
SparseMeshCNN with Self-Attention for Segmentation of Large

Meshes

Bjørn Hansen∗1, Mathias Lowes∗1, Thomas Ørkild1, Anders Dahl1, Vedrana Dahl1, Ole
de Backer2, Oscar Camara3, Rasmus Paulsen1, Christian Ingwersen†1,4, and Kristine

Sørensen†1

1Department of Applied Mathematics and Computer Science, Technical University of
Denmark, Kgs. Lyngby, Denmark

2The Heart Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
3BCN MedTech, Universitat Pompeu Fabra, Barcelona, Spain

4Trackman A/S, Vedbæk, Denmark

Abstract

In many clinical applications, 3D mesh models of
human anatomies are important tools for visual-
ization, diagnosis, and treatment planning. Such
3D mesh models often have a high number of ver-
tices to capture the complex shape, and process-
ing these large meshes on readily available graphic
cards can be a challenging task. To accommodate
this, we present a sparse version of MeshCNN called
SparseMeshCNN, which can process meshes with
more than 60 000 edges. We further show that
adding non-local attention in the network can mit-
igate the small receptive field and improve the re-
sults. The developed methodology was applied to
separate the Left Atrial Appendage (LAA) from the
Left Atrium (LA) on 3D mesh models constructed
from medical images, but the method is general and
can be put to use in any application within mesh
classification or segmentation where memory can
be a concern. 1

1 Introduction

A variety of complex anatomies exist in the human
body and in many clinical settings patient-specific
models are a key element in treatment and diagno-
sis. Triangulated meshes provide an efficient rep-

∗Equal contribution
†Equal contribution
1Code available at Github here

resentation for these tasks, and can be obtained
either directly from a 3D surface scanner or from
isosurfacing in image volumes. In many clinical
applications the meshes to be processed consist of
many triangles and exhibit large variations in shape
and size. Combining this with the fact that clinical
datasets often have few examples, unbalanced class
distributions, and contain noise, it is a difficult task
to process such data. One example of such clinical
application is the task of segmenting the Left Atrial
Appendage (LAA) from the remaining Left Atrium
(LA). The LAA is a tubular-like structure origi-
nating from the LA and exhibits large variations
in shape and size. Patients suffering from Atrial
Fibrillation (AF) have a 5-7 times higher risk of
experiencing an ischemic stroke, and for these pa-
tients, the most common thrombus location site is
inside the LAA, where up to 99% of the reported
thrombi are located [3, 2]. To prevent strokes in
AF-patients one can implant an occluding device
into the LAA opening. We aim to demonstrate an
automatic method for LAA segmentation, which
can be a useful tool for medical doctors to plan
and execute the LAA occlusion procedure.

Part segmentations of geometric data such as
meshes are heavily investigated within the field
of Geometric Deep Learning [5, 6, 10, 12, 15],
but the methods are all developed for standard-
ized datasets with limited variations and a small
number of edges. These methods have not yet in-
truded into the medical domain, and we believe a

https://doi.org/10.7557/18.6281

© The author(s). Licensee Septentrio Academic Publishing, Tromsø, Norway. This is an open access article distributed
under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

1

https://github.com/s183983/Sparse_MeshCNN_w_Attention
https://doi.org/10.7557/18.6281
http://creativecommons.org/licenses/by/4.0/

reason for this is their inability to process large
meshes without infeasible large memory require-
ments. In this paper, we, therefore, introduce a
memory-reduced version of the popular MeshCNN
[5] and call it SparseMeshCNN. Recent modifica-
tions to the MeshCNN architecture includes in-
creased representational power by leveraging a rep-
resentation of the first and second fundamental
form in MeshCNN Fundamentals [1], and increased
memory efficiency on fine-grained medical data in
MedMeshCNN [17] by utilizing a sparse book keep-
ing matrix. However, both of these proposed im-
provements have drawbacks. MeshCNN Funda-
mentals lacks the ability to process larger meshes,
and MedMeshCNN does not address the issues with
increasing the number of edges while maintaining
small convolutional kernels, which limits the recep-
tive field to mainly capture local dependencies. To
circumvent this we introduce a non-local block [23],
which allows us to capture long-range dependencies
without the need for large stacks of convolutions.
We show that our SparseMeshCNN with attention
can process meshes with more than 60 000 edges
on a readily available 12GB GPU.

