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Abstract

As the performance and popularity of deep neural
networks has increased, so too has their computa-
tional cost. There are many effective techniques
for reducing a network’s computational footprint–
quantisation, pruning, knowledge distillation–, but
these lead to models whose computational cost is
the same regardless of their input. Our human re-
action times vary with the complexity of the tasks
we perform: easier tasks–e.g. telling apart dogs
from boats–are executed much faster than harder
ones–e.g. telling apart two similar-looking breeds
of dogs. Driven by this observation, we develop
a method for adaptive network complexity by at-
taching a small classification layer, which we call
SideNet, to a large pretrained network, which we
call MainNet. Given an input, the SideNet re-
turns a classification if its confidence level, obtained
via softmax, surpasses a user-determined threshold,
and only passes it along to the large MainNet for
further processing if its confidence is too low. This
allows us to flexibly trade off the network’s perfor-
mance with its computational cost. Experimental
results show that simple single hidden layer percep-
tron SideNets added onto pretrained ResNet and
BERT MainNets allow for substantial decreases in
compute with minimal drops in performance on im-
age and text classification tasks.

1 Introduction

In recent years, neural networks have increased dra-
matically in size: [1] estimate a 300,000x growth in
compute since 2012, with a doubling period of 3.4
months. Since the “bitter lesson” [28] of machine
learning seems for now to be true, and performance
on machine learning tasks appears to scale with
model size and amount of training data [15], this

trend is unlikely to decelerate anytime soon. Neural
networks are increasingly used in industry to power
various large-scale applications–from voice recogni-
tion (Google’s Assistant and Apple’s Siri are pow-
ered by neural networks [30, 14]) to image process-
ing and natural language understanding–, so lower-
ing the computational cost of these models at infer-
ence time is a pressing problem. There are ways of
reducing the compute footprint of neural networks:
pruning removes less important connections be-
tween neurons [5]. Quantisation reduces the num-
ber of bytes used by each of the network’s parame-
ters [12]. Knowledge distillation uses a larger net-
work to train a smaller network on the large one’s
outputs [16].

These methods, although powerful, still lead to
networks spending the same amount of compute on
each input, regardless of the complexity of the in-
put. Yet humans take different amounts of time to
solve different tasks based on the complexity of the
tasks. It is easier to quickly distinguish between a
bear and a boat than it is to quickly distinguish be-
tween an Alaskan Malamute and a Siberian Husky.
This observation gave rise to the field of condi-
tional computation, in which neural network com-
pute costs are diminished by not passing the input
through the entire graph, but instead only a subset
of it. This lets the network spend less compute time
on easier inputs/tasks, and has the added benefit
of allowing the network to be sensitive to computa-
tional budgets (if the budget is high, the network
can afford to use more compute).

Existing implementations of conditional compu-
tation are generally complicated to engineer, and
consequently are not used much in industry [2].
To remedy this, we propose the simplest model of
conditional computation: attaching a single hid-
den layer perceptron, which we call SideNet, to
an intermediate representation of a pretrained net-
work, which we call MainNet. Unlike most existing
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conditional computation methods, the SideNet is
straightforward to train, and attaching a SideNet
to a MainNet is easy to engineer.

We also make three noteworthy observations: (i)
When attached to the early intermediate represen-
tations of ResNets, the classification confidences
of SideNets are calibrated, whereas the classifi-
cation confidences of their ResNets are not. (ii)
SideNet-based compute reduction can be comple-
mentary to knowledge-distillation and pruning: ap-
plying SideNets to DistilBERT [25], a heavily com-
pressed transformer model, still yields noticeable
performance savings (≈ 30%) for a small drop in
test accuracy (≈ 0.5%). (iii) SideNets make it easy
to explore compute-accuracy space, by making it
continuous rather than discrete.

