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Abstract

Aquaponic systems provide a reliable solution to
grow vegetables while cultivating fish (or other
aquatic organisms) in a controlled environment.
The main advantage of these systems compared
with traditional soil-based agriculture and aquacul-
ture installations is the ability to produce fish and
vegetables with low water consumption. Aquapon-
ics requires a robust control system capable of op-
timizing fish and plant growth while ensuring a
safe operation. Intending to support a control sys-
tem, this work explores the design process of Deep
Learning models based on Recurrent Neural Net-
works to forecast one hour ahead of pH values in
small-scale industrial Aquaponics. This implemen-
tation guides us through the machine learning life-
cycle with industrial time-series data, i.e. data pre-
processing, feature engineering, model architecture
selection, training, and validation.

1 Introduction

1.1 Motivation

Aquaponics represents an opportunity to produce
food in environments where traditional soil-based
agriculture and fish farming have complications,
e.g. low temperatures, poor water quality, or hard
rocky soil. This system is mainly composed of
water-based horticulture, known as hydroponics,
aquaculture fish-farming, and bio-filtering with ni-
trifying bacteria [5]. Each of the subsystems is
connected through a recirculating water loop, as
illustrated in 1. The idea behind Aquaponics is to
treat the ammonia from the fish tanks with the bio-
filter and hydroponics by boosting a nitrogen cycle.
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Thus, the organisms share the same artificial envi-
ronment to produce food sustainably [11].

Aquaponics must keep a delicate balance be-
tween the needs of different organisms interact-
ing in the system. In other words, plants, fish,
and bacteria require different water quality and en-
vironmental conditions. Those environmental re-
quirements may conflict with each other. Fur-
thermore, external disturbances in the environment
may break the balance inside the system. For ex-
ample, fish may require a pH between 5 and 10,
while plants need values near 6.5, and the bio-filter
demands a pH bigger than 7.5 for optimal opera-
tion. Additionally, seasonal temperature changes
represent disturbances in the system, as they have
a considerable effect on the water pH, [10]. There-
fore, Aquaponics demands a control system capable
of optimizing plants and fish growth while ensuring
a healthy interaction between all organisms and ro-
bustness against external disturbances.

This control problem motivates the use of a
model-based control as a framework to make de-
cisions by looking ahead into the system dynam-
ics. However, the interaction between organisms in
Aquaponics is too complex to capture its dynam-
ics with just first-principle models. This problem
motivates us to design a data-driven model with
recurrent neural architecture to forecast environ-
mental variables in the Aquaponics. In particular,
we consider a model for pH as first proof of concept.

1.2 State of the Art

Literature about forecasting variables in Aquapon-
ics can be summarized in empirical and data-driven
models. Although there are established models
for hydroponics and aquaculture based on biolog-
ical principles [5, 11], those models do not well-

https://doi.org/10.7557/18.6236

© The author(s). Licensee Septentrio Academic Publishing, Tromsø, Norway. This is an open access article distributed
under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

1

https://doi.org/10.7557/18.6236
http://creativecommons.org/licenses/by/4.0/


Figure 1: Illustration of Aquaponic system.

characterize the interaction between organisms in
real industrial settings. Thus, data-driven mod-
elling becomes a suitable alternative to describe the
relationship between variables and predict poten-
tial outcomes in the system. Within data-driven
models, Deep Neural Networks (DNN) are high-
lighted due to their flexibility to deal with large-
dimensional non-linear systems [6].

As examples of DNN models, consider [4], where
a feed-forward neural network is used to forecast
pH and electroconductivity in a hydroponics green-
house. The proposed model forecasts the target
variables for 20 minutes ahead with an accuracy of
0.01 pH units and 5 µScm-1 respectively. How-
ever, this model fails in the presence of control
actions, possibly due to the lack of training data
with an active controller. A forecasting algorithm
for Aquaponics based on empirical biological prin-
ciple modelling is proposed in [2]. This model is de-
ployed in a small-scale experiment for four weeks.
The results suggest that some parameters in the
Aquaponics can be forecasted with biological mod-
els, e.g. pH in steady-state and total dissolved
solids. But, other parameters of interest like pH
in transient-state, plant growth, and nitrate con-
centrations show a considerable error over time.

