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Abstract

Neural networks can be used as surrogates for par-
tial differential equation (PDE) models. They can
be made physics-aware by penalizing underlying
equations or the conservation of physical proper-
ties in the loss function during training. Current
approaches allow to additionally respect data from
numerical simulations or experiments in the train-
ing process. However, this data is frequently ex-
pensive to obtain and thus only scarcely available
for complex models. In this work, we investigate
how physics-aware models can be enriched with
computationally cheaper, but inexact, data from
other surrogate models like Reduced-Order Models
(ROMs). In order to avoid trusting too-low-fidelity
surrogate solutions, we develop an approach that is
sensitive to the error in inexact data. As a proof
of concept, we consider the one-dimensional wave
equation and show that the validation error is de-
creased by two orders of magnitude when inexact
data from ROMs is incorporated.

1 Introduction

Design, optimization or control of complex phe-
nomena are tasks that are critical for applications
such as CO2 storage, e.g. [6], or biomechanical
simulations, e.g. [15]. For computationally expen-
sive high-fidelity simulations, such tasks are pro-
hibitive. With computationally efficient surrogate
models these tasks can be carried out in an approx-
imative fashion.

Funded by Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence
Strategy - EXC 2075 – 390740016. We acknowledge the
support by the Stuttgart Center for Simulation Science
(SimTech).

Machine Learning techniques can be used to de-
rive such surrogates. Neural networks are one class
of such data-driven methods that have successfully
been applied to the solution of partial differential
equations (PDEs) in various settings [7, 11, 12]. In
a recent work [8], it has even been demonstrated
that a data-driven method can outperform a nu-
merical method in both, accuracy and runtime, to
solve an inverse uncertainty quantification problem.

Already a few decades ago, methods have been
proposed that use neural networks to solve PDEs
by constraining the loss function with the under-
lying equations [7]. In recent years, this original
idea has seen a renaissance in the form of so-called
Physics-Informed Neural Networks (PINNs) [12].
These have meanwhile been successfully applied to
a variety of problems such as reconstructing pres-
sure and velocities from visual flow data, simulat-
ing blood-flow in cardiovascular structures [13] or
subsurface flow [14]. In contrast to methods learn-
ing directly on simulation data [4] using e.g. CNNs
[10] or LSTMs [9], PINNs add a term to the loss
function which penalizes predictions that do not
satisfy the underlying PDE. In the scope of this
paper, we differentiate these loss terms by their na-
ture. The physical (or boundary value problem) loss
aims to minimize (a) the PDE residual on interior
data points and (b) the (initial) boundary data on
boundary data points. PINNs featuring an addi-
tional data loss on interior data points are referred
to as data-enriched PINNs.

So far data-enriched PINNs in literature are
based on expensive measurements which are either
obtained from real or numerical experiments. An
example is [12] where PINNs are trained on exper-
imental data and afterwards are used to estimate
model parameters of the PDE to solve this inverse
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problem.
In this work, we aim to integrate comparably

cheap data from surrogate models in the data loss
of the PINN. In a slightly more general view, we
call this data inexact data as solutions from surro-
gates are approximative solutions. We additionally
assume that this inexact data is provided with an
error bound that quantifies the error with respect
to the exact solution. This setting is quite natu-
ral for many surrogate models like e.g. Reduced-
Order Models (ROMs). As our main contribution,
we propose the notion of error-sensitive PINNs (see
Fig. 1) as a generalization of data-enriched PINNs.
The core idea is that the error bound from the in-
exact data is taken into account during the training
by relaxing the optimization goal if the error with
respect to the inexact data is smaller than the er-
ror bound. This approach comes with two key ad-
vantages: Firstly, the additional knowledge on the
solution within the solution domain may provide a
boost to training times as well as prediction accu-
racy as it now offers the optimizer more data to find
a correct solution. This is crucial since, in a sim-
ulation setting, data is usually scarce due to their
high computational costs. Secondly, since surro-
gates can be of low fidelity, the error-sensitive part
does not force the PINN to fit the inexact data but
instead gives it leeway to improve over the inexact
data. Thereby, PINNs are encouraged to refine the
given inexact data.

PINNs
physical (BVP) loss

Data-enriched PINNs
physical (BVP) loss

data loss

Error-sensitive data-enriched PINNs
physical (BVP) loss

error-sensitive data loss

Figure 1: Illustration of different PINN approaches
within this paper.