2 Related Work

In the following paragraphs, we will briefly intro-
duce four different clusters of methods for process-
ing geometric data: Conversion to euclidean data,
point cloud processing, graph-based methods, and
mesh-based methods. After this, we will introduce
attention and shortly describe current efforts for
part segmentation in medical applications.

Conversion to euclidean data. One can con-
vert a 3D object into multiple 2D-views and use
regular CNNs on each view [18]. Alternatively,
the surface can be converted into a 3D occupancy
grid, which can be processed with 3D U-nets [25] or
octree-based CNN’s [22]. These methods however
struggle with the artifacts introduced when map-
ping into the euclidean domain and the high mem-
ory requirements of, especially 3D convolutions.

Point Clouds. The lightweight point cloud rep-
resentation allows for processing a large number
of points with methods such as PointNet [14] and
PointNet++ [15]. The point clouds do not have any
information about connectivity and can therefore
not represent the topology of complex anatomies.

Graph-based methods. Graph-based meth-
ods consider meshes as graphs with vertices as
nodes and edges as relationships. The Mixture
Model Networks (MoNet) [11] showed that many
of the proposed CNNs for non-euclidean manifolds
are similar methods with different definitions of lo-
cal patches and weighing kernels. The Dual-Primal
Graph Convolutional Network (DPGCNN) [12] fur-
ther builds on this by adding Graph Attention Net-
works (GATs) [21] and combining information from
the primal and the dual graph. Common to many
graph-based methods is that they do not consider
the geometrical properties of the meshes. This is
especially evident in the pooling operations, which
often build on classic graph-coarsening techniques
aiming to minimize a non-task-specific error if pool-
ing is done at all.

Mesh-based methods. The mesh-based meth-
ods are designed to exploit the geometrical proper-
ties of triangulated meshes. The method from [19]
suggested using 2D CNNs to process features de-
fined on the tangent planes, whereas the Spiral-
Net [4] defines the convolutions on spirals around
each mesh vertex. Hanocka et al. [5] introduced
MeshCNN, where convolutions are defined on the
edges based on symmetric aggregation of features
from the 1-ring neighborhood of an edge. In ad-
dition, they propose a task-specific pooling opera-
tion that aims to collapse edges that contribute the
least to the decision-making. Milano et al. [10] com-
bined the feature extraction from MeshCNN with
the training method of DPGCNN by performing
alternating convolutions on the primal and dual
graph. The MeshWalker [6] by Lahav et al. uti-
lizes the mesh structure by feeding random walks
on the surface into a RNN. The features from the
walks are extracted as the translation in each step
of the walk.

Attention. In general terms, the attention
mechanisms allow for modeling dependencies in the
input without regards to their distance in the in-
put or output [20]. The Graph Attention Network
(GAT) from [21] generalized attention mechanisms
to graphs by gathering features from neighboring
nodes and weighing them through a learnable at-
tention parameter. The method showed promis-
ing results on network graph learning and mesh
classification and segmentation tasks [12, 10]. An-
other variant of attention is found in the non-local
block [23]. They demonstrate the effectiveness on

2

image and video classification and object detection,
but it has not yet been extended to geometrical
data.
Medical Applications. One other method has

been developed for automatic detection of the LAA
orifice [7]. The method takes base in a voxel-wise
segmentation of CT images and aims to find the
narrowest part of the LAA neck along the center-
line. Learning-based methods for mesh segmenta-
tion have however been explored in other medi-
cal fields. Yang et al. [24] segments aneurism on
brain vessels and compares methods working on
projected views, voxels, points, and mesh represen-
tations of the blood vessels. They show that the
segmentation accuracy increases, when the number
of edges in the mesh is increased, which emphasizes
the need for our proposed SparseMeshCNN.

