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Abstract

Explainability of black-box machine learning mod-
els is crucial, in particular when deployed in critical
applications such as medicine or autonomous cars.
Existing approaches produce explanations for the
predictions of models, however, how to assess the
quality and reliability of such explanations remains
an open question. In this paper we take a step fur-
ther in order to provide the practitioner with tools
to judge the trustworthiness of an explanation. To
this end, we produce estimates of the uncertainty
of a given explanation by measuring the ordinal
consensus amongst a set of diverse bootstrapped
surrogate explainers. While we encourage diver-
sity by using ensemble techniques, we propose and
analyse metrics to aggregate the information con-
tained within the set of explainers through a rating
scheme. We empirically illustrate the properties of
this approach through experiments on state-of-the-
art Convolutional Neural Network ensembles. Fur-
thermore, through tailored visualisations, we show
specific examples of situations where uncertainty
estimates offer concrete actionable insights to the
user beyond those arising from standard surrogate
explainers.

1 Introduction

Deep learning models are being used in critical
applications which demand not only human over-
sight but for their predictions to be explained as
well, if they are to be considered trustworthy. Ex-
plainability tools have been developed aiming to

∗This work was funded by the UKRI Turing AI Fellow-
ship EP/V024817/1.

make black-box classifiers interpretable ([3, 29]).
Surrogate explainers, such as Local Interpretable
Model-agnostic Explanations (LIME) [25], provide
an explanation by fitting an interpretable surrogate
model to explain the prediction of an instance.

However, explanations produced by LIME can
vary due to the hyperparameters of the proce-
dure. Several papers have looked into the short-
comings of LIME and proposed more robust ver-
sions ([28, 15]). In particular, the main sources of
uncertainty affecting LIME explanations are stud-
ied in [32]. Their work analyses the uncertainty due
to LIME’s hyperparameters, and also the stochas-
ticity in the process of generating the explanation.
Similarly, [10] presents both a theoretical and an
empirical analysis of the variability of explanations
produced for a single image. These results suggest
that the inherent stochasticity of LIME induces di-
versity among multiple explanations produced for
the same instance. The idea of applying LIME mul-
tiple times to an instance is proposed in [12], while
the robustness of LIME, with regards to changes in
the input data, is explored in [1].

In this paper, we take a step back and aim to en-
rich the explanations by incorporating an estimate
of their uncertainty. This allows for a more mean-
ingful interaction, potentially enabling the user to
either trust or reject the explanation. Our contri-
butions are as follows:

1. We provide uncertainty estimates for explana-
tions using bootstrapping and ordinal consen-
sus metrics. We showcase these using tailored
visualisations that convey this information for
the practitioner.

2. Beyond the uncertainty within LIME and the
uncertainty induced by the input data, we also

https://doi.org/10.7557/18.6294

© The author(s). Licensee Septentrio Academic Publishing, Tromsø, Norway. This is an open access article distributed
under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

1

https://doi.org/10.7557/18.6294
http://creativecommons.org/licenses/by/4.0/


consider the predictive uncertainty. We do this
by considering the model of interest to be an
ensemble of black-box models, rather than a
single black-box.

2 Related Work

The process of deriving surrogate explainers is com-
plex and driven by several interconnected factors
and objectives ([24, 23]). In general, this type of
explainers can be unstable and lead to varying sur-
rogate coefficients and, in consequence, diverse ex-
planations ([1, 32, 33]). The variability within sur-
rogate coefficients can be seen as uncertainty that
surrogate explanations are entailed with. While
[12] and [10] highlight the sampling space where
the surrogate is fitted as a source of uncertainty, [2]
motivates the need of also considering the predic-
tive uncertainty of the black-box to be explained.
BayesLIME was proposed in [27] to generate sur-
rogate explanations with a measure of uncertainty.
There, the uncertainty is quantified by evaluating
the probability that surrogate coefficients lie within
their 95% credible intervals. The work suggests
sampling perturbations that yield most informa-
tion to the models behaviour, thus reducing the
computational complexity. The practitioner is in-
formed about the uncertainty of feature attribution
to each explainable component.

