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Abstract

Recent advances in machine learning have proved
effective in the application of drug discovery by pre-
dicting the drugs that are likely to interact with
a protein target of a certain disease, leading to
prioritizing drug development and re-purposing ef-
forts. State-of-the-art techniques in Drug-Target
Interaction (DTT) prediction are often computa-
tionally expensive and can only be trained on small
specialized datasets. In this paper, we propose a
novel architecture, called FuastDTI, utilizing pre-
trained transformers and graph neural networks in
a self-supervised manner on large-scale (unlabeled)
data, which additionally allows for embedding of
multimodal input representations, for both drug
and protein properties. Extensive empirical study
demonstrates that our approach outperforms state-
of-the-art DTI methods on the KIBA benchmark
dataset, while greatly improving the computational
complexity of training, about 200 times faster, lead-
ing to excellent performance results.

1 Introduction

The recent COVID-19 pandemic, which is not the
first and will likely not be the last pandemic [I8],
has caused devastating disruptions on health, so-
ciety, and economy world-wide. It has shown that
not being able to rapidly develop effective treat-
ments for a new disease is a significant shortcom-
ing of the world’s ability to respond to a pandemic,
given that the pipeline of developing new drugs are
too slow in most scenarios. One way to efficiently
speed up the process of finding treatments for a
novel disease is to re-purpose existing drugs [3].
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However, this can be highly challenging due to the
massive number of chemical compounds that form
the candidate drugs for the newly-arrived disease
[9]. Hence, we need functional techniques to accu-
rately identify which drugs among the thousands of
candidates are the best options for further testing.

Until now, lots of data have been collected on
both drugs and drug targets (i.e., proteins), as
well as on the interactions between them [23]. Us-
ing this data, machine learning models can replace
the additional testing in the labs and act as a
decision-support system in addressing the problem
of Drug-Target Interaction (DTT) prediction, which
can speed up the procedure of drug development
and hence world’s response to pandemics.

The efficacy of machine learning, particularly
deep learning approaches, for DTI prediction has
been already demonstrated in the literature [2] 27,
32, 11, B0, 2], 22]. Early models utilize techniques
similar to those used for recommender systems,
with this idea that similar drugs interact with sim-
ilar targets [0, [10]. However, these techniques fail
to cope with the “cold-start” problem, e.g., drugs
or proteins that have no known interactions, which
is the case in the problem at-hand. Docking [I4]
is an alternative method in which interactions are
determined by a physical simulation using spatial
models of the drug and protein. Nevertheless, the
3D data on either drug or their targets are often not
available, which leads to limited benefits of these
methods in practice [28], [7].

On the other hand, state-of-the-art deep learn-
ing techniques employ various architectures, such
as convolutional neural networks [2], recurrent neu-
ral networks [30], graph neural networks [I5], and
transformers [4], to automatically discover complex
features in the input, and have been shown to be
effective for DTT prediction. Although these mod-
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els perform well on small specialized datasets that
only deal with a single type of protein, they are
greatly limited by their computational complexity
and, as a result, are unable to train on general (non-
specialized) DTI datasets. Therefore, we aim to
get the best of both worlds, by developing a model
that is both accurate and fast, and can be trained
on large amounts of DTI data, instead of being
restricted to a single type of protein (out of the
numerous types of proteins [I3]). Besides, the ex-
isting work rarely use more than one modality for
the drug or the protein, while additional modalities
may improve the performance, as DeepH-DTA [2]
has indicated by using two modalities for the drug.

In this paper, we address these two shortcomings,
namely the computational complexity and the lack
of multimodality for both drug and protein repre-
sentations, and propose a novel approach, called
FastDTI, to improve the time complexity as well
as the performance of predictions. We employ the
recent developments in natural language process-
ing and graph neural networks to create a model
that can leverage different modalities of the drug
and protein input, including their properties, in
one model. Subsequently, pretrained submodels are
utilized to embed their sequences and/or graph rep-
resentations during the pre-processing step, lead-
ing to reduced computational complexity during
the training. Additionally, the modalities of drug
properties as well as protein properties are intro-
duced, providing valuable information to the model
for making more accurate predictions.

Our extensive empirical study illustrates that
FastDTI outperforms state-of-the-art DTT methods
on the KIBA benchmark dataset, while greatly im-
proves the computational complexity of the train-
ing, about 200 times faster, leading to excellent per-
formance results for DTI prediction.

2 Related Work

The application of deep learning in the DTT predic-
tion problem has significantly improved upon the
traditional machine learning methods [31], and is
a notable candidate to train on the large amount
of available data [9]. The efficacy of deep learning
is evident from many existing work [2] 27, [32] [1]
30, 211, 22], which exert various architectures such
as convolutional neural networks [2], recurrent neu-

ral networks [30], graph neural networks [15], and
transformers [4] for addressing the problem.

