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Abstract

Most semi-supervised learning methods over-
sample labeled data when constructing training
mini-batches. This paper studies whether this com-
mon practice improves learning and how. We com-
pare it to an alternative setting where each mini-
batch is uniformly sampled from all the training
data, labeled or not, which greatly reduces direct
supervision from true labels in typical low-label
regimes. However, this simpler setting can also be
seen as more general and even necessary in multi-
task problems where over-sampling labeled data
would become intractable. Our experiments on
semi-supervised CIFAR-10 image classification us-
ing FixMatch show a performance drop when using
the uniform sampling approach which diminishes
when the amount of labeled data or the training
time increases. Further, we analyse the training
dynamics to understand how over-sampling of la-
beled data compares to uniform sampling. Our
main finding is that over-sampling is especially ben-
eficial early in training but gets less important in
the later stages when more pseudo-labels become
correct. Nevertheless, we also find that keeping
some true labels remains important to avoid the
accumulation of confirmation errors from incorrect
pseudo-labels.

1 Introduction

Semi-supervised learning has recently established
itself as an effective approach to greatly reduce the
annotation costs in developing deep learning mod-
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els. With labels only for a small portion of the
entire dataset, the performance approaches that of
fully-supervised learning, e.g. giving competitive
results in the context of image classification using
less than 1% of labeled samples [3, 22, 18, 23].

Semi-supervised methods have explored different
flavours of consistency or perturbation-based reg-
ularization [21] combined with entropy minimiza-
tion [6] or pseudo-labeling [9] by adding one or more
extra terms to the training loss computed on the
unlabeled samples.

The consistency-based regularization losses aim
at exploiting the smoothness assumption [21], i.e.
the predictions of a model should not depend on
small perturbations in the input such as injecting
noise [16, 2, 8], adversarial perturbations [11] or
random transformations [17, 8, 3, 22, 18]. Pseudo-
labeling and entropy minimization methods enforce
instead high-confidence (low-entropy) predictions
for unlabeled samples, directly exploiting the low-
density assumption [21], i.e. decision boundaries
should lie on low-density regions. These approaches
are closely related to self-training [13, 25, 1, 23],
where pseudo-labels are extracted from a model
pre-trained on labeled data and then used for train-
ing in a second step or in multiple iterative steps.

Yet, all semi-supervised learning methods face
a common issue. Since they bootstrap their own
predictions in order to use them as targets, many
of these will be incorrect and can lead to so-called
confirmation bias [20, 1], i.e. fitting incorrect labels
that do not represent the true task and thus slowing
down or stopping its learning. This is more likely to
happen at the start of training since the predictions
of the model are not much better than random and
the amount of misclassified samples is large.
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(a) Explicit setting (b) Implicit setting

Figure 1: (a) and (b) A toy dataset with 20 samples and a task with 2 classes - dog (green) and cat (red) -
with 2 labeled samples per class, and a ratio of labeled samples of 20%. Sampled into 5 training mini-batches
of 4 samples each, with over-sampling of labeled data in (a) and uniform sampling in (b). In (a) we choose to
have an equal number of labeled and unlabeled samples in each mini-batch. Due to this, each labeled sample
(red/green, #0-3) is seen 4x more often than each unlabeled sample (gray, #4-19). In (b), each mini-batch can
contain different amounts of labeled samples as it is uniformly sampled regardless of labels and each sample is
seen exactly once. Labeled samples are seen 2.5x more often in the explicit setting.

Most works try to alleviate this issue by using
a ramp-up from zero of the weight for the semi-
supervised loss term over training. This greatly
reduces the influence of possibly wrong predictions
on unlabeled data in the early phases of training.
Thus, the only way to learn at the start is from
true labels, but since these are scarce there is little
supervision available and learning is slow. This in
turn makes it more difficult to get useful supervi-
sion through the semi-supervised loss.