3 Materials and Methods

This section contains a presentation of the dataset
and a short introduction to the main elements of
MeshCNN [5]. We mainly focus on how sparse ma-
trices can be used for bookkeeping in the pooling
operation and describe attention using non-local
blocks. Lastly, all relevant technical and implemen-
tation details are provided.

3.1 Data

The data is acquired and provided by Rigshospi-
talet, Copenhagen. It consists of 106 randomly
selected participants, who had undergone a car-
diac computed tomography angiography (CCTA)
examination for research purposes in the period
2010–2013. The images are semi-manually anno-
tated and the segmentation is converted to a tri-
angulated mesh using Marching Cubes isosurfac-
ing [8] and post-processed with one round of Lapla-
cian smoothing (relaxation factor 0.1) and a 50%
increase in triangle size as implemented in [13].
LAA segmentation. The part of the mesh that

is considered LAA was annotated using an auto-
matic method relying on point correspondence be-
tween all meshes in the dataset. An expert an-
notator marked the LAA neck points on the tem-
plate mesh and these points were propagated to all
other meshes. For each mesh, a plane was fitted
to the propagated neck points and small displace-

ments were added to the plane parameters to find
the plane that slithers the LAA neck with the small-
est possible cross-sectional area. The segmentation
is deemed satisfactory by visual inspection of all
examples by the expert.

Data split. We split the data into 76 meshes
used for training, 10 meshes for validation, and 20
meshes for testing. The number of faces in the
meshes ranges from 20 322 to 44 742, where 14.2%
to 33.3% of the faces belong to the LAA. Because of
these significant differences, we construct the data
split based on the number of faces in the mesh
such that a uniform distribution is approximately
achieved among the sets.

3.2 SparseMeshCNN

With MeshCNN, Hanocka et al. [5] introduced a
general convolution, pooling, and unpooling oper-
ation for meshes. These operations are defined on
the edges of the mesh and consider the 1-ring neigh-
borhoods of the edges i.e. all of the edges in the two
incident faces to a given edge. We shortly describe
the definition of convolutions using 1-ring neigh-
bors from the original MeshCNN and from there
focus on our contribution to reduce the memory-
consumption of the pooling and unpooling opera-
tions and how to introduce non-local attention.

Convolution on meshes. In MeshCNN, sym-
metric features are computed for each edge and
used to generate an image-like structure represent-
ing the mesh, on which it is possible to apply or-
dinary 2D convolutional operations. Five features
are computed for each edge: the dihedral angle,
the two opposite angles in the 2 connecting faces,
and the two ratios between the length of the edge
and the two ”heights” of the connecting faces. The
neighborhood is defined as the 1-ring neighbors and
one can therefore construct a 5-channel feature im-
age of size 5×ne×(nn+1), where ne is the number
of edges in the mesh and nn is the number of neigh-
bors. When applying 2D convolutions to such an
image, we combine the features from the edge it-
self and the features from the neighboring edges to
create new features. For more information on the
features and how to avoid ambiguities in ordering
see the original MeshCNN [5].

Pooling & unpooling on meshes. After each
convolution, a new feature vector is calculated for
all edges. The ℓ2-norm of the feature vector is cal-

3

culated as a measure of importance for each edge.
The edges with the lowest norm will be collapsed
iteratively by merging the vertices corresponding to
the edge and their features are averaged (see Fig-
ure 1).

Figure 1: The pooling and unpooling operator col-
lapsing and restoring edge e. Note the p and q
denotes the feature vectors of edges p and q. The
figure is modified from [5].

