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Abstract

Automatic detection of abnormal anatomies or
malformations of different structures of the human
body is a challenging task that could provide sup-
port for clinicians in their daily practice. Compared
to normative anatomies, there is a low presence of
anatomical abnormalities in patients, and the great
variation within malformations make it challenging
to design deep learning frameworks for automatic
detection. We propose a framework for anatomi-
cal abnormality detection, which benefits from us-
ing a deep reinforcement learning model for land-
mark detection trained in normative data. We de-
tect the abnormalities using the variability between
the predicted landmarks configurations in a sub-
space based on a point distribution model of land-
marks using Procrustes shape alignment and prin-
cipal component analysis projection from norma-
tive data. We demonstrate the performance of this
implementation on clinical CT (Computed Tomog-
raphy) scans of the inner ear, and show how syn-
thetically created abnormal cochlea anatomy can
be detected using the prediction of five landmarks
around the cochlea. Our approach shows a Receiver
Operating Characteristics (ROC) Area Under The
Curve (AUC) of 0.97, and 96% accuracy for the
detection of abnormal anatomy on synthetic data.

∗Corresponding Author: plodi@dtu.dk

1 Introduction

The detection of abnormal anatomies in medical
images has a key role in accurate diagnosis making.
The detection of different types of malformations in
the clinic is usually performed by visual inspection
of clinical images, which makes the diagnosis and
detection very sensible to the practitioner’s experi-
ence and subjectivity. State-of-the-art deep learn-
ing methods have shown high performance for au-
tomatic detection of anomalies as presented in [3]
using well-known architectures. Similar deep learn-
ing approaches are also use in a clinical context
for anatomical anomalies as in [6]. However, train-
ing such a model requires large amounts of labeled
medical data, which is challenging and expensive to
acquire. Additionally, these approaches suffer from
limited generalizability because training data rarely
faithfully represents all possible pathological ap-
pearances, as images representing the less common
malformations are particularly complicated to ac-
quire [1]. It has been shown how simpler methods,
such as principal component analysis (PCA), can
be employed for anomaly detection in e.g. physi-
ological measurements [2] [8]. While for detection
of abnormal anatomies in image data, most studies
employ more advanced deep learning methods due
to the increased complexity of the data [1, 11].

In this paper, we use a Communicative Mul-
tiple Agent Reinforcement Learning (C-MARL)
model [9] for landmark detection within the struc-
tures of the inner ear. Automatic landmark de-
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tection is a very active field of research, and with
the popularization of deep learning, multiple neu-
ral networks have been used for landmark local-
ization. From an object search perspective, the
problem of locating landmarks in 3D images can
result in drops of accuracy and increased process-
ing times due to the unnecessary exhaustive map-
ping or scanning of the images. Guesu et al. [5]
first showed how a deep reinforcement learning ap-
proach allows different agents to learn the optimal
policy to locate the landmarks’ positions using the
image information at different scales. This method-
ology resembles normal human strategy, where the
person who is looking for a certain landmark would
initially locate the region of the image where the
landmark should be, and zoom-in multiple times
for a fine-tuned location of the exact point. To
benefit from the use of multiple agents, Vlontzos et
al. [13] introduced implicit communication between
the agents (MARL model), in which the agents
share the weights of the convolutional neural net-
work (CNN) layers. Leroy et al. [9] further included
explicit communication between the agents, sharing
the average weights of the fully connected layers (C-
MARL model). This communication scheme allows
for a more robust localization of landmarks, espe-
cially when they present a spatial correlation across
the dataset.
We base our abnormal anatomy detection on

the C-MARL model, with the expectation that
when a certain structure is not present in the CT
scan, the agents of the C-MARL model trained
exclusively on normal cases will not converge to
a landmark located in the missing or malformed
anatomy. We thus exploit the knowledge about the
normal anatomies, as this carries implicit informa-
tion about the abnormal anatomies. The agents
will show a lower degree of agreement regarding
the final position of the landmark, when presented
with an abnormal anatomy. To show this varia-
tion, we project the set of estimated landmarks in
a space that is configured according to the normal
anatomical variations of the landmarks. In order
to do so, we align the landmarks of the training set
using the Procrustes analysis [7] and use a PCA to
decrease the dimensions of the model. We then
examine the variability between the agents from
the C-MARL model in the PCA space, to deter-
mine whether or not the anatomy is normal. The
approach is evaluated on a dataset of clinical CT