Previous studies for PINNs have shown [16, 17]
that the prediction accuracy is sensitive to the
weighting of the different loss terms. In order to
apply [16] to data-enriched PINNs, we generalize
this idea to the case of more than two loss terms.
Moreover, we include a comparison of the different
weightings in our numerical experiments.
The performance of PINNs on inexact data

and the new error-sensitive approach are stud-

ied in a numerical experiment based on the one-
dimensional linear wave equation. We show that
the error-sensitive PINN outperforms a standard
non-data-enriched PINN. Moreover, the experi-
ments show that weighting the losses correctly is
essential.

The rest of the paper is structured as follows: In
Section 2, we introduce the essentials of scientific
machine learning for PDEs using PINNs. Subse-
quently, we present the loss weighting strategies,
the error-sensitive PINNs and ROM-data-enriched
PINNs in Section 3. The new methods are com-
pared to classical approaches in Section 4 in a nu-
merical experiment for the one-dimensional linear
wave equation. Section 5 concludes the paper and
provides an outlook to future work.

2 Prerequisites

For the neural network architecture, we restrict
ourselves to conventional fully-connected neural
networks. We introduce these as a concatenation
of nl different layers fi

Φ(x; θ) := (fnl
◦ . . . ◦ f2 ◦ f1)(x) (1)

where θ ∈ Rnθ represents the vector of all trainable
parameters, such as the weights and biases.

The neural networks are tailored towards a spe-
cific goal by minimizing a cost functional, the so-
called loss (functional), l(θ) : Rnθ → R≥0 over the
set of all possible network parameters θ. Typically,
some form of stochastic gradient descent method
such as ADAM [5] is used for the optimization of
l(θ). The classical example for a loss to learn an
input–output mapping from nD input–output pairs
{(xD,i, yD,i)}nD

i=1 is

l(θ) = lD(θ) :=
1

nD

nD∑
i=1

(yD,i − Φ(xD,i; θ))
2
, (2)

which is known as Mean Squared Error (MSE) loss.
In the following, we call this loss term the data loss.

The Physics-Informed Neural Networks (PINNs)
modify the loss function to inform the network
about the underlying physics [12]. In the scope
of this paper, the desired physical property is a
boundary value problem (BVP) of the following
type: find an unknown function u : Ω → R with
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Ω ⊂ Rd such that

N [u] = 0 in Ω, B[u] = 0 on ∂Ω, (3)

where N is some, potentially non-linear, differen-
tial operator and B is an operator prescribing the
boundary conditions. In the scope of this paper,
time-dependent problems are of particular interest.
In that case, x = (t, ξ) ∈ Ω := Ωt×Ωξ is composed
of the time t and a spatial coordinate ξ. Compared
to numerical simulations, which aim to ensure that
the laws of physics are not violated, a PINN does
not strictly guarantee a physically valid solution.
Instead, it encourages the solution Φ(θ) ≈ u to sat-
isfy the BVP in selected collocation points xI,i, xB,i

with

lI(θ) :=
1

nI

nI∑
i=1

(N [Φ(θ)](xI,i))
2

lB(θ) :=
1

nB

nB∑
i=1

(B[Φ(θ)](xB,i))
2

(4)

and adds these terms as penalty terms to the loss
function where the derivatives in N are evaluated
via Automatic Differentiation [1]. The PINN loss
then reads

l(θ) =
∑
j∈J

λj lj(θ), J := {D, I,B}, (5)

with weights λj ∈ R≥0 and the loss contributions
lj(θ) ≥ 0 from (2) and (4). We call lI(θ) the interior
or PDE residual loss and lB(θ) the boundary loss.
Both these terms together are referred to as the
BVP losses.

3 Data-enriched PINNs

Theoretically, PINNs work without the data loss
(λD = 0). For data-enriched PINNs (λD > 0),
we would like to additionally use yD,i = u(xD,i),
but the exact solution u is frequently not available
or too expensive to compute. In the scope of this
paper, we investigate how data-enriched PINNs be-
have, if the target function in the data loss is pro-
vided by inexact data, e.g. with an approximate
solution yD,i = ũ(xD,i) ≈ u(xD,i).

3.1 Loss Weighting for PINNs

For the case of non-data-enriched PINNs, it has
been observed in previous studies that the choice

of weights λj in the loss function is crucial for the
training speed and quality [16, 17].

