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Abstract

The implicit neural networks (INNs) can represent
images in the continuous domain. They consume
raw (X, Y) coordinates and output a color value.
Therefore they can represent and generate images
at arbitrarily high resolutions in contrast to con-
volutional neural networks (CNNs) that output a
constant-sized array of pixels. In this work, we
show how to super-resolve a single image using an
INN to produce sharp and photo-realistic images.
We employ a random patch-based coordinate sam-
pling method to obtain patches with context and
structure; we use these patches to train the INN
in an adversarial setting. We demonstrate that the
trained network retains the desirable properties of
INNs while the output is sharper compared to pre-
vious work. We also show qualitative and quan-
titative comparisons with INN and CNN baselines
on benchmark datasets of DIV2K, Set5, Set14, Ur-
ban100, and B100. Our code will be made public
at https://github.com/iSarmad/CiSRGan.

1 Introduction

Image enhancement and super-resolution find ap-
plications in various consumer products such as
smartphone photography, TV and video, etc.
The advent of deep learning and neural networks
has enabled advancements in single-image super-
resolution (SISR). Convolutional neural networks
(CNNs) are the most popular method for SISR [11].
However, the output of CNNs is an array of pixels
with a fixed size. Therefore, we need to train a new
network for different scaling factors. This strategy
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can be very inconvenient and time-consuming.

Recently a class of neural networks called im-
plicit neural networks (INNs) has gained attention
[33, 25, 28]. These networks can represent an image
by storing the color value of each pixel correspond-
ing to a given pixel coordinate [26, 31]. This image
representation leads to a continuous model where
one can zoom in to a single image arbitrarily by
changing the discretization level of the input coor-
dinates.

Chen et al. [8] proposed an INN based method
called local implicit image function (LIIF) for SISR.
They used a single INN to perform SISR for any
scale and achieved arbitrary zooming capability
i.e. given a neural network that was trained for
scales in the range of 1x to 4x (we refer to this
range as in-scale), their model can perform super-
resolution on 6x and 8x etc (out-of-scale). This
ability to extrapolate makes LIIF very beneficial
for super-resolution. Furthermore, LIIF is on par
with CNNs in terms of distortion metrics such as
the PSNR [22]. Despite these advantages, LIIF
suffers from blurry outputs for out-of-scale super-
resolution due to the use of pixel-wise loss function.
In this work, we propose continuous image super-
resolution generative adversarial network (CiSR-
GAN) that trains INNs in an adversarial setting
for super-resolution, thus improving the perceptual
quality and photo-realism of output for out-of-scale
SISR. To the best of our knowledge, training im-
plicit network for the task of out-of-scale single im-
age super-resolution in an adversarial setting has
not been proposed before.

We compare our method with previous state of
the art in INN and CNN based super-resolution
methods.
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2 Related Works

Convolutional Neural Network based SISR
Before convolutional neural networks (CNNs) [18,
19, 13], handcrafted algorithms were used to per-
form single image super-resolution (SISR); e.g.,
Yang et al. [39] used sparse coding to solve this
task. Recently, SISR using CNN has become main
stream [20, 27, 23, 37]. SISR can be divided into al-
gorithms that either focus on lowering distortion or
improving perceptual quality [6]. Our work focuses
on improving the perceptual quality.

Implicit Neural Networks for SISR Implicit
neural networks (INNs) have recently become pop-
ular as a way to represent continuous images and
shapes [26, 38, 4, 9, 3, 10]. Occupancy Networks
[25] and Deep SDF [28] used INNs for 3D shape rep-
resentation. Then Sitzman et al. [31], and Tancik
et al.[34] showed that the INNs could also be used
to represent images with high fidelity. Later works
learned GANs using INNs [7, 32, 30, 2]. Local
implicit image function (LIIF) [8] recently showed
that continuous representation could also be used
to perform SISR. The resulting SISR model is ag-
nostic to resolution, and a single model can be used
to super-resolve images to any required resolution.
LIIF [8] uses the L1 loss to train the network, which
renders the output blurry. However, we train our
model in the adversarial setting to perform photo-
realistic SISR and achieve a better result.