The information coming from sensors and actu-
ators in Aquaponics has the structure of a time-
series. In this case, Recurrent Neural Networks
(RNN) provides an architecture where their state
outputs are functions of previous states, making
them suitable for processing time-series [6]. Al-
though the use of RNN models in Aquaponics is
limited, we may consider the case of Aquaculture
systems. For example, an RNN model to forecast

dissolved oxygen (DO) for crabs farming is pro-
posed in [8]. The model uses temperature, pH, tur-
bidity, ammonia concentration, and previous DO
values as features to predict the DO behaviour for
one day ahead. Similar models are proposed in
[7, 9] to forecast pH along with other water quality
parameters. In these projects, we remark the work-
flow to pre-processing data, so that there the input
variables are relevant to the outputs, and their val-
ues are appropriate for the model, i.e. the time-
series are smooth and normalized.

Those projects represent the first proof of con-
cept of forecasting algorithms into small-scale
Aquaponics and industrial aquaculture via DNN.
Their results can be extended into an industrial
setting where challenges such as dealing with noisy
and incomplete data with unexpected perturba-
tions arise. Hence, this work considers the design of
a proof-of-concept for a deep learning model to fore-
cast the dynamics of pH in an industrial Aquapon-
ics setting.

1.3 Contributions

This study constitutes a proof-of-concept for esti-
mation and prediction variables in the Aquaponic
via RNN models. For this purpose, the gated re-
current units (GRU) and Long short-term memory
(LSTM) architectures are considered to forecast
pH in industrial Aquaponics for one hour ahead.
The contributions for this project are:

• Implementation of a pre-processing data
methodology for the time-series: feature selec-
tion, normalization, time-alignment, smooth-
ing, and splitting.

• Design of RNN models under the LSTM and
GRU architectures to model pH in Aquapon-
ics.

• Train and validate the models with data from
17 days harvesting period. Use different num-
ber of parameters for comparison purposes.

• Compare the results with a multi-layer percep-
tron network (MLP) as baseline model.
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2 Methods

The design workflow for the proposed models is dis-
cussed in this section, from the data pre-processing
to DNN architecture.

2.1 Preprocessing

As the paper deals with multiple time-series data,
then the sequence structure between values is a
key factor in the analysis. Furthermore, data in
Aquaponics comes with noise from sensors, pertur-
bations in the system, different ranges, and poor
quality features with irrelevant samples. Thus, let
us discuss how to deal with those issues in the
dataset.

2.1.1 Feature selection and data cleaning

As the first step to clean and prepare the dataset,
a time frame is selected when there is enough rele-
vant data for training, in this case, from April 1st to
17th, 2021. Then, features with corrupt or unnec-
essary data are dropout, i.e. data with high noise,
a considerable amount of missing values, unlabelled
features, or constant time series. For example,
signals such as pump set-points, PID controllers,
weight cells, and light sensors are discarded. The
next step consists of denoising the time series and
removing outliers with low-pass filtering, as shown
in Fig. 2. After the denoising process, the signal
shows a periodic behaviour with some disturbances
in the 7th, 9th, and 12th days. Those disturbances
are due to harvesting events and the use of regu-
larization substances for water quality.

To reduce the dataset size, the features selection
step is based on threshold in the absolute value
Pearson correlation coefficient,

|rx,y| =

∣∣∣∣∣
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

∣∣∣∣∣ ,
where {(xi, yi)}ni=1 is a pair of features, x̄, ȳ are
their respective sample-mean. in Fig. 3 is a
heatmap of |rx,y| for each pair of features in the
cleaned dataset. The values near to 1 for the vari-
able 4 (pH in water tanks) are selected as features
for the models. The selected features in this pro-
cess are: pH, dissolved oxygen percentage, water
flow, light, and calcium in the water tanks.

Figure 2: Comparison between raw Ph data with
outliers and after filtering

2.1.2 Dataset splitting and Normalization

After cleaning the dataset, the data is split into
70% training, 20% validation and 10% testing out
of 28636 samples. Then, it is normalized with a
min-max normalization approach

zi =
xi − xmin

xmax − xmin

where xmax, xmin are the maximum and mini-
mum feature values in the overall dataset. Fig. 4
shows the normalized data distribution for the se-
lected features in the training dataset. Some fea-
tures have different ranges than (0, 1) since the nor-
malization was taken from the overall dataset, so
the remaining validation and testing sets have val-
ues out of the training one. After normalizing the
dataset, we construct feature packages of 3-hours
of data per 1-hour of future pH values for training,
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Figure 3: Heatmap of Pearson correlation coeffi-
cient absolute value for features

where 1 hour is approximately 65 values. Each fea-
ture package contains sequences of the 17 variables
selected above with the correlation coefficients.