Repeating labeled samples more often than unla-
beled ones during training is a common mini-batch
sampling strategy in semi-supervised learning and
directly and artificially increases the influence of la-
beled data over learning [16, 14, 3, 20, 11, 1, 22, 18,
23]. To the best of our knowledge, this mechanism
was never well studied with the goal of enhancing
the training signal from true labels and it likely just
happened as a side effect of common implementa-
tion choices when constructing batches from sepa-
rate datasets for labeled and unlabeled samples.

In this paper, we aim at studying if it is essen-
tial to repeat labeled samples more frequently than
unlabeled samples or over-sample labeled data for
state-of-the-art semi-supervised methods to work
well. We call this way of sampling mini-batches
the explicit semi-supervised learning setting due to
its distinction between labeled and unlabeled data
in how the data is presented. We compare it to

an alternative setting in which all data is sampled
uniformly, regardless of being labeled or not. We
call the latter the implicit semi-supervised learning
setting.1 Figure 1 illustrates both approaches.

Exploring the simpler implicit setting will high-
light the benefits which the common over-sampling
of labeled data in the explicit setting brings and
which mechanisms allow to achieve these. Un-
derstanding the differences between both settings
could then shed light on how sampling affects the
learning process in semi-supervised methods and
could ultimately guide future work into developing
more efficient and better-performing methods.

Moreover, there are concrete reasons to avoid the
explicit setting. Most importantly, trying to use it
for multi-task problems easily leads into a road-
block. Samples cannot be said to be labeled or
unlabeled in general, since this property can only
be assigned to a sample in relation to each task.
Thus, samples can be labeled for one or more tasks
but unlabeled for others, labeled for no tasks or for
all. This leads to different sets of samples labeled
for each task, which might or might not overlap.

In Figure 2, we compare an extension of the ex-
plicit setting for multi-task scenarios to the implicit
setting. One possible direct way to recreate the

1In the rest of the paper we will use both nomenclatures
for the sampling approaches interchangeably.
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(a) Multi-task extension of explicit setting (b) Implicit setting

Figure 2: (a) and (b) The labeling of the dataset in Figure 1 is extended with a new task with 2 classes - black
and white - with 2 labeled samples per class as well. In (a) we extend the over-sampling of labeled data to the
multi-task case so that in each batch there is the same number of labeled and unlabeled samples for each task.
In (b) the uniform sampling means the sampling is independent of the labels, just as for the single task case.

explicit setting for multi-task learning is to divide
each mini-batch into multiple sub-parts, one for
each possible configuration of available task labels.
Such a mini-batch can include parts where all sam-
ples are labeled or unlabeled, parts with samples
labeled only for one or more tasks, etc. Instead,
the implicit setting can be used in multi-task prob-
lems without any modifications since the sampling
is independent of the labels.

The number of sub-parts in a mini-batch con-
structed using this extension of the explicit set-
ting grows exponentially with the number of tasks
T as 2T if all label configurations are present in
the dataset. Therefore, if the number of tasks is
large, the number of mini-batch parts can quickly
become larger than the total batch size that can be
used in practice. Even with fewer tasks, the pos-
sible size of each mini-batch part becomes a new
hyper-parameter which can be difficult to control
since it is limited by the total batch size and the
number of parts. Setting the number of tasks to
one recovers the original explicit setting, with one
part for labeled data for the only task in the prob-
lem and one for unlabeled data. Other sampling
approaches for semi-supervised multi-task learning
problems are likely possible, but our aim is to high-
light the issues with the explicit setting that make
it not suitable for this class of problems.