scans of the inner ear which are labelled with the
seven landmarks shown in Figure 1. From these
images we artificially remove the cochlea structure,
thus artificially simulating a CT scan of a patient
with cochlear aplasia. It is known, that this mal-
formation in the inner ear is clinically relevant for
the diagnosis of hearing loss [12]. Furthermore, the
detection of some type of anomaly in the image
can be used not only for setting the special cases
apart but also as an initial classification that could
potentially be the first block of a sub-categorical
classification of the abnormalities.Landmarks
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Figure 1: Landmark locations within the facial
nerve and cochlear nerve. A) Overview of the seven
landmarks B) Close-up of the landmarks 1-4 C)
Close-up of landmarks 5-7. Edited from [10]

2 Methods

Our approach is based on using the output variabil-
ity of a model trained with normative data to detect
data anomalies. We employ the C-MARL model [9]
for detecting landmarks around the cochlear struc-
ture in the inner ear. In this configuration, the deep
reinforcement agents navigate through the 3D im-
age (environment) and observe their state, which
is defined as a patch of the image centered in the
agent location. This patch becomes smaller as the
agents get closer to the landmark (multi-scale).
Based on the observed state, they take different
actions from their action set (move up, down, left,
right, forward and backward) and receive a reward,
which is a function of the Euclidean distance be-
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tween the current position of the agent and the pre-
vious one relative to the target point (positive when
agent is getting closer and negative otherwise). The
expected reward of taking a certain action given a
state is known as the Q-value. In deep reinforce-
ment learning the Q-value of a certain state associ-
ated with each of the possible actions is estimated
by the use of a Deep-Q-Network.
For the C-MARL model the architecture of the

Deep-Q-Network resembles a typical image classi-
fication architecture, but with a set of fully con-
nected layers for each agent. The model diagram
and model architecture is shown in Figure 2. The
common CNN weights among all agents provide im-
plicit communication between the agents, meaning
the share the same layers responsible of extracting
the relevant features for their current state. Mean-
while, the shared average weight of the different
fully connected layers allows for implicit communi-
cation between agents, sharing information of the
layers that are used to map the extracted features
from the current state to the Q-value of each action
at that point. This setup has been proven specially
good when the different landmarks have a consis-
tent spatial correlation as it is the case of the inner
ear anatomy. The training configuration employed
is the same as presented by López Diez et al. [10],
where an overall rate of 2.6% incorrectly located
landmarks was reported, with an average error of
1.218 mm.
The agents are randomly initialized within 80%

of the image to avoid initialization on an edge. This
randomness makes the final estimation of the land-
marks a stochastic process. To be able to derive
some statistically significant results, we have com-
puted predictions five times for each of the images
in the test set.
For normal anatomies, it is assumed that the

found landmarks are placed in a certain spatial con-
figuration and that for abnormal cases, the found
landmarks will deviate significantly from this con-
figuration. In order to test if a case is within the
normal configuration, a point distribution model
(PDM) is constructed following the approach in [4].
In the following, the set of found or annotated land-
marks from a single scan is called a shape and there
is point-correspondence over all shapes in the train-
ing samples. The shapes are initially aligned using
a generalized Procrustes analysis [7]. A similarity
transform is used for the alignment and therefore

Figure 2: Diagram and architecture of the C-
MARL model. Modified from [10]

the PDM will describe the shape variation only and
not include the size variation.

Following the Procrustes analysis, a mean shape,
x is estimated and the aligned shapes can be used
in a principal component analysis (PCA) of shape
variation following [4]. The result of the PCA anal-
ysis is a set of principal components, concatenated
into a matrix Φ, describing the modes of shape
variation. A new shape can be synthesized by:
xnew = x + Φb. Here b is a vector of weights
controlling the modes of shape variation and Φ con-
tains the first t principal components. A given x′

shape can be aligned to the Procrustes mean and
be approximated by the PDM model by projecting
the residuals from the average shape into principal
component space: b = ΦT (x′−x). The resulting b
vector describes the shape in terms of coordinates
in PCA space and is used in the further analysis.