3 Method

Consider a low-resolution 2D Image I↓s that con-
sists of arrays of pixels. The high resolution 2D im-
age corresponding to I↓s is given as I −→ I(x, y) ∈
RX×Y . Where I↓s(x, y) ∈ R

X×Y
s , and s is the scal-

ing factor. Each pixel in I has coordinates x and y.
Let’s assume that a continuous image can be rep-
resented by a function fθ. Then the discrete image
I can be represented as:

I = fθ(c, z), (1)

z is the latent vector of the features of low-
resolution image I↓s. Note that c = xhr − v, xhr
are the pixel coordinates of image I and v are the
coordinates of the feature vector z in the image do-
main. In this work, fθ is the implicit neural (INN).

Figure 1: Training Method: The low-resolution
image I↓s is passed through CNN encoder to get
feature vector z. A random patch is selected from
the coordinate space of desired high resolution im-
age to obtain high resolution coordinates xhr. z
and xhr are passed through Local implicit function
image (LIIF) generator to obtain the super-resolved
output image I. This I is compared with IGT using
adversarial loss (‘Adv loss’), perceptual loss (‘VGG
loss’) and with IHR using pixel loss L1.

More specifically, for fθ we employ the local im-
plicit image function (LIIF) with default configu-
rations. For details, we refer to the paper [8].

Training LIIF in an Adversarial Setting An
overview of our approach is shown in Figure. 1.
The input image is passed through a convolutional
encoder to obtain a latent vector z. This latent
vector z and the image I coordinates xhr are used
to obtain the color values of the pixels at input co-
ordinates xhr using LIIF block [8]. Note that the
INN consists of a few multilayer perceptron (MLP)
layers that are present inside the LIIF block. We
need an output image patch to train the INN us-
ing adversarial and perceptual loss. The previous
method [8] uses a random set of coordinates from
the image. This sampling method works well when
the objective is to minimize the pixel-wise loss, e.g.,
L1. However, looking at only pixels means the con-
textual information is lost. Therefore, we propose
a random patch-based sampling procedure instead
of a random point-based sampling method to re-
tain contextual information. We first train LIIF
[8] with random patches instead of random points
with only a pixel-wise loss. We notice that this ran-
dom patch-based sampling method performs simi-
lar to a random coordinate-based sampling method
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in terms of performance.

We use the L1 loss following previous work [8],
which trains with only the L1 objective leading to
smooth images which blur the textural information
for out-of-scale super-resolution.

The use of a patch-based sampling procedure
permits the use of adversarial loss that is based on
generative adversarial network (GAN) [12]. The
GAN consists of a generator and a discriminator
that compete against each other. The goal of the
generator is to generate realistic images, whereas
the goal of the discriminator is to get good at clas-
sifying generated images as fake. In this joint train-
ing, both get better, resulting in realistic image
generation. However, instead of using a standard
GAN formulation, we use a relativistic GAN for-
mulation instead [16]. This formulation is differ-
ent from the standard discriminator, which esti-
mates the probability that an input image is real.
Instead, the discriminator predicts the probability
that a real image is relatively more realistic than a
fake one. We define a discriminator network DθD ,
which is optimized in an alternating manner along
with generator network GθG to solve the adversar-
ial min-max problem. The relativistic GAN solves
the following min-max problem:

min
θG

max
θD

EX [logDθD (IGT , GθG (I↓s))]+

EX [log(1−DθD (GθG (I↓s), I
GT ))]

(2)

Note that, X = (IGT , I↓s) ∼ (ptrain(IGT ), pG(I↓s)) and
DθD (IGT , GθG (I↓s)) = σ(C(IGT )−EGθ(I↓s)[C(GθG (I↓s))])

. Where EGθ(I↓s)[.] is mean over the generated data
in the mini-batch. σ is the sigmoid activation func-
tion and C is the output of discriminator before the
activation function. For details, we refer to [16].

We also use the perceptual loss that is the dis-
tance between the features of a pre-trained VGG
network between the predicted image I and the
ground-truth image IGT [15]. The complete train-
ing objective for the generator is as follows:

Lt = λ1L1 + λ2LG + λ3LV GG (3)

Where L1,LG and LV GG are the content, adver-
sarial and perceptual losses respectively. The λ1,
λ2 and λ3 are weighting hyperparameters terms for
each of the objectives respectively. We set them
following guidelines from previous work [37].

4 Experiments

We employed Pytorch for the implementation of all
our models [29]. We trained all the networks on an
NVIDIA RTX Titan GPU. The code is built on the
open-source implementations [8, 35].