2 Related Work

Architectures similar to SideNets: [24] first
run an image through a small convolutional neural
network to ascertain whether or not it can be clas-
sified with high confidence. If it cannot, they send
the image to a larger network, and use that clas-
sification as the final one. [4] build on this. They
first run an image through a small AlexNet clas-
sifier [20], and a regression model determines the
confidence level of the classification. If it is high,
the classification is returned; otherwise, the image
is sent through a GoogLeNet classifier [29], where
the same regression is applied. If the confidence is
still too low, it is sent through a ResNet [13], where
a final classification is returned. Our method dif-
fers from these because in ours less computation is
wasted: if the SideNet’s confidence in its predic-
tion is not high enough to return a classification,
then the intermediary representation it used will
continue flowing along the MainNet, and will not
have to be recomputed from scratch.

[21] is the paper most resembling ours: they
run an image through a main backbone network,
along with multiple small classification networks
along the backbone’s side that interrupt the flow
of the image through the main model if their con-
fidence is high enough. They demonstrated that
their method provided significant energy savings on
a Raspberry Pi computer. [31] build on this, by us-
ing attention mechanisms with their side classifica-
tion networks, and training them with knowledge-

distillation and a genetic algorithm. Our method
differs from these because it only uses one SideNet,
which makes training substantially easier (training
a network with multiple heads requires properly
weighting the losses of each head, which is chal-
lenging).

There are a variety of other architectures involv-
ing conditional computation: [3] use reinforcement
learning to learn a policy that directs an input only
through discrete parts of a network, rather than the
whole network. However, backpropagating through
discrete random variables is inefficient and slow. [2]
introduce a method to turn these discrete random
variables continuous, to increase the rate of learn-
ing, and use it to train control networks, networks
that control the amount of compute used at infer-
ence.

Studying intermediate representations:
[20] find that early layers of convolutional neural
networks mostly pick out simple textures and lines.
This suggests that if an image is texturally sim-
ple or distinctive, it should be able to be classified
in early parts of the network, rather than at the
very end. [21] argue that this holds: their model
was confident in its predictions when the input
was fairly straightforward, and passed it off to the
deeper model when it was more visually complex
(e.g. the digit 1 is less complex than the italicised
digit 1, and was classified earlier in the network).

Similarly, in natural language processing, [6] find
that early layers of BERT (a large transformer ar-
chitecture by [8]) attend to broad features of an
input, as opposed to later layers that tend to fo-
cus on a certain particular aspect of an input, and
[22] find that [CLS] tokens are heavily overparam-
eterised, and can be shrunk substantially without
affecting performance.

3 Method

Mathematical framework. A neural network
M , at a high level, is a function approximator. It
maps inputs x to outputs y: M(x) = y. Supervised
learning involves training the parameters of M to
best fit the training data (x, ỹ). We can decompose
this mapping M into sub-components, and view it
as a composition of transformations M1, M2, ...,
Mn of the input x into intermediate representations
x1, x2, ..., xm.
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Figure 1: SideNets can be attached to a wide
variety of networks. Here we visualise two net-
works equipped with SideNets. Left: A Distil-
BERT transformer. Its MainNet is untouched,
but a SideNet is added between encoders 1 and 2.
Right: A ResNet. Its MainNet is untouched, but
a SideNet identical to the one for DistilBERT is
added after its first block.

For simple architectures, like VGG [26], the com-
positions can be written simply, as below:

x1 = M1(x),

x2 = M2(x1) = M2 ◦M1(x),

...

y = xn = Mn ◦Mn−1 . . . ◦M2 ◦M1(x),

where the Mi are convolutional layers, max-
pooling layers, fully connected layers, and non-
linear layers.

More complicated architectures are more in-
volved to formalise, but can nonetheless still be
made to fit this framework of intermediate repre-
sentations. For example, if a layer of the network
involves a skip connection from layer i to layer k,
then we can write xk and Mk as:

xk = Mk(xk−1, xi) = xk−1 + xi.

Architecture. We call the net M the Main-
Net. On top of this MainNet backbone, we propose
adding a SideNet, a simple task-specific network S
which takes as input one of the MainNet’s interme-
diary representations xc, and returns a probability
distribution over the classes yc = S(xc). In our
experiments, we choose S to be extremely simple:

a fully connected layer, a non-linear ReLU layer
[23], a batch normalisation layer [17], a final fully
connected layer, and a softmax layer (or a sigmoid
layer in the case of binary classification). Although
the softmax operation is not a true reflection of the
model’s confidence [9], we find that using it as a
proxy for model confidence works well empirically.