The C-MARL model is trained on images of
normal anatomies and their annotated landmarks.
These landmarks are also used to build the PDM of
the normal anatomy shape configuration. At test
time we use three agents per landmark and ran-
domly combine the three predictions into three dif-
ferent shapes of the full anatomical structure. By
approximating the shapes with the PDM, we are
able to reason about how likely the landmark con-
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Figure 3: Landmarks’ location in a sample CT scan
from [10]

figuration is, as opposed to merely looking at indi-
vidual distances between single landmarks. There-
fore, each shape is projected into the PCA space
and described by a vector bi, where i = 1, 2, 3 are
the different agents. To quantify the variation be-
tween the different agents, we measure the standard
deviation between the PCA loadings in the first 6
dimensions (corresponding to 90% of the variation
in the PDM).

3 Data

The dataset consists of 120 clinical CT scans of the
inner ear from cochlear implant patients with nor-
mal inner ear anatomy [10]. From each CT scan, a
region of interest is cropped centered in the cochlea
with a cubic shape of 32.1x32.1x32.1 mm3. The av-
erage voxel side length of the scans is 0.3 mm in the
range of [0.13, 0.45] mm. Each CT scan is anno-
tated with seven landmarks along the facial and the
cochlear nerve in the nearby region of the cochlea,
as shown in Figure 1 and 3.

To describe the cochlear image with the land-
marks, we use 5 of the 7 landmarks defined in
[10]. Landmark one and two are placed on oppo-
site sides of the cochlear nerve in the axial view,
number three identifies the point where the facial
nerve exits the internal acoustic canal, number four
shows the closest point of the facial nerve to the
cochlea structure, number five shows the high cur-
vature point of the facial nerve, and six and seven
characterize the more elongated part of this nerve

Figure 4: Sample CT scan from test set, before
(left) and after (right) the artificial cochlea removal
process.

in a region more distant from the cochlea. Neither
of these landmarks are placed within the cochlea.

For the further analysis for abnormality detec-
tion, only the five first landmarks are employed.
The first five landmarks are all positioned around
the cochlea, while landmarks six and seven are
further away from the anatomy in question for
this work. The last two landmarks, and thus the
six corresponding agents in the C-MARL model,
are therefore ignored in the further analysis. The
dataset is split into a training set containing 97 CT
scans, and a test set containing 23 CT scans. The
training data is used to train the C-MARL model
for landmark detection, while the test data is used
for the rest of the analysis of abnormality detection.

Abnormal CT scans are artificially generated by
removing the cochlea structure from the images in
the test set, thus generating corresponding pairs of
normal and abnormal CT scans with the same sur-
rounding structures of the inner ear. The cochlea
is delineated using the ITK-SNAP software [14]
to generate a rough segmentation of the cochlear
structure. This section of the image is then re-
placed by Gaussian noise, with mean and standard
deviation estimated from the intensities of the sur-
rounding region of the segmentation. An example
of the transformation process is shown in Figure 4.
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4 Results

For evaluation of the detection of abnormal
anatomies, the variation between the PCA loadings
for the 15 agents trained for the five landmarks is
evaluated. The plot in Figure 6a shows the stan-
dard deviation for each corresponding pair of nor-
mal and abnormal anatomy, and the graphs show

(a)

(b)

Figure 5: Results for the direct method on the land-
mark coordinates. a) Standard deviation between
the landmark coordinates for the 15 agents per run
(dotted lines) and their average (solid line) for the
normal and abnormal cases. b) ROC curves repre-
senting the five individual runs (colored lines) and
using the average standard deviation across all runs
(black line).

how the standard deviation is increased for the ab-
normal cases compared to the normal ones. In Fig-
ure 6b it can be observed that the ROC curves show
a high ROC AUC and maximum accuracy for all
five runs, but the averaged method, where all five
runs are used to compute the overall standard de-
viation, shows the highest ROC AUC of 0.97 and a
96% accuracy for detection of abnormal anatomies.