Because the unpooling operation has to restore
the mesh to its state before pooling, it is essential
to keep track of the collapsed edges during pool-
ing. It is in this stage we can reduce memory con-
sumption by introducing sparse matrices. To keep
track of the pooling, a matrix G of size ne × ne is
used. Each entry Gi,j denotes if edge i has been
collapsed into edge j. To collapse edge ei into ej , we
add row Gi to row Gj . However, for large meshes
the size of G, scales quadratically with the number
of edges, as the pooling sizes should be correlated
with the size of the meshes. To reduce the size
of G, we have implemented it as a SparseTensor
in PyTorch. PyTorch SparseTensors are stored in
coordinate-format (COO), which stores the values,
v, and the indices of those values, I. The matrix
I is constructed as a 2× n0 such that the first row
holds row indices of all non-zero elements in G and
the second row holds column indices. The current
state of SparseTensors in PyTorch is somewhat lim-
ited and we cannot easily make row addition in a
SparseTensor. To add row Gs to row Gt and thus
collapsing edge es into edge et, we need to find all
row indices of I with the same value as row s, ex-
tract the value of these indices as well as the indices
of the columns. The target row t and the column
indices are now appended to I and the extracted
values are appended to v.

The process of finding the row indices of I equal
to s, becomes less trivial when, instead of having a
single source edge s, we have a list of source edges,
s, and a list of associated target edges, t. Now we

both have to find all the indices of row I that is
also in s, but we also need to keep track of what
the target edge is for that specific source edge. To
solve this, we generated an intermediate matrix,
M, of size len(I)× len(s) where each entry Mi,j is
true if I1,i = sj i.e. the row index of i is equal to
the source row of j, and false otherwise. By finding
the indices of the true elements of M, we are thus
able to get elements of G and the matched source-
target pair, which we can then use to update G in
a vectorized manner. For large meshes M can be
quite large. To restrict the memory requirement
of M, we therefore restrict the size to be at most
len(I) × len(s1,2,...,b) where b is a buffer size. By
only selecting the first b elements of our source-
target pairs, we make a trade-off between speed and
memory. Through previous experiments we found
that a buffer size of b = 200 yielded best results.
Thus, we use this buffer size for the experiments
discussed in this paper.

3.3 Attention using non-local blocks

Wang et al. [23] introduced an approach to cap-
ture long range dependencies in data using a non-
local block. The progressive behavior of a convo-
lution operation is in the non-local block replaced
by directly computed interactions between any two
edges regardless of their distance. The interactions
between edges are captured with a generic non-local
operation given by

yi =
1

C(x)
∑
∀j

f (xi,xj) g (xj) , (1)

where f is a pairwise and g a unary function. The
input xi to the non-local block consists of the fea-
ture vector of the edge i itself and the symmetric
feature vectors of its 1-ring neighborhood. We are
thus computing interactions between each edge and
its 1-ring neighborhood and all other edges. As the
function f and the normalization C are chosen to

be the embedded Gaussian f (xi,xj) = eθ(xi)
Tϕ(xj)

and C(x) =
∑

∀j
f(xi,xj) the non-local opera-

tion becomes the self-attention module from [20],
with θ (xi), ϕ (xj) and g (xj) corresponding to the
queries, keys and values. These embeddings are
learned through the training of the model.

We add a residual connection such that the out-

4

put from the non-local block is

zi = Wzyi + xi, (2)

where yi is given in Equation 1.
The matrix storing the computed interaction be-

tween any two edges contains ne×ne elements, and
can therefore be quite memory heavy. To reduce
the amount of pairwise computations a subsam-
pling trick is used, where Equation 1 is modified
to

yi =
1

C(x̂)
∑
∀j

f (xi, x̂j) g (x̂j) , (3)

where x̂ is a subsampled version of x. This re-
duces the amount of pairwise computation to 1/4
and does not alter the non-local behavior. The sub-
sampling is done by applying a maxpooling layer
after the ϕ and g embeddings. To further reduce
computations the number of channels in the θ, ϕ
and g embeddings are set to half of the number of
channels in the input.