In this work we address the quantification of the
surrogate explanation uncertainty by aggregating
multiple surrogate coefficients and measuring the
consensus among the surrogate explainers. The
use of a consensus mechanism to obtain explana-
tions that are less sensitive to sampling variance
(further discussed in Section 3) has been proposed
in [4, 26]. Specifically, [6] and [5] consider aggre-
gating surrogate coefficients in the form of simple
ranking schemes inspired from the social sciences
and economics. Additionally, we investigate how
the estimated consensus behaves as the number of
sampled perturbations and surrogates change. As
deriving a large number of surrogate on large sets
of perturbations is computationally expensive [27],
we motivate the aforementioned two factors as key
parameters the practitioner needs to fine tune in
order to derive explanations that satisfy the de-
sired certainty without being computationally ex-
pensive. On top of existing works, we propose to

look at explaining uncertainty-aware deep learning
ensembles through surrogate explanations to com-
bine surrogate explanations with model uncertainty
[2]. We show that the diversity in the ensemble
members can be used to induce variability in the
surrogate coefficients, allowing the generation of a
diverse set of surrogate explainers as in [31, 30].
There, the authors derive multiple diverse explana-
tions for a deep learning ensemble in the form of
saliency maps. Whereas in [31] the saliency maps
are derived for each ensemble member individually,
we follow the approach pursued in [30], where the
ensemble is treated as a probabilistic classifier as it
does not restrict the number of derived surrogates
to the number of members in the ensemble.

3 Background

Local-surrogate explanations belong to a category
of post-hoc model-agnostic explanation approaches
first introduced in [25]. One such approach is
LIME, which is an instantiation of the following
formulation:

arg min
g∈G

L(f, g, πx) + Ω(g). (1)

The surrogate explainer g is from an interpretable
model class G. The locality around the data point
x for which the prediction of a classifier f is to be
explained, is controlled by the similarity kernel πx.
The loss L characterises how close g is to f . The
penalty term Ω represents a complexity measure
of g. In practice G is the class of linear models:
g(x) = α>x. Model fitting is performed on a set of
points P drawn from a Gaussian distribution cen-
tred on x, and then the weights πx are computed
using the radial basis function kernel.

Previous works have identified the following
sources of uncertainty in surrogate explanations:

1. Sampling variance of P (examined in [19,
10, 12, 1]).

2. Implementation of explanation proce-
dure (highlighted in [32]).

3. Choice of surrogate structure (introduced
in [32]).

In this paper, assuming sources 2 and 3 are fixed,
we focus on the sampling variance as well as the
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(b) Variability due to predictive uncertainty

Figure 1: (a) Distribution of surrogate coefficients αi derived by LIME on the image depicted in Fig. 4
(left column) on 100 different perturbation sets Pk. (b) Distribution of surrogate coefficients αi derived
by LIME on the image depicted in Fig. 4 (left column). LIME is run 100 times with a fixed perturbation
set P. The classifier’s prediction is sampled randomly from the ensemble members.

predictive uncertainty of the model to be explained.
We argue that the predictive uncertainty of the
model f can be seen as an extra source of variabil-
ity, adding to the uncertainty of the explanations.
To show this, in the examples below we use ensem-
ble models for their nice properties on uncertainty
estimation. Details on the architecture of the en-
semble are given in Sec. 5.

Variability of surrogate coefficients due to
sampling variance Following the works of [10]
and [12], Fig. 1a shows the variability of surrogate
coefficients α due to sampling variance in an image
classification task. In images, the explanations are
usually based on superpixels given by a segmen-
tation of the image with semantic meaning. Here,
LIME is run 100 times (by first drawing 100 distinct
sets of points, {Pk}100k=1) resulting in 100 surrogates
with the default configuration. We generate the
predictions by averaging the predictions of the in-
dividual ensemble members. Since the sets Pk of
image perturbations are generated randomly, val-
ues of α are not deterministic. We see that the
mean value of α7 is the highest, suggesting that
the superpixel s7 can be more clearly identified as,
on average, the most relevant region of the image
for the classification purpose. α3 can be identified
as the least important. For the rest, the ordering is
not clear. This is important if the user is interested

in tuning LIME such that the distributions of αi do
not overlap so that the order of importance of the
coefficients can be clearly identified.

