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Abstract

Outstanding success of Convolutional Neural Net-
work image classification in the last few years in-
fluenced application of this technique to a vari-
ety of embeddable entities. CNN image classifica-
tion methods are getting high accuracies but most
of them are based on supervised machine learning
that requires labeling of input data and do not in-
terpret unknown data. In this study we introduce
unsupervised machine learning model that maps
embeddable entity pairs to symmetric or asym-
metric images by transforming pairwise vectors to
Gramian Angular Fields (GAF) images. Based on
CNN transfer learning image classification model
we indicate metrics of GAF images visual similarity
to symmetric or asymmetric classes. Experiment-
ing with climate data, we illustrate several scenar-
ios that show that this model is reliable for entity
pairs with one-way relationships but insufficient for
entity pairs with two-way relationships.

1 Introduction

In the last few years deep learning demonstrated
great success outperforming previous state-of-the-
art machine learning techniques in various domains
[12]. In particular, after the evolutionary model
AlexNet was created in 2012, deep learning tech-
niques became very powerful in Convolutional Neu-
ral Network (CNN) image classification [IT].
Success stories of ImageNet deep learning influ-
enced usage of CNN image classification as an in-
strument for other techniques such as vector classi-
fications. One of such techniques was suggested by
Ignacio Oguiza as a method of encoding time se-
ries to Gramian Angular Field (GAF) images and
classify GAF images based on fast.ai library [§].
In his study author translated Olive Oil time
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series data to images and demonstrated that im-
age classification works well for time series classi-
fication. Specifically, author used transfer learn-
ing technique that allowed to train model on small
sets of training data. Fine-tuning a network with
transfer learning works usually much faster and has
higher accuracy than training image classification
model from scratch [21].

Unsupervised classification method that we in-
troduce in this paper follows both techniques men-
tioned above: encoding time series to GAF images
and using transfer learning for image classification.
What is completely different in our method is appli-
cation of these techniques to unlabeled data. Our
model determines whether two time series vectors
are similar or not similar to each other. Method
is build on generating pairs of similar and different
vectors, and then transforming pairwise vectors to
GAF images for classification.
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Figure 1: Self-reflected vectors transformed to GAF
images create symmetric squares.

The illustration on Figure [I]shows that by trans-
forming self-reflected, mirror vectors to GAF im-
ages we are creating symmetric squares. On the
contrary, by transforming pairs of different vectors
to GAF images we create asymmetric squares (see
training data examples on Figure . The process
of approximately classifying images to symmetric
or asymmetric classes acts as a dimensionality re-
duction and therefore it is expected to work better
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than more complex image classification. To focus
on symmetry we were inspired by geometric deep
learning [4].

Unsupervised machine learning finds many types
of unknown patterns in data and helps to find fea-
tures which can be useful for categorization. It is
easier to get unlabeled data from a computer than
labeled data, which needs manual intervention.
One of emerging areas of unsupervised machine
learning is self-supervised learning where labeling
is automated. In terms of terminology, it is still
questionable what methods should be determined
as unsupervised machine learning and what meth-
ods should be determined as self-supervised ma-
chine learning. As self-supervised machine learning
technology mostly focuses on image or text classi-
fications, we will call our novel techniques as an
unsupervised machine learning.

Symmetric images — ‘same’ vectors

Figure 2: Training data examples. Symmetric im-
ages demonstrate 'same’ class for self-reflected vec-
tors converted to GAF images. Asymmetric images
demonstrate ’different’ class for pairs of different
vectors converted to GAF images.

The pairwise vector entity classification method
that we will introduce in this paper has limitations.
In particular, we will show that this method is in-
sufficient for entity pairs with two-way relationships

and therefore it should be used only for entity pairs
with one-way relationships. Considering these lim-
itations, this method is applicable to entities that
can be transformed to vectors such as time series,
sequences, and many other types of entities that
are well described as the list of *2Vec entities in
GitHub paper [14].

We used this technique to solve one of the Natu-
ral Language Processing tasks in our technical blog
[I7]. We classified word pairs by word similarities
to identify word pairs that are unexpected to be
next to each other in documents or data streams.

For experiments in this study we will use data
about history of daily temperatures in cities and
will compare temperatures between city pairs.
Based on this data we will show how this model
works for classification of entity pairs with one-way
relationships and why this model is not reliable for
classification of entity pairs with two-way relation-
ships.

Our solution for time series classification:

e Convert daily temperature time series to vec-
tors

e Create reflected pairwise vectors by concate-
nating pairs of vectors

e Transform pairwise vectors to GAF images
e (lassify images using CNN transfer learning

e Examine how the model works for entity pairs
with two-way and one-way relationships

e Prove the hypothesis that the model is not reli-
able for entity pairs with two-way relationships

e Demonstrate successful scenarios for entity
pairs with one-way relationships.