3.4 Implementation details

Network architecture. Using the defined con-
volution, pooling and unpooling operations we can
use a U-Net [16] architecture as our network. The
non-local blocks are placed after the last and second
to last pooling operations as illustrated in Figure 2.
At each stage in the U-Net, the number of edges is
pooled to a fixed number, which is given as a hyper
parameter to the model.

Figure 2: The network architecture for
SparseMeshCNN with attention. The number
of edges after each pooling operation is provided
in the lower left of each stage and the number of
channels is denoted in the top right of each stage.

Training details. The models were trained on
a 12 GB GTX Titan X graphics card. The loss
function is binary cross-entropy loss and the net-
work is updated using the Adam optimizer with a
learning rate of 0.001 for the first 200 epochs and
linear decay to zero over the next 400 epochs. An
epoch takes around 18 minutes, while a single for-
ward pass can be computed in 5-10 seconds.

Post processing. We utilize that the LAA is
one connected part of the mesh to improve the seg-
mentations. With connected component analysis
of the segmentations, we can extract the largest
connected LAA and LA components. If this leaves
unlabelled faces, these are filled with the label of
its nearest neighbor.

3.4.1 Data augmentation.

To compensate for the few available data examples,
we implement local augmentation and thin plate
spline augmentation.

Local augmentation. The features of the
MeshCNN are invariant to similarity transforma-
tions, i.e. scaling, rotation and translation do not
generate new features. However, we can apply
anisotropic scaling, where each vertex coordinate is
scaled separately. We scale all (x, y, z) coordinates
with (sx, sy, sz) with each sj being sampled ran-
domly from N (0, 0.12). In places where the mesh
is approximately flat, we apply vertex shifting and
edge flipping to augment the mesh without chang-
ing the morphology.

Thin plate spline augmentation. The thin-
plate spline (TPS) data augmentation is an aug-
mentation of the whole mesh, and the output of
the augmentation is a new mesh with new features.
We generate a grid ranging from the smallest x, y, z
coordinate values (xmin, ymin, zmin)

T to the largest
(xmax, ymax, zmax)

T and denote the grid points our
source points. By making a random displacement
to each of the source points we can acquire the tar-
get points as

tij = k · u · sij , (4)

where tij is the j’th coordinate of the i’th point, k
is a scalar and u ∼ U(−1, 1). We find a mapping
f : s 7→ t using the TPS basis functions ϕ(r) =
r2 log r and a linear polynomial basis. The acquired
mapping from the source points to the target points
can now be used on all vertices in a mesh, thus a
new training example has been made.

5

SparseMeshCNN Attention
Pooling res. [28k,24k,20k,16k,12k,10k] [24k,20k,16k,12k,10k]
Features [16,32,64,128,256,256,512] [8,16,32,64,128,256]
Conv. Layers 4 4
NL block None Two bottom layers

Table 1: Settings for the best performing models with and without attention.

SparseMeshCNN +Attention
+CC +CC

Area accuracy[%] 92.36 95.36 93.23 96.19
Area DICE[%] 79.79 88.65 81.53 90.71
COM distance[mm] 11.61 5.25 11.14 4.87

Table 2: Area weighted face accuracy, DICE-score and center-of-mass distance for our proposed
SparseMeshCNN with and without attention, before and after connected component analysis (CC).

4 Experiments and Results

Since we are segmenting surfaces, we argue that the
most representative evaluation methods should op-
erate on the faces of the mesh. Since the faces can
have different area, we present an area weighted
face accuracy and dice score. We furthermore com-
pute the center-of-mass (COM) of the poly-ring
separating the LAA from the remaining LA and
compare it between the true and the predicted seg-
mentation. The poly-ring is extracted as all edges
that are located between two faces that are assigned
to different classes. This COM is important to lo-
cate precisely as it can be interpreted as the in-
tended position of the occluding device.