Variability of explanations due to predictive
uncertainty The uncertainty of LIME due to the
predictive uncertainty of the black-box classifier
has not been addressed in previous works. How-
ever, this is something that we can study when
using ensemble models. In Fig. 1b LIME is run
100 times on a fixed set of image perturbations P
(Compared to above, in this experiment we only
have one set of points P, as opposed to above where
we use 100 {Pk}100k=1). Here, a single prediction is
obtained from a randomly chosen member of the
ensemble. Therefore, differently from the exper-
iment presented in Fig. 1a, the variability of the
surrogate coefficients is now solely induced by sam-
pling the predictions f(x′i) for image perturbations
x′i randomly from the individual models contained
in the ensemble. Again, for this particular image,
the top and bottom coefficients remain the same as
before, corroborating the message from the previ-
ous example. In Sec. 5 we will further explore this
relationship empirically. In Sec. 4, we present a
method of deriving multiple diverse surrogates and
aggregate their coefficient values through a rating
scheme to estimate the uncertainty of the aggre-
gated explanation.

3



4 Uncertainty Quantification
via Ordinal Consensus

The coefficients of the surrogate are representative
of the behaviour of f locally. A common method
for estimating the distribution of surrogate coeffi-
cients α is bootstrap ([8]), as the sampling variance
of data points around x naturally induces diversity
among bootstrapped surrogates. Here, we propose
the use of ensemble techniques to account for the
stochasticity of the prediction behaviour of f , re-
inforcing the diversity of the bootstrapped surro-
gates. We suggest ordinal metrics to aggregate the
surrogate coefficients and quantify uncertainty.

4.1 Bootstrapping LIME

In our approach, that we refer to as Bootstrapping
LIME (BLIME), multiple surrogate models are
fitted by bootstrapping the perturbation dataset
{Pk}Kk=1. Since an ensemble model can be treated
as a probabilistic classifier, the output f(x′i) for a
perturbation x′i can also be sampled from the en-
semble classifier by sampling a base model from the
set of models.

Algorithm 1 BLIME

Input: classifier f
Input: instance x to be explained
Input: class label l to be explained
Input: similiarity kernel πx
Input: number of perturbations N
Input: number of bootstrap samples K
R← {}
for j ∈ {1, 2, 3, ...,K} do
Pk ← {} for i ∈ {1, 2, 3, ..., N} do

x′j ← sample around(x′)
Pj ← Pk ∪ 〈x′j , f(x′j)k, πx(x′j)〉

end
α← h(Pk, πx)
ri ← get ranking(α)
R← append(ri,R)

end
return R

The BLIME algorithm is as follows. From every
surrogate model, we obtain a coefficient vector α.
Then, for every coefficient vector, we obtain a rank-
ing r, ordering coefficients from smallest to largest

in value. In this manner, and continuing with the
image classification example, if the procedure is re-
peated K times, for a total of M superpixels, we
can compactly represent these ranking vectors as
rows of a ranking matrix R ∈ RK×M . R is then
interpreted as a rating scheme, where M super-
pixels are being rated by K surrogates. The
procedure of deriving R is described in Algorithm
1.

4.2 Ordinal Metrics

The reduction of surrogate coefficients to a rank-
ing can be regarded as a normalisation step that
makes multiple surrogates comparable. Although
this normalisation removes information about the
surrogate coefficient scaling, it allows for the use of
ordinal statistics. In this way, we can quantify the
consensus amongst the surrogates to gain further
insights for a given explanation. We discuss the
metrics below. These are widely used in machine
learning as proxys to the underlying uncertainty. It
shall be noted that the user of BLIME is not lim-
ited to these metrics as many measures of consensus
have been proposed in the literature [7, 13].