SideNets can be attached to any intermediate
representation xi; in Figure 1 we illustrate two pos-
sible locations for SideNets on two different archi-
tectures: the DistilBERT transformer for natural
language processing and the ResNet for computer
vision.

Training SideNets. To train the SideNet
quickly, we can freeze the weights of the MainNet,
and update the SideNet’s weights on the normal
training data. The SideNet, by construction, has
very few parameters, and the input data only needs
to flow through a small fraction of the MainNet
to get to the SideNet, so the optimisation is fast
and converges quickly. Multiple SideNets S1, ..., Sp

with parameters W1, ..., Wp can be trained in par-
allel at different points along the MainNet, as long
as they return separate losses LS1, ..., LSp, since
by construction ∂Wi

∂Lj
= 0,∀i 6= j, provided that the

SideNets remain independent of each other. While
training this way is significantly faster, it does come
with a significant performance cost (on the order
of 3% in our experiments), so in performance-
critical models, fine-tuning the whole model with
the SideNet is preferable.

To fine-tune the weights of the MainNet along-
side those of the SideNet, we can backpropagate
over the weighted sum of their losses. If the Main-
Net’s loss is LM and the SideNet’s loss is LS , then
we can backpropagate over a loss L = LM + αLS .
In our experiments we always pick α = 1. To fine-
tune the weights of the MainNet alongside those of
multiple SideNets, each with losses LS1, ..., LSp,
the same principle applies.

SideNets at inference time. To classify an
input image x, we run x through the MainNet until
we obtain the intermediary representation xc, then
pass xc through S to obtain a classification ŷ and
confidence level p̂. If the confidence level exceeds
a threshold θ, then the classification is returned
immediately, without having xc pass through the
rest of the MainNet. If the confidence level is below
θ, then xc is passed back to the MainNet, where it
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returns a final classification y.

4 Classification Experiments

We perform all experiments on a single NVIDIA
RTX 2070 GPU. All experiments use the Adam
[18] optimiser, with default parameters. We use an
initial learning rate of .0003 and train for 50 epochs
in the ResNet experiments; we use an initial learn-
ing rate of .000003 and train for 20 epochs in the
BERT and DistilBERT experiments. In both cases,
we use a learning rate decay of 3 after 5 epochs in
which the validation loss doesn’t go down.

For all experiments, our SideNet is a single hid-
den layer perceptron, with an input size equal to
the number of elements in xc (a flattened version
of xc for images), a hidden layer with 32 units,1 a
batchnorm layer, a ReLU layer, and a classification
layer (softmax for multi-class classification, sigmoid
for binary).

CIFAR10. We assess our method’s performance
on the CIFAR10 dataset [19], a dataset of 60,000
colour images, 32x32 pixels, with 10 classes of 6,000
elements each. We use ResNet18, 34, 50, and 152
(with weights pretrained on ImageNet) as the core
architecture of the MainNet. Since they were pre-
trained on ImageNet, which has 1,000 classes, we
replace their final fully connected layer with a fully
connected layer with the same architecture as a
SideNet, described above. We attach the SideNet
to the output of the Resnet 1 block illustrated in
Figure 1. The SideNet is fine-tuned with the last
layer of the MainNet.

We evaluate our method on the test set with dif-
ferent thresholds θ by plotting the model’s accuracy
with respect to the amount of compute used. We
use the average number of parameters used for a
single input as a proxy for the amount of compute
used (since this number stays fixed, whereas the
average number of floating point operations would
vary based on the size of the input). The results are
plotted in Figure 2. We find that architectures us-
ing SideNets can use significantly less compute than
architectures without SideNets, and still maintain
the same accuracy. We also note that adding a
SideNet makes it easy and cheap to explore the

1We found that increasing this number did not have much
of an effect.
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Figure 2: Plot of test accuracy with respect to av-
erage number of parameters per run, for different
thresholds θ, for different depths of ResNets, with
and without SideNets. The results are averaged
over 5 runs, with error bars indicating standard
deviations.

space of models with different compute and accu-
racy levels: simply adjust the threshold θ. In order
to explore this same compute-accuracy space with
knowledge-distillation or pruning, we would have
to repeatedly do so from scratch.