To study the impact of different approaches to
sampling training mini-batches on semi-supervised
performance, we compare the training character-

istics of both the implicit and explicit settings.
We run semi-supervised image classification exper-
iments on CIFAR-10 and CIFAR-100 [7], vary-
ing the number of available labels. As a semi-
supervised method we adopt FixMatch [18], a stan-
dard, state-of-the-art method. FixMatch enforces
consistency between pseudo-labels obtained from
weakly transformed versions of one sample and
the predictions obtained from strongly transformed
versions of the same sample, incorporating in the
same method pseudo-labeling and consistency reg-
ularization. We find that both the implicit and
explicit settings work for reasonably long training
runs, but the latter performs better. This difference
is smaller in higher-label regimes or with longer
training budgets and we partially attribute it to
the low efficiency of learning from true labels at
the start of training when using the implicit setting,
which becomes more important for shorter training
runs.

In sum, this paper (i) emphasizes the impor-
tance of the choice of mini-batch sampling strat-
egy in semi-supervised learning, (ii) analyses the
differences between the common over-sampling
of labeled data and standard uniform sampling
throughout the training process using FixMatch,
and (iii) demonstrates the viability of uniform sam-
pling with long training budgets, enabling its use
in cases where over-sampling labeled data is not
possible, such as in multi-task learning.
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2 Related work

Most semi-supervised learning methods use some
mechanism that minimizes the effect of confirma-
tion bias, either at the earlier stages of training or
throughout. One such mechanism directly ramps
up the weight for the unsupervised loss term dur-
ing training, starting from zero. It was originally
proposed in Grandvalet and Bengio [6] and is re-
ported to be used in most works [9, 2, 8, 20, 3].
FixMatch does not use the weight ramp-up as it
instead sets a threshold to use only confident pre-
dictions as pseudo-labels and averages the loss on
these over the total number of unlabeled samples
instead of over the number of pseudo-labels used.
This achieves a similar effect to the ramp-up since
it decreases the contribution of the unsupervised
loss when the model produces low confidence pre-
dictions early in the training.
A second mechanism is to over-sample labeled

data, i.e. repeating labeled samples more of-
ten than unlabeled ones when constructing mini-
batches. This is usually implemented by splitting
the labeled and unlabeled samples as two separate
datasets and sampling the labeled and unlabeled
parts of the mini-batch from each. Then, the first
set that gets depleted is repeated as many times
as needed until the other one is used up. Since
the labeled dataset is typically much smaller, this
results in the repetition of labeled samples at a
higher rate. This approach was already used in
Rasmus et al. [16]2 although without any explicit
mention in the paper. Most recent works in semi-
supervised learning use this setting, both using
consistency-based, pseudo-labeling or self-training
methods, but did not study the impact of sam-
pling mini-batches in this way. Some methods set
equal sizes for the labeled and unlabeled parts of
each training mini-batch [16, 14, 3], but some use
a larger unlabeled batch size [20, 11, 1, 22, 18, 23].
Both FixMatch [18] and Noisy Student [23] in-

clude ablation experiments on this ratio and con-
clude that a larger ratio of unlabeled samples in
each training mini-batch leads to better perfor-
mance. Arazo et al. [1] is the only work we are
aware of that studied the effect of keeping a min-
imum amount of true labels in each mini-batch in
pseudo-labeling, showing that it is indeed an ef-

2See: https://github.com/CuriousAI/ladder/blob/
5a8daa1760535ec4aa25c20c531e1cc31c76d911/run.py#L74

fective way of reducing confirmation bias. Only
Temporal Ensembling [8] and one of the experi-
ments in Mean Teacher [20] use the implicit set-
ting. However, the latter mentions that repeating
labeled samples can be beneficial since ”the super-
vised training signal is strong enough early on to
train quickly and prevent getting stuck into uncer-
tainty” [5]. All methods relying on the explicit set-
ting can technically be adapted to use the implicit
setting instead.

3 Explicit vs. implicit setting

We aim at understanding how essential the explicit
setting is for good performance in semi-supervised
learning, and whether the implicit one can achieve
competitive results. To do so, we will compare the
final classification performance of both settings.

