location was as follows: 1.44% for TH1, 3.89% for Dowsing, 3.98% for WestGab, and 11.44% for LivBay.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_0$</td>
<td>2.00907</td>
</tr>
<tr>
<td>$A_1$</td>
<td>3.22014</td>
</tr>
<tr>
<td>$A_2$</td>
<td>4.05010</td>
</tr>
<tr>
<td>$A_3$</td>
<td>4.944457</td>
</tr>
<tr>
<td>$A_4$</td>
<td>-2.56847 * 10^{-1}</td>
</tr>
<tr>
<td>$A_5$</td>
<td>3.887674</td>
</tr>
<tr>
<td>$B_0$</td>
<td>-6.24523 * 10^{-3}</td>
</tr>
<tr>
<td>$B_1$</td>
<td>-7.37614 * 10^{-3}</td>
</tr>
<tr>
<td>$B_2$</td>
<td>-1.03410 * 10^{-2}</td>
</tr>
<tr>
<td>$B_3$</td>
<td>-8.17083 * 10^{-3}</td>
</tr>
<tr>
<td>$C$</td>
<td>-4.88682 * 10^{-7}</td>
</tr>
</tbody>
</table>

Table 1: Coefficients for Equation 1

4 Methodology

The baseline models for this work were chosen as the SVM and RF as they were the most common machine learning models for this task. We also included an isolation forest (IF) method to observe if anomalies could be identified in an unsupervised fashion by identifying the differences between normal occurrences and anomalies. A convolutional variational autoencoder (VAE) was also included to observe if relevant information could be extracted.
from a latent space regarding these anomalies with varying filter sizes. Luong attention model is also included to observe if any improvements could be made over LSTM models.

![Diagram of proposed model](Figure 2: Proposed model for predicting oxygen thresholds. The input consists of all of the observed variables at day \( x \), whereas the target consists of all variables except dissolved oxygen at day \( x + i \). The transformer generates the target sequence for day \( x + i \) except the dissolved oxygen. The output is a binary variable denoting if the average dissolved oxygen at day \( x + i \) is below or above a threshold.

The proposed model (TF-Conv) consists of four components: a time embedding component (Time2Vec), a transformer, a convolutional layer and a linear layer with softmax activation. The embedding layer maps the input to two domains: time and frequency, the transformer is used to generate the sequence for \( i \) day(s) ahead, which ranges between 1-7. Separate embedding components are used for input and target sequences as they differ in their number of features. The input is the measurements of day \( x \) and the target is the measurements of day \( x + i \) where \( i \) is the number of days into the future ranging between 1 and 7. The input data is used to generate the target observations using the transformer network. The target variable is used during training to compute the loss between the generated sequence and the ground truth. Masking is used at the decoding stage of the transformer. During training, teacher forcing is used for the transformer. The ground truth is given as the target value during decoding. During testing, the previous output of the transformer is used as the target tensor, initially, a tensor of zeros of shape \((1, seq\_len, num\_features)\) is given as target. The convolutional layer is used for feature selection. The generated sequence does not include the dissolved oxygen to prevent the overfitting of the convolution part of the model to only the dissolved oxygen. The generated sequence is taken through a 1-D convolution layer to serve as a feature selector. Lastly, the filtered observation is passed through a linear layer to classify the sequence. The labels were inversely weighted during training due to label imbalance in the dataset. The final output of the network is a binary variable that denotes if the daily average dissolved oxygen is above the threshold or not. Figure 2 illustrates the proposed architecture. The training and testing procedures are provided in pseudocode format in Algorithm 1 and Algorithm 2.

GradientShap was used as the explanation model. For the explanation model’s baselines, we have used the training data of the prediction model. The output of the explanation model is per sample and per time step. To give an overall view of the explanations, we have decided to aggregate the explanations per day and compute the averages per feature.

5 Results

The predictions are done \( i \) days into the future given the observation at day \( x \). \( i \) ranges between 1 to 7. 70% of data of TH1 buoy was used for training, 30% for validation. This location was chosen due to nutrient flow from the River Thames. By modelling different nutrient concentrations, we aimed to make a more generalised model for this task. A single location was used for training to test the generalisability of the model and to assess the model performance with data gathered from various locations with different properties. The other three sites are used for testing.

The F1 scores of each day for each site are presented in Figure 3. The mean F1 scores for all test locations are illustrated in Figure 4. F1 score was used as the performance metric due to the issue of label imbalance in the datasets. The weights of recall and precision were equal for the F1 score. An Adam optimizer was used for this task with 200 epochs and earlystopping with a patience of 15 epochs. The embedding size of time2vec was

https://captum.ai/api/gradient_shap.html
Algorithm 1 TF-Conv training (single batch)

Ensure: \( X_{\text{src}} \) = tensor of(seq_len, batch_size, num_features)
Ensure: \( X_{\text{tgt}} \) = tensor of(seq_len, batch_size, num_features - 1)

\( X_{\text{src}} \leftarrow \text{time2vec}(X_{\text{src}}) \)
\( X_{\text{tgt}} \leftarrow \text{time2vec}(X_{\text{tgt}}) \)
\( X_{\text{src}} \leftarrow \text{tf}\_\text{encode}(X_{\text{src}}) \)
\( X_{\text{src}} \leftarrow \text{tf}\_\text{decode}(X_{\text{src}}, X_{\text{tgt}}, \text{masks}) \)
\( X_{\text{src}} \leftarrow \text{avg}\_\text{pool}(\text{GeLU}(\text{conv1d}(X_{\text{src})))) \)
\( X_{\text{src}} \leftarrow \text{softmax}(\text{linear}(X_{\text{src}})) \)