The Learning Rate Annealing for PINNs (LRA)
in [17] is motivated by a stiffness-phenomenon in
the gradient flow dynamics. It uses the statistic
of the gradient to balance the interplay of all loss
contributions lj .
The Optimal Loss Weight (OPT) in [16] is a

heuristic approach that tries to balance the losses
based on the assumption that the relative error
in the derivatives of the neural network can be
bounded uniformly. We generalize this idea to more
than two losses. In this formulation it chooses the
loss based on characteristic quantities Mj of the

loss lj for each j ∈ J , e.g. MD[u] ≈ ∥u∥2L2(Ω) / |Ω|
for the data loss. The resulting weights are

λj [u] =

(∑
k∈J

Mj [u]/Mk[u]

)−1

.

Note that the factors Mj [u] may depend on the
exact solution which is not available. In our nu-
merical experiment, we compute the weights from
the exact solution for the sake of simplicity. For
practical applications however, one could use the
inexact data ũ to compute the factors.

3.2 Error-Sensitive PINNs

The following section focuses on time-dependent
problems with x = (t, ξ) in the sense of Section 2.
For all functions w(x), we define the short-hand no-
tation w(t) := w(t, ·) for each t ∈ Ωt. The analysis
is formulated in terms of a non-discrete analogue
to the data loss from (2),

LD(θ) = ∥u− Φ(θ)∥2L2(Ω) ,

where Monte-Carlo integration is used to approxi-
mate LD(θ)/ |Ω| ≈ lD(θ) with nD sampling points
xD,i ∈ Ω and yD,i = u(xD,i) for 1 ≤ i ≤ nD. More-
over, the data loss LD(θ) is sampled separately in
time and space. For the sake of simplicity, we con-
sider an equidistant sampling in space and time in
the following, e.g. for ξ ∈ Ωξ ⊂ R and ∆t, ∆ξ > 0,

ti = t0 + i∆t, ξj = ξ0 + j∆ξ,

with 1 ≤ j ≤ nξ, 1 ≤ i ≤ nt. If we would know the
exact solution u, the equidistantly sampled data
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loss would read

lD(θ) :=
1

nt

nt∑
i=1

(iξ[u](ti; θ))
2
,

(iξ[u](ti; θ))
2
:=

1

nξ

nξ∑
j=1

|(Φ(·; θ)− u)(ti, ξj)|2 .
(6)

As u is not available, we use the inexact data ũ
instead, for which we assume that the error can be
quantified for each t ∈ Ωt with

∥u(t)− ũ(t)∥L2(Ωξ)
≤ ε(t) (7)

with an error bound ε : Ωt → R+. The idea of
the error-sensitive data-enrichment is to trust the
inexact data only up to the error bound ε(t). To
this end, consider the open ε(t)-ball around ũ(t)

Bε(ũ; t) :=
{
w ∈ L2(Ωξ)

∣∣ ∥w − ũ(t)∥L2(Ωξ)
< ε(t)

}
which can also be interpreted as a tube around ũ
over time t. In order to differentiate whether Φ(t)
lies in Bε(ũ; t), we define w : Ωt → Bε(ũ; t), the
projection of Φ(t) onto the closed ε(t)-ball around
ũ(t), see Fig. 2.

Figure 2: Illustration of the definition of w(t).

The data loss LD(θ) can then be bounded with

LD(θ) ≤ 2
(
∥u− w(t)∥2L2(Ω) + ∥w(t)− Φ∥2L2(Ω)

)
.

The first term on the right side, can be bounded
with 4ε(t)2 |Ωt| since both, u(t) and w(t), are ele-
ments in the ball Bε(ũ; t) from which follows that
their distance is bounded by the diameter of the
ball, 2ε. This yields

LD(θ)/ |Ω| ≤ 2LD,ES(θ)/ |Ω|+ 8ε(t)2/ |Ωξ|

LD,ES(θ) :=

∫
Ωt

∥w(t)− Φ(t; θ)∥2L2(Ωξ)︸ ︷︷ ︸
=:(Iξ,ES(t;θ))

2

dt (8)

which describes how the error from (7) propagates
through the training. Moreover, this estimate guar-
antees that training with the error-sensitive loss
LD,ES(θ) improves the networks quality with re-
spect to the original data loss LD(θ) (as long as
ε(t) is small enough).