Our SparseMeshCNN can process all meshes in
the dataset with no need to downsample the meshes
to decrease the number of edges. To evaluate the
effect of introducing non-local attention, we com-
pare to a standard SparseMeshCNN. To ensure fair
comparison we added an extra pooling layer at the
beginning of the SparseMeshCNN with 16 features
and a resolution of 28 000 edges and doubled the
number of features in each of the remaining layers.
See Table 1 for the exact pooling layers and num-
ber of features. The results are visualized Figure 3
and quantitatively shown in Table 2.

5 Discussion

Our SparseMeshCNN has shown to be able to learn
a complex anatomical segmentation task on meshes
with more than 60 000 edges while running on read-
ily available GPUs. The large increase in the num-
ber of edges however creates issues with a small
receptive field due to the small convolutional ker-
nels and the limitations of manifold meshes making
it impossible to pool to very low resolutions in the
bottle-neck layers. The non-local attention seemed
to increase the segmentation accuracy. Due to our
restrictions in memory requirements, it was only
possible to place the non-local block in the lower
layers of the network, which means interactions can
only be computed between higher-level features in
a low-resolution version of the mesh. The bene-
fit of the non-local block is that it can easily be
plugged in at any stage as a substitution for a nor-
mal convolutional layer. The non-local block can
therefore easily be added at earlier stages in appli-
cations where memory is less of an issue.

Attention was implemented to increase our mod-
els receptive field, which was problematic in early
experiments. Another way to increase the receptive
field is by having a deeper network with many more
convolutions. Experiments with this has shown an
almost equally as good performance. We were not
able to compare the significance of the sparseness
of our method on the LAA segmentation since we
cannot process the data without it.

6

Figure 3: Visual results on the three different models showing (from the left) the best, 75th, 50th, 25th

percentile and worst segmentation results evaluated by Dice-score on the model using attention. We
show results with and without connected component (CC) post-processing.

The only other LAA ostium detection method
available [7] solely evaluated their results using the
COM distance. Compared to our ≈ 4.70 mm,
they reported a distance of ≈ 2.51 mm. It should
however be taken into account that their method
only takes a small patch around the LAA into ac-
count as opposed to our method processing the en-
tire LA. The COM-distance measure also favors
their methods since they restrict the position to
be on the centerline derived with manual interac-
tion. Alternatively one can see our results in re-
lation to the results on benchmark datasets such
as the human body segmentation [9]. In the orig-
inal MeshCNN [5] the meshes each consisted of
up to 2250 edges and they reported state-of-the-
art segmentation accuracy of 92.3% on the dataset.
Using the SparseMeshCNN with Attention on the
human body dataset we obtain an accuracy of
93.9%, which is a signifucant improvement to the
MeshCNN. However, newer methods such as Mesh-
Walker [6] by Lahav et al. reports an accuracy of
94.8%. With these results in mind, we argue that
the 96% accuracy we obtained on the LAA segmen-
tation task is acceptable considering the challenges
we encounter with a small data set, large meshes,
large shape differences, and possibly noisy labels.

6 Conclusion

The SparseMeshCNN is capable of processing large
meshes with more than 60 000 edges without need-
ing very large graphic cards that are difficult and

expensive to procure. The task of LAA part seg-
mentation is a typical clinical problem with few
data examples, large meshes, and highly variable
shapes. Nevertheless, we demonstrate results com-
parable to what has been achieved on idealized
benchmark data sets and take a step in the direc-
tion of automatic LAA ostium detection to aid the
LAA occlusion interventions.

References

[1] A. Barda, Y. Erel, and A. H. Bermano.
Meshcnn fundamentals: Geometric learn-
ing through a reconstructable representation.
CoRR, abs/2105.13277, 2021. URL https:

//arxiv.org/abs/2105.13277.