Mean rank By comparing the mean rank rj of a
superpixel sj to those of all the other superpixels,
indicating the relative importance of each of them.

Ordinal consensus The ordinal consensus Cs of
the ranking of a superpixel s, as defined in [20], can
be used to evaluate whether there is high agreement
among the raters, indicated by Cs being close to 1,
whereas Cs closer to 0.5 indicates no agreement.
Values of Cs closer to 0 suggest a high polarisation
among raters. The ordinal consensus is calculated
by first normalising the occurrences fj of rank-
ings rs,k assigned to a subject s by raters k (with
k = 1, ..., n). These normalised occurences are then
structured as a list of the form [ f1n , ...,

fN
n ] ordered

from the lowest to the highest value, whereas N
represents the highest rank that can be assigned to
a subject. With the cumulative frequencies Fs de-
fined as Fi =

∑
j≤i

fj , the differences di are calculated

using

di =

{
Fi, if Fj ≤ 0.5

1− Fi, otherwise

4



The ordinal Consensus Cs is then given as

Cs = 1− 2
M−1

N∑
i=1

di.

Inter-rater reliability measures Here we con-
sider reliability measures to address the overall un-
certainty among all surrogates regarding all inter-
pretable components, namely Fleiss’ Kappa κ [9]
and Kendall’s coefficient of concordanceW
[16]. While W measures the agreement among
raters specifically for rankings, κ estimates the
agreement regardless of the similarity of the as-
signed ranks. Both measures are scaled from 0 and
1, whereas 0 indicates no agreement and 1 means
full agreement among the raters.

Kendall’s coefficient of concordance For
N subjects (indexed using s = 1, 2, ..., N) being
rated by n raters (indexed using k = 1, 2, ..., n), the

total rank Rs is defined as Rs =
n∑

k=1

rs,k, whereas

rs,k denotes the rank assigned to subject s by rater
k. With the mean total rank R , Kendall’s coeffi-

cient is W =
12·

M∑
s=1

(Rs−R)

n2·(N3−N) .

Fleiss’ Kappa For N subjects (index by s =
1, 2, ..., N) being assigned to one out of k cate-
gories (indexed by j = 1, 2, ..., k) by n raters, the

quantity pj = 1
N ·n

N∑
s=1

ns,j is defined whereas ns,j

denotes the number of raters binning a subject
s into category j. Fleiss’ Kappa estimates the
agreement Ps for a subject among all raters as

Ps = 1
n(n−1)

k∑
j=1

(n2s,j−ns,j). With the mean agree-

ment P Fleiss Kappa κ is κ =
P−

k∑
j=1

p2
j

1−
k∑

j=1
p2
j

.

5 Experiments

We showcase the approach for both image and text
examples.

Datasets For the image classification task we use
the CIFAR-10 dataset [17] For this work, the data
set is split into a training set and a validation set
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Figure 2: (a) 200 surrogates are derived on boot-
strapped perturbations sets. For the superpixels
corresponding to the example depicted in figure 4
(top row) mean rank r and ordinal consensus C are
plotted against the number of perturbations drawn
for each surrogate. (b) 200 surrogates are derived
on fixed perturbations sets of 200 samples. For the
superpixels corresponding to the example depicted
in Figure 4 (top row) mean rank r and ordinal con-
sensus C are plotted against the number of surro-
gates derived from the perturbation dataset.
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with 50000 and 10000 images respectively. For
sentiment classification, we use the movie review
dataset IMDB[21]. The task is to classify a textual
movie review as positive or negative based. The
dataset consists of 50000 labelled reviews.

Models For our black-box image classifier, we
use an ensemble of 5 CNNs with ResNet architec-
ture as in [14]. The ensemble is created by training
all CNNs individually, using random weight ini-
tialisation [11] and data shuffling during training
to induce diversity [18]. For the text analysis we
use an ensemble of fully connected neural networks
in combination with GloVe embeddings [22], using
random weight initialising and data shuffling dur-
ing training to induce diversity among the ensem-
ble members. The default configuration of LIME is
used with linear regression as surrogates [25].