Dataset and Metrics Like [8], we use the
DIV2K dataset with standard split for training and
validation [1] for fair comparison. Testing is per-
formed on multiple test datasets including Set5,
Set14, Urban100 and B100 [5, 40, 14, 24]. The
results for the related works were generated for
comparison using pre-trained models provided by
Chen et al. [8], and SPSR [23]. We use peak
signal-to-noise ration (PSNR) as a metric for com-
parison. PSNR (measured in dB) is a measure of
quality between super-resolved image and ground
truth. Even though it is a good measure of dis-
tortion, however, it is a poor indicator of percep-
tual quality [6]. Therefore we additionally report
perceptual similarity metric (LPIPS) [41] for com-
parison with previous works. LPIPS measures the
distance in VGG [15] feature space between the
super-resolved and the ground-truth image. The
lower the distance, the more perceptually similar
the super-resolved image is to the ground truth.

Training Details Similar to LIIF [8], we use
RDN [42] as the encoder, where a feature map z
is generated with the same size as the input image.
The INN fθ is a 5-layer MLP with ReLU activation
and hidden dimensions of 256. Encoder and INN
act as the generator in our model. The discrim-
inator is based on the architecture used by ESR-
GAN [37]. We use input patches of 64 x 64 during
training. The generator’s output is the same as the
input patch size, i.e., 64 x 64; therefore, the dis-
criminator is adjusted to cater to an image patch
of this size. We use transfer learning and initial-
ize the weights of our generator from a pre-trained
RDN-LIIF [8]. We train all models for 75 epochs
with batch size 16 on the DIV2K training set. We
utilize the Adam [17] optimizer for both generator
and discriminator with a learning rate of 1−4. The
weights for λ1, λ2 and λ3 are set to 1−2, 5−3 and 1
[37]. For a fair comparison with LIIF, we also train
the models from the 1x-4x scale range.
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Figure 2: Out-of-Scale Qualitative Comparison on DIV2K:. This figure shows the reference image
from DIV2k, the low-resolution input image (LR), super-resolved image using LIIF [8] and finally our
model’s output (CiSR-GAN). LR images are 6x and 12x down-sampled from ground-truth HR images
and super-resolved to 6x and 12x in the top 2 and bottom 2 rows respectively demonstrating out-of-scale
performance. All models were trained for 1x-4x only therefore we refer to 6x and 12x as out-of-scale.
From the images we can see that LIIF has a smoothing effect where it blurs out the high-level detail in
the images. Comparatively, our models clearly produces sharper results retaining textural details like
waves of water, texture in butterfly wings and fine hair of animals.

Qualitative Analysis

Out-of-Scale: The qualitative results on
DIV2K validation set [1] and Set14 [40] test set are
shown in Figure. 2 and Figure. 3 respectively. The

proposed CiSR-GAN produces realistic images
containing textures due to the adversarial and
perceptual nature of the objective as compared
to the LIIF [8]. LIIF’s output is always blurry
for out-of-scale super-resolution smoothing out
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Figure 3: Out-of-Scale Qualitative Comparison on Set 14:. This figure shows the high resolution
ground truth image (HR), the low-resolution image (LR), super-resolved image using LIIF model [8] and
our model’s output (CiSR-GAN’s). All input images are 6x down-sampled from ground-truth images
and super-resolved to 6x. All models were trained for 1x-4x only. We observe the same smoothing effect
for LIIF outputs where the high level details such as water waves and texture in the fence has been
blurred, while our model retains the high-level details and the image produced is much more realistic
than LIIF.

the textural information. At the same time, we
also maintain all the desired properties of an
implicit network, e.g., a single model can perform
super-resolution at higher scales even if the model
is not trained for it. All the results presented
in the qualitative comparison are for 6x or 12x
upsampling to compare with LIIF, whereas we
train our models on 1x-4x down-sampled images.

In-Scale: Please note that CNN decoder based
models [37, 27, 21] are not a direct competitor
of our method since they can not perform out-of-
scale super-resolution. However, we test their per-
formance for in-scale super-resolution i.e. for 4x
scaling factor for the sake of comprehensiveness.
We compare with the best performing recent CNN-
based method Structure-Preserving Super Resolu-
tion (SPSR) [23], that recently showed great results
in retrieving sharp lines and geometry. All images
are 4x down-sampled from the ground truth HR
images and super-resolved to 4x. The performance
is shown in Figure. 4. SPSR model adds edge ar-
tifacts like lines or texture to the super-resolved
image whereas CiSR-GAN produces more realistic
results.

