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Abstract

Music source separation represents the task of ex-
tracting all the instruments from a given song. Re-
cent breakthroughs on this challenge have gravi-
tated around a single dataset, MUSDB, only lim-
ited to four instrument classes. Larger datasets and
more instruments are costly and time-consuming
in collecting data and training deep neural net-
works (DNNs). In this work, we propose a fast
method to evaluate the separability of instruments
in any dataset without training and tuning a DNN.
This separability measure helps to select appropri-
ate samples for the efficient training of neural net-
works. Based on the oracle principle with an ideal
ratio mask, our approach is an excellent proxy to
estimate the separation performances of state-of-
the-art deep learning approaches such as TasNet or
Open-Unmix. Our results contribute to revealing
two essential points for audio source separation: 1)
the ideal ratio mask, although light and straight-
forward, provides an accurate measure of the audio
separability performance of recent neural nets, and
2) new end-to-end learning methods such as Tasnet,
that operate directly on waveforms, are, in fact, in-
ternally building a Time-Frequency (TF) represen-
tation, so that they encounter the same limitations
as the TF based-methods when separating audio
pattern overlapping in the TF plane.

∗Work completed during an internship at Logitech.

1 Introduction

Music, along with speech, is a main point of in-
terest for the field of audio processing. The extrac-
tion of individual instrument tracks from a song has
been of great interest for a couple of decades. Most
of the initial efforts were based on signal process-
ing techniques and used unsupervised methods to
exploit signal characteristics such as sparsity [11],
harmonicity and inharmonicity [14], harmonic and
percussive spectra [8, 2], beat [7] or repetitiveness
[12, 3]. However, these methods do not separate
the instruments but rather some sound patterns
produced by them. With the rise of deep learning,
the latest models [10, 1] provide a better separation
quality and manage to extract the instruments with
all their sound specificities. Nevertheless, a sub-
stantial inconvenience for the deep learning models
comes from their supervised learning training pro-
cedure that requests large amounts of labeled data,
namely songs and their separate instrument tracks.

The most widespread dataset used for train-
ing deep learning models for music source separa-
tion, MUSDB18 [13], only provides four instrument
classes (vocals, drums, bass, and others). This is
a significant limitation for the community. Creat-
ing a new dataset is time-consuming and may have
a high cost. Moreover, after spending much time
training deep networks on it, it may be inappropri-
ate to train particular classes of instruments.

The proposed method is based on the Ideal Ratio
Mask (IRM) oracle [17] and does not require any
training. It outputs a separation score for each in-
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strument class of the input tracks from a song and
its separated track.

Our contribution is twofold. Firstly, we show
that the oracle is a good indicator for source sepa-
ration performance. We do this by comparing the
separation score of the oracle to that of a trained
proof-of-concept TasNet-based model. The results
of the two models are strongly correlated. We tried
the separation on electric guitar, which overlaps in
the time-frequency domain with bass and vocals.
It confirms that the separation of new instrument
classes (beyond the MUSDB18 4 classes) can be ob-
tained successfully with deep learning models. Sec-
ondly, by using a TasNet-based model and the IRM
oracle, we show a connection between waverform-
based and spectrogram-based models. The IRM
looks at separability in terms of spectro-temporal
overlap, and the Tasnet-based models operate di-
rectly on the waveform. In this context, a cor-
relation between the two seemed much less triv-
ial. There seems to be a more interesting relation-
ship that indicates that even if TasNet is end-to-
end learning, internally, it is a TF-based approach.
Thus it cannot separate well sounds that are over-
lapping in the TF plane.

The structure of the paper is as follows: Sec-
tion 2 introduces related work. Section 3 describes
our proposed method, and Section 4 presents the
experimental setup and obtained results. Section 5
concludes the paper.

2 Related work

Deep learning methods have been prevalent in mu-
sic source separation in the last few years. Most
of the models separate only the four classes pro-
vided in the MUSDB [13] dataset. Takahashi et al.
[19] combine convolutional dense blocks and Long
short-term memory blocks and apply them on mul-
tiple frequency bands to capture features specific
to each band. This model achieved the best per-
formance in the SiSEC 2018 [17] competition but
used additional proprietary training data. Stöter
et al. [18] proposed a recurrent model that trains a
separate network for each instrument. They made
the code open source and trained their model only
on MUSDB to serve as a benchmark for future re-
search.