3.1 Experimental setting

We compare the explicit and implicit settings head
to head when using FixMatch [18], which uses
asymmetric perturbations in the input space in a
siamese network configuration with two branches.
The teacher branch gets weakly augmented sam-
ples (only flip-and-shift operations) and generates
pseudo-labels from them, filtering out those below
a certain confidence threshold. The student branch
gets strongly augmented samples via RandAug-
ment [4] and is trained using the standard cross-
entropy loss against both true labels (if available)
and the pseudo-labels generated by the teacher.

We use the semi-supervised image classification
problem on the CIFAR-10 [7] dataset for the main
experiments, as it is a standard benchmark in the
deep semi-supervised learning literature [14]. We
use three different amounts of labeled samples - 40,
250 and 4000 - simulating respectively a problem
with extremely limited labeled data at only four
labels per class, a scarcely-labeled problem with
approximately 0.5% labeled samples, and a semi-
supervised learning problem with a larger amount
of labeled samples with approximately 9% labeled
samples. We reserve 10% of the total samples in
the training set for validation and use the rest as
training data, which we split into labeled and un-
labeled subsets. All splits are done preserving the
class balance. The validation set is used for early
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stopping and for hyper-parameter tuning based on
random search with a budget of 100 trials per ex-
periment. We pick the hyper-parameters leading to
the highest validation accuracy on a single seed and
data split. We tune the following hyper-parameters
for each case: learning rate, batch size, weight of
the semi-supervised loss, and the ratio of labeled
data in each batch for the explicit setting,. Finally,
we report the final classification accuracy values on
the test set as the mean and standard deviation
over five different random seeds and five different
splits of the labeled samples in the training set.
In addition, we perform experiments on CIFAR-

100 with 2500 and 10000 labels, following the same
setting as for CIFAR-10 but not tuning the hyper-
parameters. Instead, we use the ones reported in
FixMatch [18] for the explicit setting and our best
single guess of a decent set of hyper-parameters for
the implicit setting.
For CIFAR-10 experiments, we use a Wide

ResNet-28-2 [24] (WRN-28-2) as the base network
with a linear classifier after the pooling layer and
train it via stochastic gradient descent with Nes-
terov momentum of 0.9 [15, 12, 19], a cosine learn-
ing rate decay schedule [10], and weight decay of
0.0005. For CIFAR-100, we use WRN-28-5 and a
smaller weight decay of 0.0001. Evaluation is done
on an exponential moving average of the model pa-
rameters with decay 0.999 [18], which we found
gave more stable results and significantly better
performance early in the training.
Each training run has a maximum budget for the

total number of samples that each model sees dur-
ing training. We set this budget to be equivalent
to 1000 epochs on the full training set, i.e. 45 mil-
lion samples, after removing 5000 samples from the
training set for validation. Therefore we refer to an
epoch as one pass through as many samples as the
size of the training set, regardless of whether each
sample has an associated label or not, or how many
times it has been repeated.
Other works [14, 18] have used a fixed number of

labeled samples or a fixed number of training steps
instead. We believe this approach leads to unfair
comparisons between supervised baselines or when
using different label ratios in each batch since for
higher ratios the models will effectively see many
more samples over training. Moreover, compar-
ing the total amount of samples seen aligns better
with the amount of compute used for each training

CIFAR-10 40 labels 250 labels 4000 labels All labels

Supervised 36.77± 4.48 59.88± .73 87.39± .20 96.54± .11

FixMatch(E) 83.44± 6.68 93.01± .58 94.89± .16 -
FixMatch(I) 73.90± 8.04 91.42± .98 94.84± .05 -

FixMatch(E) 6x 85.40± 2.83 94.40± .78 - -
FixMatch(I) 6x 86.59± 4.14 94.00± .54 - -