2 Related Work

In the recent years deep learning techniques such as
Long-Short Term Memory (LSTM) were success-
fully applied to time series forecasting applications
[9]. CNN image classification techniques are very
useful for time series classification especially when
one-dimensional time series signals are transformed
into two-dimensional matrices.

In study [20] authors suggest time series trans-
formations to Gramian Angular Fields (GAF) and



Markov Transition Fields (MTF) images. Tech-
niques of transforming vectors to two-dimensional
matrices allow machines to “visually” recognize sig-
nals and improve time series classification. In one
of our studies we showed higher accuracy metrics
of CNN image classification model with vector to
GAF image transformation than accuracy metrics
of models with plot pictures [10].

Self-supervised representation learning has made
significant progress over the last years, almost
reaching the performance of supervised baselines
on many downstream tasks [2]. The closest to our
method are discriminative self-supervised methods
or contrastive methods that are based on direct
comparison between training samples [5].

As our method categorizes pairs of entities to
classes of similar pairs and not similar pairs, it
is conceptually comparable with a combination of
Siamese Nets [3] and self-supervised contrastive
methods [5]. Siamese nets were first introduced in
1993 by Bromley and LeCun to solve signature ver-
ification as an image matching problem [3].

Recently, CNN deep learning techniques has
shown great promise for the analysis of atmospheric
imaging and for the estimation of tropical cyclones
and their precursors. In one of the first studies such
CNN deep learning was applied to climate pattern
recognition problems [I]. However the survey study
[13] of deep learning and machine learning tech-
niques applied to hydrological processes, climate
change and earth systems, shows that deep learning
for climate data mining is still in the first stages of
development, and the research is still progressing.

3 Methods

For data processing, model training and interpret-
ing the results we will use the following steps:

e Transform climate raw data to embedded vec-
tors

e Create pairs of pairwise vectors: self-reflected,
mirror vectors for ’same’ class and concate-
nated different vectors for ’'different’ class

e Transform pairwise vectors to GAF images for
CNN image classification

e Train CNN image classification model to dis-
tinguish symmetric and asymmetric images

e Classify entity pairs based on interpretation of
trained model results.

Data preparation, training and interpretation
techniques are described in details in our techni-
cal blog [19].

3.1 Transform Time Series Data to
Pairwise Vectors

For unsupervised entity pair classification we will
use the following steps:

e Concatenate entity vectors with themselves by
reversing the second vector and label such vec-
tor pairs as ’same’

e Concatenate vectors of different entities by re-
versing the second vector and label such vector
pairs as ’different’.

Transform Pairwise Vectors to
GAF Images

As a method of vector to image translation we will
use Gramian Angular Field (GAF), a polar coordi-
nate transformation based technique [20].

3.2

3.3 Train CNN Image Classification
Models

To deal with comparatively small set of training
data, instead of training the model from scratch, we
will follow ResNet-50 transfer learning: load the re-
sults of model trained on images from the ImageNet
database and fine tune it with data of interest [§].

Fast.ai CNN transfer learning image classifica-
tion can be used for both supervised and unsuper-
vised machine learning. Python code for transform-
ing vectors to GAF images and fine tuning ResNet-
50 is described in fast.ai forum [7].

3.4 Use Results of Trained Models

To calculate how similar are vectors to each other
we will combine them as pairwise vectors and trans-
form to GAF images. Then we will run GAF im-
ages through trained image classification model. If
probability of getting to the ’same’ class is higher
than 0.5, we will consider the vector pair as similar,
otherwise as not similar. Also if ’same’ probability



is high (for example, more then 0.8) the pair can
be considered as very similar.

4 Experiments

4.1 Transform Raw Data to Embed-
ded Vectors

As raw data for this study we will use average daily
temperatures in Celsius degrees for time period
from January 1, 1980 to September 30, 2020 for
1000 most populous cities in the world taken from
kaggle.com: ”Temperature History of 1000 cities
1980 to 20207 [10].

To experiment with time series classifications, we
will convert raw data to data set embedded vectors
of the length 365 for average daily temperatures by
city and by year and label vectors as ’city-year’.

The process of transforming raw data to vectors
and python code are described in our technical blog
[18]. Data preparation for pairwise vector method,
model training and interpretation techniques are
described in details in another post of our technical

blog [19].

4.2 Transformation of Pairwise Vec-
tors to GAF Images

For training data we will create 'same’ class of sym-
metric images and ’different’ class of asymmetric
images. The Figures [[and []illustrate that when
converting self-reflected, mirror vectors to GAF im-
ages, we are getting symmetric images. Otherwise,
when converting pairs of different vectors to GAF
images, we are getting asymmetric images.

e For the ’same’ class we will combine vectors
with themselves reversing second vectors.

e For the ’different’ class we will combine ran-
dom pairs of vectors with temperatures of dif-
ferent years and different cities with reversed
second vectors.