Many deep learning models operate on the mag-

nitude spectrogram, as this provides a representa-
tion that is both intuitive and has proven helpful
in several audio processing tasks. End-to-end sys-
tems, which also learn how to encode and decode
the raw signal, have also attracted more attention.
While Stoller et al. [16], who adapted a U-Net ar-
chitecture, did not manage to outperform the best
spectrogram-based models, Samuel et al. [15] man-
aged to reach state-of-the-art performance. Their
model reuses the temporal convolutional network
from Conv-TasNet [10], for which it learns to gen-
erate parameters based on instrument embeddings.
It also includes a complex encoder that leverages
convolutions and spectrograms, and it operates in
a multi-stage fashion, receiving as input mixture
signals resampled at three different sampling rates.
Deffosez et al. [1] also adapt the Conv-TasNet
architecture and obtain even better performance
than Meta-TasNet, a model with more parame-
ters. These recent increases in performances are at
the cost of more complex architectures that require
more computing power.

There have also been a few attempts at sepa-
rating music into more classes. Hennequin et al.
[4] use a U-Net [6] architecture and add the piano
class as well. However, they do not release the re-
sults for piano separation. Hung and Lerch [5] pro-
pose a multitask learning solution. They also detect
instrument activity, extend the number of instru-
ments to six, and add besides the piano, electric,
and acoustic guitars. They use open-source data
to train their models. Nevertheless, they use three
large datasets of songs together with data augmen-
tation, which requires more computing power.

3 Method

The IRM oracle [17] is typically used as a base-
line when evaluating the performance of a source
separation model. It acts as an upper bound for
spectrogram-based models that apply masks on the
spectrogram to perform the separation. The IRM is
defined as follows: given the spectrograms yj(f, t, i)
for source signals sj , 1 ≤ j ≤ J , where J is the
number of sources, and (f, t) are the TF bin coor-
dinates for channel i, the IRM separation mask for
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source j is computed as:

Mj(f, t, i) =
vj(f, t, i)∑J

j′=1 vj′(f, t, i)
(1)

where vj(f, t, i) = |yj(f, t, i)|α, α ≥ 0. In our case,
we choose α = 2 to use power spectrograms, which
usually give the best performing oracle. Figure 1
depicts the structure of the oracle source separa-
tor. For a given song, we compute the spectrograms
for both the mixture signal and the source signals.
Then, we take the magnitude spectrograms for the
sources and feed them to the IRM that outputs
masks for each source. After that, the masks are
applied to the mixture spectrogram, and finally, the
estimated source spectrograms are converted into
source signal estimates through an inverse short-
time Fourier transform.

To test a configuration of instrument classes, we
use the IRM oracle for performing the separation.
Then we evaluate the following metrics:

SDR = 10 log10

‖s‖2

‖espat + einterf + eartif‖2
(2)

ISR = 10 log10

‖s‖2

‖espat‖2
(3)

SIR = 10 log10

‖s+ espat‖2

‖eintef‖2
(4)

SAR = 10 log10

‖s+ espat + einterf‖2

‖eartif‖2
(5)

SI-SDR = 10 log10

‖αs‖2

‖αs− ŝ‖2
, α =

ŝT s

‖s‖2
(6)

where s is the clean source signal, ŝ is the estimated
source signal given by ŝ = s+espat+einterf +eartif
with espat the error due to spatial distortions, einter
the error due to interference with other sources and
eartif the error due to artifacts. The Source to Dis-
tortion Ratio (SDR), Image to Spatial Distortion
Ratio (ISR), Source to Interference Ratio (SIR),
and Source to Artifacts Ratio (SAR) are computed
using the museval Python package. In contrast,
the Scale-Invariant SDR (SI-SDR) [9] is computed
in the same way as the other metrics from museval,
by first computing for each song the median score
over one-second windows and then taking the me-
dian over the songs. The primary metric of interest
is usually the SDR. However, as the relative scale
of the real and estimated source signals influences

SI-SDR SDR SIR ISR SAR

IR
M

vocals 8.43 9.02 17.42 16.38 9.26
drums 5.11 6.24 14.40 10.31 5.74
bass 9.55 9.99 14.09 15.38 11.44
eguitar 2.83 4.62 10.61 9.08 4.86
wind -2.76 1.06 -9.48 7.81 0.11
other 3.45 5.04 10.43 9.24 5.24

M
et

a
-T

a
sN

et

vocals 1.36 3.52 8.27 6.81 3.74
drums 1.36 3.62 15.39 5.30 3.88
bass 9.00 9.42 14.17 13.56 10.35
eguitar -6.82 0.46 -2.83 2.73 2.11
wind -34.55 -11.22 -18.90 0.38 0.66
other -3.77 0.92 -1.12 4.75 3.49

Table 1: IRM and Meta-TasNet scores on Karaoke
Version dataset.

its value, we examine the SI-SDR when deciding
what instrument classes to choose.