Quantitative Results

CiSR-GAN vs LIIF We compare our model
(CiSR-GAN) with previous work on the DIV2k
dataset, as shown in Table. 1. The perceptual sim-
ilarity metric (LPIPS) is a distance metric; there-
fore, the lower the value, the better. Whereas the
higher the peak signal-to-noise ratio (PSNR), the
better. Blau et al. [6] have previously shown
that there is a trade-off between distortion and
perception, and this can also be observed for our
model. CiSR-GAN formulation has lower PSNR
values than local implicit image function LIIF [8] as
it is trained on the adversarial and perceptual loss.
However, it consistently performs better than LIIF
in terms of LPIPS metric. Lower LPIPS means
that we can expect aesthetically pleasing results
from CiSR-GAN. CiSR-GAN can also be evaluated
for out-of-scale models easily since it is based on an
INN. It maintains the edge over LIIF in terms of
perceptual metrics for all scales evaluated.

In-Scale: We further compare the performance
with state-of-the-art methods, including SRGAN,
ESRGAN, and SPSR [23, 37, 20]. We notice that
CiSR-GAN outperforms all in LPIPS while main-
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Method
Metric In-Scale Out-of-Scale

×2 ×3 ×4 ×6 ×12 ×24 ×30

RDN-LIIF [8]
PSNR 34.99 31.26 29.27 26.99 23.89 21.31 20.59
LPIPS 0.0558 0.1344 0.1947 0.2760 0.4163 0.5506 0.5845

CiSR-GAN (ours)
PSNR 32.01 27.95 26.30 24.27 21.67 19.52 18.92
LPIPS 0.0254 0.0641 0.1016 0.1642 0.3409 0.4839 0.5319

Table 1: Distortion vs Perception. Scaling factor for training is in range ×1–×4. Best values are bold.

Dataset Metric SFTGAN [36] SRGAN [20] ESRGAN [37] SPSR [23] CiSR-GAN (ours)

Set5
LPIPS 0.0890 0.0882 0.0748 0.0644 0.0604
PSNR 29.932 29.168 30.454 30.400 30.05

Set14
LPIPS 0.4393 0.1663 0.1329 0.1318 0.1160
PSNR 26.100 26.171 26.276 26.640 26.62

B100
LPIPS 0.5249 0.1980 0.1614 0.1611 0.1436
PSNR 25.961 25.459 25.317 25.505 25.72

Urban100
LPIPS 0.4726 0.1551 0.1229 0.1184 0.1179
PSNR 23.145 24.397 24.360 24.799 24.36

Table 2: In-Scale Quantitative comparison with CNNs on benchmark datasets This table shows CiSR-

GAN with other perceptual quality focused methods. Best results are in bold. All models have been trained

and tested on 4x down-sampled images.

Figure 4: In-Scale Qualitative Comparison
with CNN:. This figure shows the reference im-
age, the high resolution image (HR), the 4x super-
resolved image using Structure-Preserving Super
Resolution (SPSR) [23] and our model’s output
(CiSR-GAN). In the SPSR output, we see lines in
the background and artifacts in the eye and the hair
whereas CiSR-GAN produces more realistic result.

taining comparable PSNR, as shown in Table. 2.
Generally there is large gap between the SPSR and
CiSR-GAN based on LPIPS metric, however, the
difference is small in the test set Urban100 [14].
This behavior is expected as the gradient guidance
based structure priors used in their model encour-
age the retrieval of lines and geometry that are
commonly found in that dataset.

5 Conclusion

In this work, we improved the perceptual qual-
ity of the implicit neural network based single im-
age super-resolution. The main hindrance in uti-
lizing adversarial losses for continuous image rep-
resentation models was the random co-ordinate-
based sampling procedure adopted by previous
works. We proposed to use a patch-based sampling
method. Then we trained the implicit neural net-
work with additional objectives based on adversar-
ial and perceptual losses. We demonstrated that
the resulting network produces sharp and photo-
realistic images while maintaining the desirable
properties of the implicit neural networks i.e out-of-
scale super-resolution. As future work, our method
can also be trained with gradient guidance based
structure prior to improve PSNR.
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