4.2.1 ’Same’ Class: Coalesce Vectors with
Reversed Themselves

To generate training data images for the ’same’
class we will combine vectors with reversed them-
selves. For each vector we will create a label ’city-
year’. For vector pairs we will combine these labels

to ’city-year-city-year’ labels and will use these la-
bels as file names. Please see Figure [3]as an ex-
ample of 'same’ class images. This figure illustrates
that self-reflected mirror vector and corresponding
GAF image are symmetric.

Auckland, New Zealand -

Auckland, New Zealand -
1983 1983 (reversed)

Auckland, New Zealand - 1983 with reversed vector

Figure 3: 'Same’ class example: daily weather in
Auckland (New Zealand) in 1983. Pairwise mirror
vector and corresponding GAF image are symmet-
ric.

4.2.2 ’Different’ Class: Coalesce Vectors

with Reversed Second Vectors

To generate training data images for the 'different’
class we will follow these steps:

e To randomly select different pairs of vectors
we will shuffle first vectors and reverse second
vectors

e The first vectors we will label as ’cityl-yearl’
and second (reversed) vectors as ’city2-year2’

e Than we will concatenate vector pairs and
label pairwise vectors as ’cityl-yearl-city2-

year2’

e We will mark image class type as ’different’.

Lima, Peru - 2013

Quang Ha, Vietnam -
2007 (reversed)

Quang Ha, Vietnam - 2007 with Lima, Peru - 2013

Figure 4: 'Different’ class example: daily weather
in Quang Ha (Vietnam) in 2007 and Lima (Peru)
in 2013. Pairwise vector and corresponding GAF
image are asymmetric.



Please see Figure [4]as an example of 'different’
class images. This figure illustrates that concate-
nated different vectors and corresponding GAF im-
age are asymmetric.

Image transformation code is described in fast.ai
forum [I5] and CNN classification code for fast.ai
transfer learning method is described in [6].

4.3 CNN Image Classification

To estimate the results we will calculate accuracy
metrics as the proportion of the total number of
predictions that were correct. The training model
accuracy metric was about 96.5 percent.

4.4 Entity Pairs with Two-way Re-
lationships

GAF images are based on polar coordinates, there-
fore transforming pairwise vectors to GAF im-
ages might generate inconsistent results for turned
around entity pairs.

To prove this hypothesis we will select 66 cities
from continental West Europe with daily temper-
ature data for 1992. For all city pairs we will cre-
ate pairwise vectors in both directions, i.e. Paris
- Berlin and Berlin - Paris. Then we will trans-
form vectors to GAF images and run these images
through the trained model to calculate their ’same’
or ’different’ probabilities.

As the results of using this model interpretation,
most of city pairs in both directions have ’different’
or ’'same’ metric. Out of the total number of city
pairs (4290 city pairs) about 85 percent (3660 city
pairs) are consistent. However about 15 percent of
city pairs (630 city pairs) have inconsistent results.
Please look at Table 1 for inconsistent city pair
examples. Some of city pairs are located nearby,
like Turin (Ttaly) and Monaco (Monaco) and some
of city pairs are located far from each other, like
Helsinki (Finland) and Bern (Switzerland).

4.5 Entity Pairs with One-way Rela-
tionships

We proved the hypothesis that pairwise vector clas-
sification model is not reliable for similarity predic-
tion of pairs with two-way relationships and there-
fore this model should be used only for classification
of entity pairs with one-way relationships.

H Pairs of Cities diff same H
Helsinki (Finland) — Bern (Switzerland) 0.41  0.59
Bern (Switzerland) — Helsinki (Finland) 0.74  0.26

Naples (Italy) — Lisbon (Portugal) 0.25 0.75
Lisbon (Portugal) — Naples (Italy) 0.92 0.08
Turin (Italy) — Monaco (Monaco) 0.53 047
Monaco (Monaco) — Turin (Italy) 0.18 0.82
Dresden (Germany) — Berlin (Germany) 0.16 0.84
Berlin (Germany) — Dresden (Germany) 0.50  0.50

Table 1: Examples of City Pairs with Inconsistent
Same or Different Probabilities

Here we will show two scenarios of using this
model to compare daily temperatures of pairs with
one-way relationships. For the first scenario, we
will calculate average vector of all yearly temper-
atures vectors for cities in Western Europe and
compare it with yearly temperature vectors for all
cities. For the second scenario we will determine a
city located in the center of Western Europe and
compare this city temperatures for years 2008 and
2016 with other cities.