4 Experiments

4.1 Experimental Setup

We use our custom dataset for training and testing,
obtained from downloading songs from the Karaoke
Version website1. We use 241 train, 46 validation,
and 50 test songs sampled at 44.1 kHz, totaling 23
hours of music. We also experiment with training
on smaller subsets of 24 songs. We included the
4 MUSDB classes for the experiments and added
two new ones: electric guitar and wind instruments
(like saxophone or flute). We generated equally
loud source tracks for vocals, drums, bass, electric
guitar, wind, and other instrument classes by mix-
ing instrument signals appropriately for each of the
songs.

To validate the IRM oracle’s role as an indicator
for the performance of a deep learning model, we
train a variation of Meta-TasNet2 described in [15].
The original model consists of three stages: sepa-
rate signals resampled at 8, 16, and 32 kHz and
reuse information from the previous stage. We only
keep the first stage, training a single network that
separates signals resampled at 8 kHz. The rest of
the network is left unchanged. At evaluation time,
the separated 8 kHz signals are upsampled to 44.1

1https://www.karaoke-version.com
2https://github.com/pfnet-research/meta-tasnet
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Figure 1: Oracle source separator based on Ideal Ratio Mask. The TF representations of both the
mixture and source signals are computed using the Short Time Fourier Transform (STFT). Then, masks
are applied from the magnitude (mag) of the source signals. The masked signals are represented back
in the time domain with an Inverse STFT (I-STFT).

kHz, the original sampling rate of the data. We
train our 8kHz-Meta-TasNet model for 80 epochs.
The separation performances are lower than the
full Meta-TasNet at 44.1 kHz (due to smaller net-
work and downsampling to 8kHz, which lose the
high-frequency components) but are still decent. It
permits to obtain a good compromise between the
network accuracy and computing time. Our goal is
to estimate the ability to separate instruments and
not to obtain the best separation possible.

4.2 Results

Table 1 shows the results of the IRM oracle applied
to the Karaoke Version test set. We notice that
the initial classes, vocals, drums, and bass, yield
the best scores. However, compared to the results
obtained on MUSDB [13], drums obtain an SI-SDR
score of more than 3 dB lower. We still expect
drums to be quite well separated on this dataset, so
we assume we can separate instruments with scores
that may be as low as about 2.5 dB. In this case, we
predict that we can have decent separation for all
classes except wind. In the wind instruments class,
the problem originates from the severe interference
with other instruments, as shown by the SIR score.

After running the Meta-TasNet model on the test
set, we obtained the bottom of Table 1. Given the
small size of the model, the scores are lower than
for the full-size state-of-the-art model but still pro-
vide intuition for what would happen when scaling
up the model size. For example, we notice that vo-
cals, drums, and bass do indeed maintain excellent
scores even in these conditions. In contrast, electric
guitar and other classes still do better than hav-
ing noise as loud as the clean signal, i.e., having an
SDR score of 0 dB. On the other hand, the wind in-

SI-SDR SDR SIR ISR SAR

P
ea

rs
o
n

vocals 0.96 0.81 0.89 0.86 0.84
drums 0.46 0.56 0.88 0.91 0.81
bass 0.87 0.68 0.88 0.82 0.72
eguitar 0.88 0.67 0.90 0.74 0.60
wind 0.80 0.76 0.87 0.81 0.40
other 0.71 0.47 0.66 0.57 0.61

S
p

ea
rm

an

vocals 0.84 0.83 0.53 0.54 0.87
drums 0.78 0.76 0.67 0.73 0.80
bass 0.82 0.82 0.80 0.42 0.75
eguitar 0.76 0.78 0.49 0.41 0.56
wind 0.75 0.89 0.84 0.82 0.36
other 0.69 0.57 0.37 0.51 0.49

Table 2: Correlations between IRM and Meta-
TasNet scores.

struments suffer from interference that drags down
the SDR score, just as predicted by IRM. There-
fore, IRM indicates which instrument classes would
have good or bad separation scores when using deep
learning approaches.

We computed the Pearson and Spearman corre-
lations of the two models, for each metric, on the
scores obtained on every individual song from the
test set. Table 2 shows these correlations between
the results of IRM and Meta-TasNet on the 50 ran-
dom test tracks for each of the instrument classes.
In both cases, the correlations that we obtain for
most of the metrics are strong (above 0.6) or very
strong (above 0.8). This confirms that IRM serves
as a good indicator for source separation perfor-
mance on the dataset.