Algorithm 2 TF-Conv testing (single batch)

Ensure: \( X_{\text{src}} \) = tensor of(seq_len, batch_size, num_features)
Ensure: \( X_{\text{tgt}} \) = tensor of zeros(seq_len, 1, num_features - 1)

\( X_{\text{src}}, X_{\text{tgt}} \leftarrow \text{time2vec}(X_{\text{src}}), \text{time2vec}(X_{\text{tgt}}) \)
\( X_{\text{src}} \leftarrow \text{tf}\_\text{encode}(X_{\text{src}}) \)
\( \text{outputs} = [] \)
while \( \text{cur}\_\text{seq} \neq \text{seq}\_\text{len} \) do
output \( \leftarrow \text{tf}\_\text{decode}(X_{\text{src}}[\text{cur}\_\text{seq}], X_{\text{tgt}}, \text{masks}) \)
\( X_{\text{tgt}} \leftarrow \text{output} \)
\( \text{outputs}.\text{append}(\text{output}) \)
end while
\( \text{outputs} \leftarrow \text{avg}\_\text{pool}(\text{GeLU}(\text{conv1d}(\text{outputs}))) \)
\( \text{outputs} \leftarrow \text{softmax}(\text{linear}(\text{outputs})) \)

set to 10 and the convolution window size was set to 2 for all experiments. The rest of the hyperparameters are given in Table 2 based on prediction day. The hyperparameter optimization was done using grid search.

6 Discussion

In terms of mean F1 score, the proposed model TF-Conv is the most suitable model for the majority of the cases. RF had problems such as overfitting as it performs nearly perfectly in the training site, TH1, whereas it performs poorly in other locations. SVM suffers from the same phenomenon for the Dowsing buoy. To obtain satisfactory results for RF, it could be trained on all four locations which might cause memory issues and maintenance costs. IF assumes that there are anomalies in the data which can be predicted due to their different properties and low occurrence rates. The results show that the increased activity in all of the sites were not anomalies due to their properties and the assumptions made by IF does not hold.

![Figure 3: F1 scores for anomaly prediction for all 4 buoys](image)
<table>
<thead>
<tr>
<th>Day</th>
<th>Batch Size</th>
<th># of Encoder/Decoder Layers</th>
<th># of Attention Heads</th>
<th>Transformer Network Dimensions</th>
<th>Learning Rate</th>
<th>Dropout Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>32</td>
<td>0.001196</td>
<td>0.212</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
<td>3</td>
<td>5</td>
<td>256</td>
<td>0.000606</td>
<td>0.512</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>32</td>
<td>0.002497</td>
<td>0.102</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>128</td>
<td>0.003346</td>
<td>0.136</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>128</td>
<td>0.003670</td>
<td>0.217</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>128</td>
<td>0.003635</td>
<td>0.115</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>32</td>
<td>0.003635</td>
<td>0.115</td>
</tr>
</tbody>
</table>

Table 2: Hyperparameters used for each model where the value of day is $i$ days into the future.

![Mean F1 Scores](image)

Figure 4: Mean F1 scores for anomaly prediction for testing buoys: WestGab, LivBay and Dowsing

The decreasing performance of the attention model between day 1 and 6 indicates that Luong attention is not suitable for predicting near future blooms but it may be suitable for prediction for days further in future. The inputs for the deep learning models are aggregated based on observation day, whereas the machine learning models use averages of features based on observation day due to the model’s limitation of not being able to model tensors more than 2 dimensions. The use of aggregation aids the deep learning models’ generalisability since these models are exposed to raw data rather than a summarized version. Even with a summarized version of data, RF performs better in singular site comparison but the trade-off is made in generalisability.

The explanations differ from site to site as observed in Figure 5. It also shows that the order and the magnitude of the importances change from day to day. The model used assumes feature independence and the explanation model is linear. The explanation models show that each site has its own properties and the site with the most positive labels (LivBay) and the best performance out of all sites has $o2conc$ as the most important future which indicates that tracking the $o2conc$ in the water might be useful where anomalies frequently occur while using the TF-Conv model. The explanations also give insight into how input features differ from one another depending on prediction day, empirically showing the requirement for training a model for each prediction day.

### 7 Conclusion and Future Work

In this paper, we proposed a novel model for detecting algal blooms by predicting dissolved oxygen concentration 1 to 7 days ahead using time embeddings, a transformer network, a convolutional layer and a linear layer. The proposed model increases the prediction performance by 5% in terms of F1 score on average ranging from 1 to 7 days ahead of occurrence. The importance of each feature is provided with SHAP values per day, increasing the interpretability of the model. We have observed that the most important feature changes based on monitoring site and prediction day.

Data with different frequencies, such as ship-based data or data with different modalities could be used to improve the detection process. This work could be extended to closed bodies of water. The current results indicate that models could be tested for different day ranges than they were trained on to test the model’s generalisability. The stability of the model could be checked by predicting bloom events further than seven days. The model’s performance could be assessed by training it per location. Transfer learning methods could be used in the future to test the efficiency of this architecture.
Figure 5: Left: Feature importances of SHAP for predictions 1-day ahead. Right: Feature importances of SHAP for predictions 7-days ahead.

Acknowledgements

The authors would like to thank the Centre for Environment, Fisheries and Aquaculture Science for their expertise in platform and sensor development and supplying the data for this work, and the University of Hull VIPER team for supplying the infrastructure for experimentation. The data was collected under the National Programme of Eutrophication Monitoring (Sla25), supported by the Department for Environment, Food and Rural Affairs.

References