4.5.1 Compare City, Year Temperature
Vectors with Average of All Yearly

Temperatures

To find cities with yearly temperatures similar to
average temperatures for years from 1980 to 2019
in Western Europe we will calculate average time
series for 2640 daily temperature time series (40
years and 66 cities).

As average of average temperature vectors pro-
vides a very smooth line, we don’t expect that many
city-year temperature vectors would be similar to
it. In fact only 33 of city-year temperature time
series have higher than 0.5 'same’ probabilities and
22 pairs have probabilities higher than 0.65.

It is interesting that most of cities with high
probabilities to be similar to average temperature
are located on Mediterranean Sea, not far from
each other. Here is a clockwise city list: Marseille
(France), Nice (France), Monaco (Monaco), Genoa
(Italy), Rome (Italy), Naples (Italy), and Salerno
(Italy).



4.5.2 Compare City, Year Temperature

Vectors with Central City

Here is another scenario of using pairwise vector
model to compare daily temperatures of pairs with
one-way relationships. From the Western Europe
city list we selected the most centrally located city
- Stuttgart (Germany) and created pairwise vectors
by concatenating temperature vector pairs other
city, Stuttgart for the years 2008 and 2016. Then
we transformed pairwise vectors to GAF images
and analyzed ’same’ or ’different’ probabilities by
running images through our trained model.

Based on the model, for both years cities lo-
cated close to Stuttgart had high probability of
similar temperature vectors and cities located far
from Stuttgart had high probabilities of different
temperature vectors. Please see Figure as an
example of two cities that had very different tem-
peratures in both 2008 and 2016:

Naples, Italy Lisbon, Portugal

2008 [0.98645, 0.01355]

|, ) “"“/, M

2016

Y

Pt
Wy

Figure 5: Both Naples (Italy) and Lisbon (Portu-
gal) are located far from Stuttgart (Germany) and
in both 2008 and 2016 years these cities had daily
temperatures very different that daily temperatures
in Stuttgart.

More difficult was to predict which cities had
similarities with Stuttgart temperatures on the bor-
der between ’different’ and 'same’. Please see Fig-
ure [6] with examples of such cities.

Notice that in both years Stockholm (Sweden)
was on the ’same’ side and Nice (France) was on
‘different’ side. So if we would use probability 0.5
as a threshold, we would consider Stockholm daily
temperatures as similar and Nice daily tempera-
tures as not similar to Stuttgart daily temperatures
for years 2008 and 2016.

Stockholm, Sweden Nice, France

2008 | [0.41378, 0.58628] [0.67853, 0.32148]

2016 | [0.46052, 0.53948] [0.55666, 0.44335]

Figure 6: Two cities that were ’on the border’ in
years 2008 and 2016: Stockholm (Sweden) and Nice
(France). Comparing with Stuttgart daily temper-
atures, both cities had probabilities of ’same’ or
"different’ close to 0.5.

5 Conclusion

In this study we introduced a novel unsupervised
time series classification model. This model is
embedding entities to vectors and combining en-
tity pairs to pairwise vectors. Pairwise vectors are
transformed to Gramian Angular Fields (GAF) im-
ages and GAF images are classified to symmetric
or asymietric classes using transfer learning CNN
image classification.

We examined how this model works for entity
pairs with two-way and one-way relationships and
indicated that it is not reliable for classification of
entity pairs with two-way relationships.

Based on climate data of cities from West Europe
we demonstrated two successful scenarios for entity
pairs with one-way relationships. In one scenario
we selected centrally located city and found cities
with similar and dissimilar daily temperature vec-
tors. In another scenario we showed that European
cities with the most smooth climate are located on
Mediterranean Sea.

6 Broader Impact

There are several interesting directions in which
this work could be extended. First, daily tempera-
ture time series data used in this study has spatial
city location data. Projecting time series images
to geographical locations will support fine-grained
pattern detection. This practice is applicable to



data mining scenarios where data that is a combi-
nation of spatial data and embedded vectors such as
Electroencephalography pattern recognition [16].

Second, the time series classification approach
of this study is implemented through transforming
time series pairs to pairwise vectors and vectors to
symmetric or asymmetric GAF images. In addi-
tion to time series, this process can be applied to a
variety of embeddable entities such as words, docu-
ments, images, videos, etc. [I4]. For example, this
model can be used as unsupervised outlier detec-
tion in finding stock price time series that are very
different from average stock prices.

Third, pairwise vectors model trained on sym-
metric and asymmetric GAF images can be train
on some data domain and used for other data do-
mains. For example, the model can be trained on
time series data and used for word similarity clas-
sification.

Finally, the ’same’ probability metric of pair-
wise vectors can be used to measure differences be-
tween vectors instead of measuring them typically
through cosine similarities. Furthermore, through
this metric direct graphs can be built for graph min-
ing.
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