(a)

(b)

Figure 6: Results for our proposed PDM and PCA
approach. a) Standard deviation between the PCA
loadings for the 15 agents per run (dotted lines)
and their average (solid line) for the normal and
abnormal cases. b) ROC curves representing the
five individual runs (colored lines) and using the
average standard deviation across all runs (black
line).
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The results are computed using the test set which
contains 23 3D volumes of normative data that has
not been seen by the DRL model (trained on 97
images) and the abnormal anatomy version of each
image artificially generated as described in Section
3. Overall, the test set contains 46 CT scans: 23
with normal anatomy and 23 with an artificial ab-
normality. In order to evaluate whether the PCA
space of the PDM provides an advantage against
analyzing the final configuration of the agents in
the original coordinate space, we have also evalu-
ated the variability in the original image space. For
each of the three agents per landmark, we calculate
the standard deviation of their mutual Euclidean
distance. To be able to compare with the repre-
sentation in the sub-dimensional space, we average
all the standard deviations of the five landmarks
in each CT scan, so we obtain one value for each
scan for each run. Figure 5a shows the represen-
tation of these values for the 23 pairs of normal
and abnormal CT scans in the test set for each
run, together with the overall average among the
five runs. It should be noted that the standard de-
viation in Figures 6 and 5 corresponds to different
measurements and the direct comparison should be
avoided. The standard deviation seen in Figure 6 is
the standard deviation of the distance between each
shape projection in the 6-dimensional PCA space
of normative data, while in Figure 5 we observe
the mean standard deviation of the agents position
among the same CT.

Figure 5b shows the ROC curves associated with
this approach, as well as the maximum accuracy for
each run. In this case, the best performing method
is not the average between the five runs, as previ-
ously seen. The best results is found for run number
two, where the ROC AUC is 0.95, and the maxi-
mum accuracy for all runs is 93%.The performance
of this method is thus lower than of the proposed
method with PDM and PCA, and less stable as the
accuracy results of this method have a larger vari-
ation between the runs. Figures 6 and 5 cannot be
directly compared as in Figure 6 we use the stan-
dard deviation of distances in a 6-dimensional PCA
space and in 5 we use the standard deviation of dis-
tance in mm in the 3-dimensional image space.

5 Discussion

Taking five independent runs of the landmark pre-
dictions into account resulted in better results and
a more reliable assessment of our method. It can
be seen that the accuracy benefits from taking all
the runs into account as shown in Figure 6b, where
the best performing accuracy of 96% is obtained
when taking all five independent runs into consid-
eration. This leads us to believe that the method
could benefit from an increased number of runs,
given that it appears to provide statistical stabil-
ity to the method. Potentially, a larger number
of agents per landmark could be trained, which
may also improve robustness. However, training
a greater number of communicating agents would
require a significantly longer training and testing
time, so a trade-off should be sought between the
method’s accuracy and the computing cost. We be-
lieve our current approach with five runs and three
agents per landmark shows a good compromise be-
tween accuracy and computational cost.

We have used artificially generated abnormal
data to test our approach. This scenario has shown
a good performance providing a reliable proof of
concept for our method. Further work aims at test-
ing the approach on data with real anomalies and
seeing whether or not the results are consistent with
the ones presented in this work.

The results show that our proposed approach of
measuring the variation of the PCA of the PDM
achieves a higher performance compared to mea-
suring the variation of the located landmarks in the
image space. The PDM takes into account the full
shape of the anatomy, while the inter-agent vari-
ance in the image space only takes into account the
level of agreement between the multiple agents as-
sociated with a certain landmark, but ignores the
overall shape. These results show that the method
benefits from the shape model, and leads to a more
robust prediction of anomalies than just using the
analysis in the image space.

Comparison against supervised methods is not
possible at this stage due to the lack of labeled
data for training, in a further analysis more arti-
ficial abnormal data could be generated to train a
fully supervised method. However, we consider one
of the main advantages of our approach is that it
does not require data with abnormalities for the
training stages.
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6 Conclusion

We have presented an approach for detection of ab-
normal anatomies in the inner ear based on land-
mark predictions from a C-MARL deep reinforce-
ment learning model. The method has demon-
strated a high performance on the synthetic data
for the detection of presence or absence of the
cochlea structure. This method manages to both
locate the area of the cochlea in the CT scan,
and then classify whether or not the structure is
present.
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