CIFAR-100 2500 labels 10000 labels All labels

Supervised 47.26 67.58 82.38

FixMatch(E) 62.86 74.61 -
FixMatch(I) 55.53 71.83 -

Table 1: Classification accuracy on test data for su-
pervised baselines and FixMatch with both implicit (I)
and explicit (E) settings using different amounts of la-
bels. Shown as mean and standard deviation on 5 runs
with different seeds and data splits for each CIFAR-10
experiment and a single seed and data split for CIFAR-
100. 6x indicates six times longer training budget.

run. Using this definition of training length, Mix-
Match [3] training runs go through ∼ 134 million
samples since they use a total batch size of 128 (64
for labeled samples and 64 for unlabeled samples)
but they only count the labeled ones towards their
definition of total length. FixMatch, using an un-
labeled batch size seven times larger, uses a total
batch size of 512 and the total number of samples
seen during training is ∼ 536 million.
We choose to use a smaller budget on purpose

to better reflect what would happen in practical
applications and to keep contained the computa-
tional budget required for our experiments. We
noticed that for smaller amounts of labeled data
longer training budgets are important, so we in-
clude longer experiments in such cases as well.

3.2 Experimental results

Table 1 shows the classification accuracy of our
models trained on CIFAR-10 and CIFAR-100 with
different amounts of labels when using FixMatch in
either the explicit or implicit settings.

We observe that both settings outperform super-
vised baselines by a significant margin in CIFAR-
10. For 4000 labels both settings perform similarly,
however we see a larger gap favouring the explicit
setting by 1.6 percentage points when only using
250 labels. A significantly larger gap of 9.5 percent-
age points appears when using 40 labels, although
both settings show a much larger standard devia-
tion. Comparing individual runs on each data split
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for both settings, we can see that the large stan-
dard deviations are caused mainly by the choice of
labeled samples in each data split but also that the
implicit setting is more sensitive to it.

We hypothesize that this gap is due to the much
smaller amount of labeled samples present (on aver-
age) in each training mini-batch for the lower-label
regimes in the implicit setting, where for example
around only one labeled sample appears for every
200 unlabeled samples for the 250-label case. Due
to this lack of direct supervision at the start, the
model learns at a very slow pace. This is because
the model is initially relying only on labeled data
as the predictions on unlabeled data are below the
confidence threshold. A longer training budget of
6000 epochs improves the performance of both set-
tings. The gap in test accuracy between them re-
duces over training, and both settings end up per-
forming on par.

We see similar results for CIFAR-100. The gap
between settings is larger at lower label regimes,
reaching 7.3 percentage points better accuracy
for the explicit setting with 2500 labels and 2.8
percentage points with 10000 labels, and both
perform better than the supervised baselines.

4 Analysis

Training dynamics We analyze in Figure 3 the
training curves of models in both settings for 250
and 4000 labels to illustrate the impact of their
different training dynamics. We can see that the
explicit setting does indeed fit quicker the labeled
data; training error, shown in (a, top), and super-
vised loss, in (b, top), both decrease quickly thanks
to more direct supervision from repeating labeled
samples. The models start giving confident pre-
dictions earlier, as shown in (c, top), and thus the
number of pseudo-labels, in (c, bottom), and the
semi-supervised loss, in (b, bottom), grow quicker.
On the other hand, for the implicit setting, the
model takes much longer to fit the training data
and to produce high-confidence predictions that
will be used as pseudo-labels. Therefore, the semi-
supervised loss grows much slower, having no effect
for the first 100 epochs while learning is very slow
and test accuracy is barely better than random.
This clearly points to a lack of direct supervision

from true labels early in training as one cause for
the implicit setting lagging behind in terms of final
test error with our relatively short training budget
with fewer labeled samples.