Due to the choice of w(t), the term Iξ,ES(t; θ) in
(8) is (a) zero if the error-sensitive PINN solution
Φ(t; θ) is in Bε(ũ; t) and (b) equal to the distance
between Φ(t; θ) and the closest point on the bound-
ary ∂Bε(ũ; t) otherwise. This can be expressed with

Iξ,ES(t; θ) = ReLu
(
∥Φ(t; θ)− ũ(t)∥L2(Ωξ)

− ε(t)
)
,

ReLu(x) :=

{
0, x < 0

x, x ≥ 0
.

This results in the the error-sensitive loss

LD,ES(θ)/ |Ω| ≈ lD,ES(θ) :=
1

nt

nt∑
i=1

(iξ,ES(ti; θ))
2
,

iξ,ES(t; θ) := ReLu
(
iξ[ũ](t; θ)− ε(t)/ |Ωξ|1/2

)
.

Note that the presented loss is readily imple-
mentable in the major ML frameworks due to usage
of the well-established ReLu function. Moreover,
the non-error-sensitive approach is a special case of
error-sensitive data-enrichment if the data is fully
trusted, i.e. ε ≡ 0.

3.3 ROM-data-enriched PINNs

A prominent example for inexact data certified with
an error bound is data obtained from so-called
Reduced Order Models (ROMs). ROMs are con-
structed to flexibly trade accuracy for efficiency by
choosing different sizes of the reduced basis. At the
same time many ROMs provide an error bound that
can be evaluated efficiently. An example for ROMs
with a time-dependent error bound of the assumed
form (7) is derived in [2] for the linear wave equa-
tion. Technically, we additionally assume that the
underlying finite element method (FEM) approxi-
mation space is rich enough to approximate u and
thus, that the error between the FEM solution and
the exact solution is negligible.
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4 Experiments

We consider the wave equation in a one-dimensional
spatial domain Ωξ := (−1, 1) over the time inter-
val Ωt := (0, 2), for which an analytical solution is
available for validation. The PDE on the spatio-
temporal domain Ω := Ωt ×Ωξ is

∂2
t u(t, ξ)− ∂2

ξu(t, ξ) = 0 (t, ξ) ∈ Ω

with homogeneous Dirichlet boundary conditions
and zero initial velocity v0 ≡ 0. The initial data
and the solution are visualized in Fig. 3.

Figure 3: Visualization of the exact solution. A
single bump in the middle of the domain at t = 0
travels outwards and is reflected at the boundaries
at t = 1.

The different approaches are compared with re-
spect to the mean squared error

MSE[y] := ∥u− y∥2L2(Ω) / |Ω| . (9)

Additionally, experiments are repeated r times and
averaged to account for random initial weight con-
figurations which we denote with MSEr[Φ].

The network used is a conventional fully con-
nected feed-forward network with tanh activation
functions. Its architecture and hyperparameters
were chosen with a hyperparameter optimization
for the non-data-enriched PINN over 407 individual
runs resulting in nl = 5 layers, nn = 20 neurons per
layer, and a learning rate of α = 1e− 3. The opti-
mizer is ADAM with default parameters. The net-
work parameters are initialized using the truncated
Xavier initialization [3]. The number of sampling
points of the different losses varies for each experi-
ment and is depicted in Table 1 as an overview.

Table 1: Number of sampling points.
experiment nI nB nD

non-data-enriched 30,000 3,000 0
data-enriched 15,000 3,000 15,000

4.1 Baseline: Non-Data-Enriched

Before enriching the loss of the network with a data
loss, we first establish a non-data-enriched PINN
baseline, i.e. this experiment only features the in-
terior loss lI(θ) and the boundary loss lB(θ).

Figure 4: Validation error MSE30[Φ] plotted over
20,000 training epochs of the non-data-enriched
PINNs with EQUAL, LRA and OPT weighting.

For the weighting of the loss contributions
(see Section 3.1), we consider equal weighting
(EQUAL), i.e. λj = 1 for all j ∈ J , in addition
to the LRA and OPT approach.

Fig. 4 shows the training progress of all three
weighting methods in terms of the validation er-
ror MSE30[Φ] over the number of epochs. Neither
of the three approaches was able to reliably cap-
ture the true solution, with minimum validation
errors going only as low as 1e− 2. This is in accor-
dance with the observations in [18] that the one-
dimensional wave equation is a very challenging
problem for (non data-enriched) PINNs. Note that
the equal weighting approach performs best while
the other, more informed, weightings result in bad
outliers shifting the mean curve MSE30[Φ] upwards.
This certainly poses a strong case for including ad-
ditional data during training as presented in the
following.
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4.2 Data-Enriched: Exact Data

As a second baseline, we investigate how well data-
enriched PINNs can train if the explicit solution
is used in the data loss lD from (6). Note that
this is a clearly unrealistic scenario but a good
“ideal” method indicating the performance limits
that we may expect with the ROM-data-enriched
approaches.