[2] A. Cresti, M. A. Garćıa-Fernández, H. Sievert,
P. Mazzone, P. Baratta, M. Solari, A. Geyer,
F. De Sensi, and U. Limbruno. Prevalence
of extra-appendage thrombosis in non-valvular
atrial fibrillation and atrial flutter in patients
undergoing cardioversion: a large transoe-
sophageal echo study. EuroIntervention, 15:
e225–e230, 2019. doi: 10.4244/eij-d-19-00128.

[3] M. Glikson, R. Wolff, G. Hindricks, J. Man-
drola, A. J. Camm, G. Y. Lip, L. Fauchier,
T. R. Betts, T. Lewalter, J. Saw, A. Tzikas,
L. Sternik, F. Nietlispach, S. Berti, H. Siev-
ert, S. Bertog, and B. Meier. EHRA/EAPCI
expert consensus statement on catheter-based

7

https://arxiv.org/abs/2105.13277
https://arxiv.org/abs/2105.13277

left atrial appendage occlusion - An up-
date. EuroIntervention, 15(13):1133–1180,
2020. doi: 10.4244/EIJY19M08 01.

[4] S. Gong, L. Chen, M. Bronstein, and
S. Zafeiriou. Spiralnet++: A fast and highly
efficient mesh convolution operator. Proceed-
ings - 2019 International Conference on Com-
puter Vision Workshop, Iccvw 2019, 2019. doi:
10.1109/ICCVW.2019.00509.

[5] R. Hanocka, A. Hertz, N. Fish, R. Giryes,
S. Fleishman, and D. Cohen-Or. Meshcnn:
A network with an edge. Acm Transactions
on Graphics, 38(4):90, 2019. doi: 10.1145/
3306346.3322959.

[6] A. Lahav and A. Tal. Meshwalker: Deep
mesh understanding by random walks. CoRR,
abs/2006.05353, 2020. URL https://arxiv.

org/abs/2006.05353.

[7] H. Leventić, D. Babin, L. Velicki, D. De-
vos, I. Galić, V. Zlokolica, K. Romić, and
A. Pižurica. Left atrial appendage segmenta-
tion from 3D CCTA images for occluder place-
ment procedure. Computers in Biology and
Medicine, 104:163–174, 2019. doi: 10.1016/j.
compbiomed.2018.11.006.

[8] W. E. Lorensen and H. E. Cline. Marching
cubes: A high resolution 3d surface construc-
tion algorithm. In ACM siggraph computer
graphics, volume 21, pages 163–169. ACM,
1987. doi: 10.1145/37402.37422.

[9] H. Maron, M. Galun, N. Aigerman, M. Trope,
N. Dym, E. Yumer, V. G. Kim, and Y. Lip-
man. Convolutional neural networks on sur-
faces via seamless toric covers. Acm Trans-
actions on Graphics, 36(4):71, 2017. doi:
10.1145/3072959.3073616.

[10] F. Milano, A. Loquercio, A. Rosinol, D. Scara-
muzza, and L. Carlone. Primal-dual mesh
convolutional neural networks. In Conference
on Neural Information Processing Systems
(NeurIPS), 2020. URL https://github.com/

MIT-SPARK/PD-MeshNet.

[11] F. Monti, D. Boscaini, J. Masci, E. Rodolà,
J. Svoboda, and M. M. Bronstein. Geomet-
ric deep learning on graphs and manifolds us-
ing mixture model cnns. Proceedings - 30th

Ieee Conference on Computer Vision and Pat-
tern Recognition, Cvpr 2017, pages 5425–5434,
2017. doi: 10.1109/CVPR.2017.576.

[12] F. Monti, O. Shchur, A. Bojchevski, O. Litany,
S. Günnemann, and M. M. Bronstein. Dual-
primal graph convolutional networks. volume
abs/1806.00770, 2018. URL http://arxiv.

org/abs/1806.00770.

[13] R. R. Paulsen, J. A. Baerentzen, and
R. Larsen. Markov random field surface recon-
struction. IEEE transactions on visualization
and computer graphics, 16(4):636–646, 2009.
doi: 10.1109/TVCG.2009.208.