We also test the SideNet’s calibration. A classifi-
cation model is calibrated when the probability p it
assigns to an input x belonging to a certain class is
equal to the actual probability of the model classi-
fying it correctly. For example, if a weather model
predicts every day for 100 days that it will be sunny
with 75% certainty, and at the end of the 100 days
there were indeed 75 sunny days, then that model is
calibrated. More formally, given an input x whose
true classification label is y, if a model M assigns to
x a classification of ŷ with confidence p̂, then M is
calibrated iff P(ŷ = y|p̂ = p) = p, ∀p ∈ [0, 1]. Cal-
ibration is a useful property for a model to have,
since it “knows what it doesn’t know”. We quan-
tify calibration using the expected calibration error
(ECE). We first bin our predictions into 8 equally
spaced classification confidence bins, consisting of
ni predictions each: confidences between 0.2 and
0.3 go into bin 1, ..., confidences between 0.9 and
1 go into bin 8 (there are no bins between 0.1 and
0.2 because in our experiments both SideNets and
MainNets always have confidence above 0.2). The
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Figure 3: Calibration plot of a ResNet50’s SideNet
and MainNet, averaged over 5 runs, with standard
deviations. The SideNet’s classifications are signif-
icantly closer to perfect calibration than those of
the MainNet. The results were obtained on the
test set.

Table 1: ECE scores for different SideNets and
MainNets, evaluated on the test set. The lower
the ECE, the more calibrated the model. The val-
ues are averaged over 5 runs, and include standard
deviations.

SideNet ECE MainNet ECE

ResNet152 .30± .06 1.1± .18
ResNet50 .41± .10 .91± .17
ResNet34 .38± .08 1.0± .14
ResNet18 .31± .08 1.0± .05

ECE is computed by calculating the average dis-
tance between confidence and accuracy for each
bin: ECE=

∑
i
ni

n |acc(i)− conf(i)|, i = 1, . . . , 8.
[11] find that deep convolutional neural networks

are not calibrated. We reproduce their results, and
find that our MainNet classifications are not cali-
brated, with high ECE scores. However, the clas-
sifications of our SideNets are well calibrated. Ta-
ble 1 details the ECE scores for SideNets and Main-
Nets, and Figure 3 gives a specific example of how
the MainNet is uncalibrated relative to the SideNet.
This is helpful for setting the confidence threshold
θ: it means that setting θ = 0.85 will lead to a
SideNet with minimum accuracy 85%.
SST2. To assess our method’s performance on

natural language processing tasks, we apply it to
the SST-2 dataset [27], a dataset of 9613 movie
reviews, labelled as positive or negative. Our
train/validation/test split is 5000/1613/3000.

We use pretrained DistilBERT [25], BERT-base,

.98
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DistilBERT

BERT base

BERT large

Figure 4: Plot of test accuracy with respect to av-
erage number of parameters per run, for different
thresholds θ, for different transformer models, with
and without SideNets. The results are averaged
over 5 runs, with error bars indicating standard
deviations.

and BERT-large [8] models as the core architec-
tures of the MainNet. For the MainNet’s final clas-
sification layer, we add a fully connected layer with
the same architecture as a SideNet. We attach
DistilBERT’s SideNet after its first transformer
block (out of 6), as in Figure 1; we attach BERT-
base’s SideNet after its fourth transformer block
(out of 12), and BERT-large’s after its eighth en-
coder block (out of 24). The SideNet is fine-tuned
along with the last layer of the MainNet.

BERT-base and DistilBERT use 768 dimensional
tensors to represent each token, and so the total pa-
rameter count overhead of the SideNet is 768×32+
32 × 1 ≈ 25000, which is ≈ 0.03% of BERT-base’s
≈100M parameter count, and ≈ 0.04% of Distil-
BERT’s ≈60M parameter count. BERT-large uses
1024 dimensional tensors to represent each token,
so its overhead is 1024×32+32×1 ≈ 35000, which is
≈ 0.01% of BERT-large’s ≈300M parameter count.