Figure 5: Validation error MSE30[Φ] of the data-
enriched PINNs (enriched with data of the explicit
solution) plotted over 20,000 training epochs.

Fig. 5 shows the MSE30[Φ] for this data-enriched
training for the three different weighting ap-
proaches. The data-enrichment clearly improves
the training performance as the validation error
drops below 1e − 4. Additionally, it can clearly
be seen that the OPT and LRA methods show a
much quicker convergence behavior than EQUAL,
with the OPT performing best overall. Thus, we
restrict the experiments in the following section to
the OPT weighting.

4.3 ROM-data-enriched PINNs

Next, we replace the explicit solution in the data
loss with a surrogate solution ũ, i.e. yD,i = ũ(xD,i)
in (2), where a ROM is used to compute the sur-
rogate solution (see Section 3.3). To this end, the
PDE is discretized with the Finite Element Method
(Lagrangian elements on an equidistant grid, piece-
wise constant in time and piecewise linear in space,
3000 discretization points in each dimension) which
we refer to as Full-Order Model (FOM). The error
of the FOM is MSE[uFOM] = 1.46e − 6. Based
thereon, model order reduction is applied to derive
three different ROMs of reduced sizes n ∈ {4, 8, 12}

which varies the accuracy of the different ROMs.
The maximal dimension is set to 12, which results
in a reduction error of MSE[ũ] = 3.85e − 6. Note
that by construction of this experiment the ROMs
are based on much more accurate data (FOM snap-
shots) than the data-enriched PINNs (only ROM
snapshots).

Figure 6: Validation error MSE30[Φ] of the (error-
sensitive) ROM-data-enriched PINNs with the
weighting methods OPT for three different ROM
sizes {4, 8, 12}. Horizontal bars depict the respec-
tive error of the FOM and ROM solution.

Fig. 6 shows the results for all six of these con-
figurations, namely the ROM-data-enriched PINNs
(dpn, solid lines) and the error-sensitive variant
(es-dpn, dashed lines) for n ∈ {4, 8, 12}. For com-
parison purposes, the data-enriched PINN run us-
ing the explicit solution data from Section 4.2 is
depicted (red line) and the MSE of the FOMs and
ROMs are included as horizontal lines. The graph
shows that the ROM-data-enriched PINNs perform
much better in terms of the overall predictive power
when the ROM data is good enough (n ≥ 8) achiev-
ing validation errors close to the model trained
on explicit solution data. Even more noteworthy,
the ROM-data-enriched PINNs are able to improve
over the error in the ROM for n ≤ 8. This can be
seen as the respective MSE curves fall below the
ROM4 and ROM8 markers. The error-sensitive
data-enrichment, however, does not improve the
accuracy in this example. This is assumed to be
accounted to the fact that the non-data-enriched
PINN model itself is not able to achieve a reason-
able prediction as described in Section 4.1. The
MSE (9) and corresponding standard deviation for
the best validation error over all epochs are sum-
marized in Table 2.
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Table 2: MSE from (9) and the corresponding stan-
dard deviation (mse ± std) of the lowest validation
error over all training epochs for the ROM-data-
enriched (dp) and error-sensitive (es-dp) variants
for different ROM sizes (n). For reference this mea-
sure for training on the explicit solution data is
2.38e-05±1.59e-05.

n dp es-dp
4 5.18e-03±8.22e-05 5.21e-03±1.39e-03
8 1.21e-04±1.01e-05 1.43e-04±1.76e-05
12 5.96e-05±1.12e-05 6.54e-05±1.41e-05

5 Conclusion

Our approach proved that it is beneficial to com-
bine physics-aware neural networks with inexact
data obtained from surrogate models. We have
shown that ROM-data-enriched PINNs can outper-
form both, conventional PINNs and ROMs. The
results presented here serve as a proof-of-concept,
studying a problem for which the exact solution
is known. We expect that error-sensitive PINNs
will show their real benefit in higher-dimensional,
parametrized simulation settings, which is subject
of future work. In a parametric setting, it will
be interesting to see how well the error-sensitive
PINNs generalize to unseen parameters, avoiding
prohibitively expensive simulation runs.
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