To further confirm the relationship between the
scores provided by the IRM oracle and those ob-
tained by a Meta-TasNet model, we trained on
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Figure 2: SI-SDR scores for electric guitar on
the test set sorted by IRM performance for Meta-
TasNet models trained on subsets of the training
set.

samples consisting of 10% of the songs of the ini-
tial training set. We selected samples by three
different criteria: the “best“ songs (top 10perc),
random songs (rand 10perc), the “worst“ songs
(last 10perc) according to the SI-SDR score of the
IRM model. Figure 2 presents the SI-SDR scores
for electric guitar on the test set for the IRM model
and the Meta-TasNet model trained with the three
different samples. The songs are sorted by the SI-
SDR score of the IRM model. We see that no
matter what data we train on, the results of the
models still follow the trend predicted by the IRM
model. Table 3 shows the correlations between the
Meta-TasNet results and the IRM results, solidify-
ing our statement. We can also note from Fig. 2 the
close separability scores obtained from the different
training subsets. It highlights the relative stability
of the separation process when training on different
training sets, with different time-frequency separa-
bilities. We notice however, on average, a slightly
smaller SI-SDR score for the neural network trained
on the worst IRM separable samples (red curve).

An interesting aspect to note is that IRM is an
oracle that uses a TF representation to compute
its metrics, while the Meta-TasNet model learns
directly from waveforms. This implies that IRM
acts as a universal predictor, being useful for both
TF-based and waveform-based models.

Hung and Lerch [5] choose the instrument cat-
egories based on their frequency of appearance in
the dataset. A natural question is whether the IRM
oracle would be a better indicator of the separa-
tion performance than the simple frequency of an
instrument in the dataset. To analyze this situ-

Pearson Spearman
top 10perc 0.88 0.76
rand 10perc 0.88 0.70
last 10perc 0.85 0.69

Table 3: Correlations between IRM and Meta-
TasNet SI-SDR scores on electric guitar.

Figure 3: Meta-TasNet results for different ratios
of muted electric guitar and wind instruments.

ation, we took the training set and muted some
electric guitar tracks. The test set was kept in-
tact. We then trained our Meta-TasNet model on
this data. We repeated this process for ratios of
muted tracks ranging from 0.00 to 0.45 with a step
of 0.05. Fig. 3 displays the SI-SDR score of the
Meta-TasNet model on the electric guitar and wind
instrument classes. We see that even when muting
the electric guitar considerably, the Meta-TasNet
performance stays stable. The electric guitar scores
maintain a large margin of about 28 dB compared
to the wind instruments. For the wind instruments,
no drop in performance was expected, as no tracks
were muted. Since the IRM oracle is not a learn-
ing process, its performance is independent of the
number of samples used in the training set. We
thus confirmed that the IRM oracle is a much bet-
ter indicator of separation performance than the
frequency of an instrument in the dataset. This
conclusion is valid for the Meta-TasNet architec-
ture and within a reasonable minimal number of
samples for each instrument category.

5 Conclusion

Increasing the size of the dataset or the network
often leads to better performance for deep learning
models. This is the actual trend, which implies
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increasing computing resources not everyone can
afford. We propose a new way for evaluating the
separability of audio sources in recordings, prior to
the training of any neural network. To assess the
quality of samples, we take advantage of the TF
masking approach and the possibility to make an
oracle in this particular configuration.

We reveal the close relationship between mask-
based learning approaches such as Meta-TasNet
and the TF representation. Our results indicate
that even if TasNet has the freedom to learn a la-
tent space where instruments would be separated
efficiently by a masking process, this space is no
better than the TF representation. Hence, in order
to improve the separation of sources overlapping in
the TF plane, new architectures are needed.
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lakis, and R. Bittner. The MUSDB18 corpus
for music separation, Dec. 2017. URL https:

//doi.org/10.5281/zenodo.1117372.

[14] F. Rigaud, A. Falaize, B. David, and
L. Daudet. Does inharmonicity im-
prove an nmf-based piano transcription
model? In 2013 IEEE International
Conference on Acoustics, Speech and Sig-
nal Processing, pages 11–15. IEEE, 2013.
doi:10.1109/ICASSP.2013.6637599.

[15] D. Samuel, A. Ganeshan, and J. Narad-
owsky. Meta-learning extractors for mu-
sic source separation. In ICASSP 2020-
2020 IEEE International Conference on
Acoustics, Speech and Signal Processing
(ICASSP), pages 816–820. IEEE, 2020.
doi:10.1109/ICASSP40776.2020.9053513.

[16] D. Stoller, S. Ewert, and S. Dixon. Wave-

u-net: A multi-scale neural network for
end-to-end audio source separation. arXiv
preprint arXiv:1806.03185, 2018. URL
http://ismir2018.ircam.fr/doc/pdfs/

205_Paper.pdf.
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