Moreover, we make use of privileged information
(the labels dropped to simulate unlabeled samples)
to compute and show in Figure 3 (d) the ratio of
correct predictions on unlabeled samples and the
ratio of the correct pseudo-labels, i.e. the subset of
predictions on unlabeled data whose confidence was
above the threshold of 0.95. We see that not only
are pseudo-labels used earlier in the explicit setting
but are also cleaner, i.e. more of them are correct,
from early on and can thus help guide learning of
the true classification task better. Also, we can see
that the usage of confident predictions on unlabeled
data as pseudo-labels is effective since the subset
of chosen pseudo-labels has a ratio of correctness
consistently higher than that of all predictions on
unlabeled data.

This analysis holds for both amounts of labeled
samples shown, although the differences are much
smaller for the 4000-label experiments. In this last
case, the implicit setting has a lower test error ear-
lier during training which we hypothesize might be
due to the larger over-fitting to labeled samples in
the explicit case, before the loss on pseudo-labels
starts having a regularizing effect and the model
can generalize to unseen data.

Training without direct supervision We hy-
pothesize that supervision from true labels loses
importance when the model can already generate
cleaner pseudo-labels, which could explain why ei-
ther using more labels or longer training budgets
reduces the performance gap between settings.

To verify this hypothesis, we run FixMatch with
the semi-supervised loss only but starting training
from different supervised checkpoints. All models
improve their test accuracy at first - the best goes
from 87.39% to 92.9% - but their accuracy ends up
dropping suddenly to levels close to random while
fitting the pseudo-labels. This can be attributed
to the accumulation of confirmation errors and the
lack of supervision from true labels to correct for
these. We see this happen as well for long experi-
ments with the implicit setting and few labels, but
with learning recovering after the dip. Thus, we
conclude that seeing some labeled samples is still
required to guide learning to the true task even
when few pseudo-labels are incorrect.
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(a) (b) (c) (d)

Figure 3: Training curves for CIFAR-10 with 250 labels (red) or 4000 labels (blue) using FixMatch in the
explicit (solid line) or implicit (dashed) settings. (a) Top: training error on labeled samples. Bottom: test error
on the unseen test set. Values at the end of each epoch. (b) Top: evolution over training of cross-entropy loss
on labeled training data. Bottom: semi-supervised cross-entropy loss between pseudo-labels and predictions on
unlabeled data. (c) Top: average confidence of predictions on unlabeled samples in each batch. Bottom: ratio
of predictions used as pseudo-labels. (d) Top: Ratio of correct predictions on unlabeled data. Bottom: Ratio of
correct pseudo-labels on each batch.

5 Conclusion

Our experiments in semi-supervised image classifi-
cation show that using the implicit setting incurs a
penalty in final accuracy compared to using the ex-
plicit setting. How large this gap becomes depends,
however, on the amount of labels and training bud-
get. Both settings still outperform supervised base-
lines by a large margin. The explicit setting is sig-
nificantly more efficient in the beginning but the
difference between both settings is reduced over
training and both perform on par when more la-
beled data is available and for longer training runs.
However, seeing labeled samples remains important
even in the later stages of training, as it avoids
falling into confirmation bias. The more general
aspects like the required amount of labels and the
most effective way to use them are yet to be stud-
ied. Overall, these are important results since the
implicit setting is much simpler to use, potentially
allowing semi-supervised learning on settings like
partially-labeled multi-task problems which would
not be possible in the conventional explicit setting.

This analysis was done in the context of Fix-
Match, which we believe is a good representative
of modern semi-supervised deep learning methods
combining consistency regularization and pseudo-
labeling approaches. Future research will be di-
rected to see if the results also apply to semi-
supervised methods that are substantially different.

Finally, we suggest two possible alternative ap-

proaches to mini-batch sampling in the multi-task
scenario. First, if there is a large enough amount
of samples labeled for all tasks, a version of the
explicit setting could be constructed using fully
labeled samples versus partially labeled samples.
Second, we could construct a variation of the im-
plicit setting with a guaranteed minimum number
of samples labeled for each task so that there is al-
ways some direct supervision from true labels for
each task, in each mini-batch. Studying these and
other possible sampling methods will be an inter-
esting direction for future work.
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