[14] C. R. Qi, H. Su, K. Mo, and L. J. Guibas.
Pointnet: Deep learning on point sets for
3d classification and segmentation. volume
abs/1612.00593, 2016. URL http://arxiv.

org/abs/1612.00593.

[15] C. R. Qi, L. Yi, H. Su, and L. J. Guibas.
Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. CoRR,
abs/1706.02413, 2017. URL http://arxiv.

org/abs/1706.02413.

[16] O. Ronneberger, P. Fischer, and T. Brox. U-
net: Convolutional networks for biomedical
image segmentation. CoRR, abs/1505.04597,
2015. URL http://arxiv.org/abs/1505.

04597.

[17] L. Schneider, A. Niemann, O. Beuing,
B. Preim, and S. Saalfeld. Medmeshcnn - en-
abling meshcnn for medical surface models.
CoRR, abs/2009.04893, 2020. URL https:

//arxiv.org/abs/2009.04893.

[18] H. Su, S. Maji, E. Kalogerakis, and
E. Learned-Miller. Multi-view convolutional
neural networks for 3d shape recognition. Pro-
ceedings of the IEEE International Confer-
ence on Computer Vision, 2015, 2015. doi:
10.1109/ICCV.2015.114.

[19] M. Tatarchenko, J. Park, V. Koltun, and Q. Y.
Zhou. Tangent convolutions for dense pre-
diction in 3d. Proceedings of the Ieee Com-
puter Society Conference on Computer Vision
and Pattern Recognition, 2018. doi: 10.1109/
CVPR.2018.00409.

8

https://arxiv.org/abs/2006.05353
https://arxiv.org/abs/2006.05353
https://github.com/MIT-SPARK/PD-MeshNet
https://github.com/MIT-SPARK/PD-MeshNet
http://arxiv.org/abs/1806.00770
http://arxiv.org/abs/1806.00770
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2009.04893
https://arxiv.org/abs/2009.04893

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszko-
reit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need.
CoRR, abs/1706.03762, 2017. URL http:

//arxiv.org/abs/1706.03762.

[21] P. Veličković, A. Casanova, P. Liò, G. Cucu-
rull, A. Romero, and Y. Bengio. Graph atten-
tion networks. 6th International Conference
on Learning Representations, Iclr 2018 - Con-
ference Track Proceedings, 2018. URL https:

//openreview.net/forum?id=rJXMpikCZ.

[22] P. S. Wang, Y. Liu, Y. X. Guo, C. Y. Sun, and
X. Tong. O-cnn: Octree-based convolutional
neural networks for 3d shape analysis. Acm
Transactions on Graphics, 36(4), 2017. doi:
10.1145/3072959.3073608.

[23] X. Wang, R. Girshick, A. Gupta, and K. He.
Non-local neural networks. Proceedings of the
Ieee Computer Society Conference on Com-
puter Vision and Pattern Recognition, 2018.
doi: 10.1109/CVPR.2018.00813.

[24] X. Yang, D. Xia, T. Kin, and T. Igarashi. IN-
TRA: 3D intracranial aneurysm dataset for
deep learning. In Proceedings of the IEEE
Computer Society Conference on Computer
Vision and Pattern Recognition, pages 2653–
2663. Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recog-
nition, 2020. doi: 10.1109/CVPR42600.2020.
00273.

[25] Çiçek, A. Abdulkadir, S. S. Lienkamp,
T. Brox, and O. Ronneberger. 3d u-net:
Learning dense volumetric segmentation from
sparse annotation. Lecture Notes in Computer
Science (including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics), 9901:424–432, 2016. doi: 10.
1007/978-3-319-46723-8 49.

9

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ

	Introduction
	Related Work
	Materials and Methods
	Data
	SparseMeshCNN
	Attention using non-local blocks
	Implementation details
	Data augmentation.

	Experiments and Results
	Discussion
	Conclusion