Results In Fig. 2a we see that by increasing the
number of perturbations for each bootstrap sample,
the mean ranking of the superpixels converges to-
wards values on the full ranking interval 1 to 8,
whereas for small numbers of perturbations, the
mean ranks are squashed into a rather small in-
terval (top plot). The bottom plot shows that the
level of agreement C of the ranking of superpixels
increases as the number of image perturbations is
also increased. This is expected as the surrogates
are trained on datasets that are more similar be-
tween them. Therefore, the explanation derived by
aggregating multiple surrogates on more perturba-
tions can be considered more certain with regards
to the individual superpixels ranking. Examining
both plots depicted in Fig. 2a, the highest agree-
ment for the highest and lowest-ranked superpixels
(s7 and s3) among the surrogates is maximised. In
Figure 2b, the same experiment is run for different
numbers of bootstrap samples for a fixed number of
perturbations. We see that increasing the number
of surrogates does not increase the agreement of
the raters assigning ranks to the superpixels (bot-
tom plot). Contrary to Figure 2a, the ranks do
not converge to their absolute ranking. The agree-
ment measured by the consensus estimated C, how-
ever, changes, showing an increasing or decreasing
trend. In Figs. 3a and 3b we examine the effects of
the number of perturbations drawn and the num-
ber of surrogates derived on the uncertainty esti-
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Figure 3: (a) 100 surrogates using bootstrapping
on the perturbation dataset P. We report the un-
certainty estimates using the consensus κ and W .
The procedure is repeated 100 times with varying
numbers of perturbations. (b) 100 sets P are drawn
to fit the surrogates. We report the consensus es-
timates κ and W . The procedure is repeated 100
times with varying numbers of surrogates.

mates κ and W . As shown in Fig. 3a, increasing the
number of perturbations drawn shifts the distribu-
tions of consensus estimates towards higher values
which matches the findings from Fig. 2a. Fig. 3b,
however, indicates that the distribution of derived
uncertainty estimates become more narrow, result-
ing in more reliable estimates. Figures 4 and 5
show examples where our method provides addi-
tional information to the practitioner about the ex-
planation. In Fig. 4 our method allows the user to
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Figure 4: Left: original image x, centre-left: mean
ranks of superpixels, centre-right: absolute rank-
ing, right: ordinal consensus. 100 perturbation sets
Pk drawn, 100 data points each to derive surrogates
for the predicted class bird.

compare different image segmentations for training
surrogates. The mean ranks of the superpixels are
shown in the second column. The absolute order
of rankings according to the mean ranks of super-
pixels are depicted in the third column. The image
in the rightmost column shows the level of agree-
ment amongst the surrogates regarding the ranking
of the individual superpixels measured using the or-
dinal consensus C. The original image is segmented
into 8 superpixels using different segmentation al-
gorithms. Having access to the uncertainty of the
explanation estimated through the values of W and
κ, the practitioner can use this information to com-
pare different image segmentations. The practi-
tioner can conclude that the segmentation depicted
in the center row results in an overall more certain
explanation, as W and κ are higher compared to
the segmentation shown the top row. The bottom
row of Fig. 4 shows a segmentation of the image
segmented into only three superpixels, resulting in
a more certain explanation than achieved by the
segmentations depicted in the top and center row.
The example depicted in Fig. 5 shows our method
on a text dataset (IMDB). Here, we highlight how
the higher variance of surrogate coefficients is also
shown by the ordinal consensus C.
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Figure 5: 100 local explanations for a fixed data
point using ensemble of 5 fully-connected NNs, 2
hidden layers, IMBD dataset. The mean rank r
indicates the feature importance.

6 Conclusion

In this paper we make the case for the importance
of reporting an uncertainty estimated of an expla-
nation together with the explanation when explain-
ing a prediction. This provides the user with the
option of rejecting an explanation for being too un-
certain. Here, we proposed a procedure where we
bootstrap LIME, and then aggregate the outputs
using ordinal statistics to measure its uncertainty.
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