We evaluate on the test set with different thresh-
olds θ, and plot the results in Figure 4, with the
same methodology as with Figure 2. We find that
adding SideNets allows for substantial decreases in
compute, albeit with a greater loss in accuracy
than the CIFAR10 example above. However, as
above, we note that the addition of SideNets allows
for a much easier exploration of compute-accuracy
space. If we wanted a model with 200M parame-
ters, rather than the 300M of BERT-large or the
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100M of BERT-base, then rather than train that
200M parameter model from scratch, we could eas-
ily attach a SideNet to a pretrained BERT-large,
and get a model that on average uses 200M param-
eters per run, with an accuracy above BERT-base,
but below BERT-large.

Furthermore, it is worth highlighting that adding
a SideNet to DistilBERT manages to reduce its av-
erage parameter use by 30%, at a cost of 0.5%
test accuracy, despite it already being a version
of BERT-base that was compressed using exten-
sive model pruning and knowledge distillation. In
comparison, DistilBERT lost 1.4% test accuracy on
the SST-2 task after losing 40% of its parameters.
This suggests that adding SideNets is a compute
reduction method that can effectively complement
knowledge distillation and model pruning.

As in the CIFAR10 case, we found that the
SideNets were calibrated. However, we found that
the pretrained transformers were also calibrated,
duplicating the findings of [7].
Does the SideNet lower the MainNet’s ac-

curacy? It could be argued that the addition of
the SideNet to the training task would lead to a de-
crease in the final accuracy of the MainNet, since
the training procedure splits its attention between
minimising the SideNet and the MainNet’s loss. We
find that this is not the case, and that adding the
SideNet does not seem to have a negative effect
on the MainNet’s accuracy. Our findings are sum-
marised in Table 2. Anecdotally, we find that en-
sembling the SideNet and MainNet predictions pro-
vided a slight boost to final accuracy over just the
MainNet’s predictions.

5 Conclusion & Future Work

In this work we propose attaching a SideNet, a
small single hidden layer perceptron, onto the in-
termediate representations of a MainNet, a large
pretrained network, and using the SideNet’s confi-
dence level to determine whether an input should
be classified by the SideNet or passed back to the
MainNet. SideNets are easy to implement, fine-
tune, and deploy, and provide substantial compute
savings at little cost to model accuracy, for both
natural language processing and computer vision
tasks.

We also find that SideNets in the early layers of

Table 2: Test accuracies for final MainNet classifi-
cations when trained with and without a SideNet,
on computer vision (CIFAR10) and natural lan-
guage processing (SST-2) classification tasks. The
values are averaged over 5 runs, including standard
deviations.

ResNet18 ResNet34

SideNet 92.3 ± .1 93.2 ± .1
No SideNet 92.1 ± .1 92.9 ± .2

ResNet50 ResNet152

SideNet 94.0 ± .2 94.3 ± .1
No SideNet 93.6 ± .3 93.9 ± .2

DistilBERT BERT-base BERT-large

SideNet 88.8 ± .1 90.6 ± .2 92.2 ± 1.2
No SideNet 89.0 ± .1 90.6 ± .3 92.8 ± 0.5

ResNets are calibrated, while the ResNets them-
selves are not, and that SideNets can significantly
reduce the amount of compute used by DistilBERT
at minimal cost to accuracy, despite DistilBERT
already being a highly compressed model. Fi-
nally, increasing or decreasing the threshold θ for
the model’s confidence allows us to painlessly ex-
plore compute-accuracy space, by making continu-
ous what was once discrete.

SideNets open several avenues for further study:

1. SideNets perform well on classification tasks.
Do they perform equally well on more compli-
cated, higher dimensional tasks, such as image
segmentation or machine translation?

2. SideNets help reduce DistilBERT’s total com-
pute, with minimal loss in accuracy, even
though DistilBERT is already a highly com-
pressed model. What is the interplay between
different forms of model compression, and to
what extent can they be combined?

3. SideNets are small and shallow networks. Does
this make them more susceptible to being
fooled by adversarial attacks [10]?

We hope to investigate these questions further in
future work.
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