Figure 4: Normalized data in training dataset

2.2 Model Architecture

This project considers the LSTM and GRU ar-
chitecture to forecast 1-hour ahead of pH. The
RNN models were programmed with TensorFlow
[1]. The number of layers and neurons for each
model was chosen by experimentation. Further-
more, each model had a maximum of 20 epochs for
training with a batch size between 50 and 100. The
models utilize a Nadam optimizer [3], i.e. an Adam
optimizer with momentum. And the loss function

is the Mean Squared Error (MSE),

LMSE(zi, ẑi) =
1

n

n∑
i=1

(zi − ẑi)2

where zi is the normalized prediction and ẑi is the
normalized true value. Furthermore, the Mean Ab-
solute Error (MAE) is considered as an additional
metric for the experiments,

LMAE(zi, ẑi) =
1

n

n∑
i=1

| zi − ẑi | .

Meanwhile, the MSE metric penalizes large errors
on training, the MAE metric provides a notion of
small errors in the forecasting.

Additionally, two callbacks are considered in the
models: early stop, to stop training when the loss
stops improving; and learning rate scheduler, to de-
cay the learning rate parameter at each epoch. Fi-
nally, drop-out layers are considered to reduce the
over-fitting in training.

3 Simulation

This section shows the results of the experiments
with real data from small-scale industrial Aquapon-
ics and the RNN models.

3.1 pH Forecasting

The pH signal from the sampled period has outliers
and an unexpected perturbation on the ninth day
of experimentation. However, the variation range
is small, i.e. from 6.3 to 6.8. The correlation pro-
cess suggests a strong relation between pH and the
pump motor in the system. The filtering process ef-
fectively removed outliers without substantial mod-
ifications in the signal. Table 1 summarizes the re-
sults for the training and validation process in the
baseline and RNN models.

In this case, the LSTM and GRU models have
similar results for practical purposes. In particu-
lar, the LSTM model has an MSE of 1.56e − 3;
meanwhile, the GRU has a 1.53e − 3 MSE. Addi-
tionally, the both models require similar time to
train as it has more parameters than the baseline.
Although the evolution of pH over time is slow,
both RNN models can forecast with considerable
accuracy 1-hour ahead. The forecasting results for
1-hour forecasting are in Fig. 5.

4



Metric MLP LSTM GRU
MSE Eval. 6.01e-3 1.56e-3 1.53e-3
MAE Eval. 7.21e-2 3.28e-3 3.25e-3
Parameters 6.93e5 2.79e6 3.03e6
Train epochs 3 7 9
Time per epoch [s] 2 29 34

Table 1: Model evaluation metrics

Figure 5: Comparison between different models -
Normalized results

4 Conclusion

This paper explores the usage of different RNN
models to forecast pH in industrial Aquaponics.
This proof-of-concept shows the challenges involved
in implementing machine learning models in real-
life scenarios. For instance, pre-processing and fea-
ture engineering become the most work-expensive
steps into this machine learning workflow. In these
steps, the main task is to preserve the signal’s be-
haviour while removing noise and outliers. Ad-
ditionally, a feature selection process based on a
correlation index is utilized to highlight significant
inputs in the dataset. Although correlation does
not imply causation, the correlation index gives us
a relationship notion between variables, especially
when describing the behaviour in an artificial envi-
ronment as Aquaponics.

Concerning the DNN models design, the LSTM
and GRU architectures outperform the baseline
model considered in this work. Although both
models require more trainable parameters, the
learning process converges rapidly, and their fore-
casting results are similar for practical purposes.
Most importantly, the RNN models can closely fol-
low the behaviour of a slow dynamics variable as

the pH, in contrast to the baseline model that com-
putes the variable as a constant signal.

The next proof-of-concept consists of implement-
ing a simpler filtering algorithm to reduce noise and
outliers in the signals. Moreover, including expert
knowledge in the feature selection step to reduce di-
mensionality while providing some notion of atten-
tion in the model. In addition, other architectures,
such as auto-encoders and attention mechanisms,
may be considered. Finally, the main target from
this paper is a model-based controller for Aquapon-
ics. Hence, it is required to research safe operation
guarantees from the resulting data-driven model.
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