Among the state-of-the-art approaches based on
deep learning, DeepH-DTA [2] is the most accurate
model, primarily due to using both graph neural
networks and three modalities of the input. Almost
all other models leverage two modalities: one for
the drug, and one for the protein. For the protein,
DeepH-DTA uses the protein sequence, and for the
drug, both the SMILES sequence [26] and a graph
representation of the chemical structure, leading to
three total modalities. In addition, it employs a
sophisticated graph neural network named hetero-
geneous graph attention (HGAT) [25], which was
not applied to DTI prediction before. However,
DeepH-DTA is limited by its computational com-
plexity. The authors report that it would take over
four days to train on the small KIBA dataset [24],
even if powerful hardware were used.

Other state-of-the-art DTI prediction approaches
include GraphDTA [I5] and DeepDTA [I6].
GraphDTA introduces the use of graph neural net-
works, achieving decent accuracy at the cost of high
complexity. Inversely, DeepDTA [I6] is a simple
and fast model, which has low complexity at the
cost of low accuracy. In this paper, we present an
approach that is both accurate and efficient, while
incorporating more than one modality for the drugs
as well as for the proteins.

3 FastDTI

In this section, we propose a novel technique for
Drug-Target Interaction (DTT) prediction, called
FastDTI, that aims to achieve the performance of
the state-of-the-arts while significantly decreasing
their computational complexity. Hence, it allows
to go beyond small specialized datasets and utilize
the large amounts of data that were previously in-
accessible for DTT prediction problems.

To this end, we take into account two main prin-
ciples to ensure both high accuracy of the predic-
tions and low computational requirements: (i) to
offload the computation to the pre-processing step
whenever possible, in particular, for sequence and
graph embedding representations and (ii) to incor-
porate additional modalities for both drugs and
proteins. The former follows from the main bot-
tleneck in the existing work, where the processing



Drlug Protein

B - | 2 L oo, —--- L A
’ S ° S N ’ ) . S ~
1 Chemical properties ‘I 1 Grover M ‘ 1 ChemBERTa } ; Protein properties ‘ 1 ProtBert }

N

1 1! O)\)Ni,f 1! 1! ! 1
I 1 1 I {"spkingdon": “"Eukarya", | |
| {"length®: 31, : 1 ‘ : 1 : Ifle:gt:s 225 e : 1 :

" ". 36511, o, e am——. " s " MPPSISAFQAAY
! "mass : 36511’ 1 ! 11 oonieeN 1 | "location”: "membrane”, ;o 1erey) 1aysy 1
1 pl_area": 58} . 1 cecic . | "function”: "nucleoside” | ysiavaovavGA |
I Pl i ¢ O)Z‘(C“;(CO’ . P} | ILVIPLATLT... .
1 ' P! 1 1 1 1
1 1 ! 1! = 1 ! 1! 1
! Encode 1! 1! Aggregate ! ! Encode 1! Aggregate !
! 1 ! 1! 1 1 [ 1
A - A - A - ’ A - 4

‘ Dense layer ‘ Dense layer ‘ Dense layer ‘ Dense layer ‘ Dense layer

‘ Concatenation

Concatenation ‘

‘ Concatenation ‘

v
3x
Dense layer

Binding
prediction

Figure 1: The overall architecture of FastDTI. Grover figure is taken from [20] (Fig. 1).

of the sequences and graphs is very expensive. We
address this problem by employing pretrained mod-
els to compute embeddings of such complex rep-
resentations. These embeddings can be computed
during the pre-processing step, which dramatically
reduces the workload during the training, without
sacrificing the performance of the model.

The second principle enhances the accuracy by
providing additional information to the model in
the form of drug and protein properties. Previous
methods typically leverage only one modality for
the drug and one for the protein. Instead, we add
two more modalities into FastDTI, which compared
to DeepH-DTA [2], that incorporate three modali-
ties, leads to a total of five modalities. The prop-
erties used by FastDTI are each specifically chosen
for giving valuable information for the prediction
task, where some are computable, meaning that
they can be derived from the protein or drug se-
quences, while other properties are obtained from
measurements. Nevertheless, the properties of both
drugs and targets can be expanded by incorporat-
ing additional attributes using expert knowledge
which is out of the scope of this work.

The overall network architecture of FastDTI is
pictured in Figure[l] On the left, is the component
that learns a representation for the drugs, consist-

ing of three sub-components, one for each of the
drug modalities. The first modality (right) is a
pretrained transformer model called ChemBERTa
[5] for the SMILES sequence of the drug, which is
based on the RoBERTa architecture [12], trained
on a large dataset of unlabeled SMILES sequences.
Second modality (middle) is a pretrained graph
neural network called Grover [20] for the graph
structure of the drug, based on a GTransformer
architecture, trained on a large dataset of un-
labeled drug graphs. The third one (left) is a
dense layer for the chemical properties of the
drugs, which consist of their sequence length,
molecular weight, and polar surface area.
Similarly on the right, is the component to learn
the protein representations, which leverages a pre-
trained model, ProtBERT [g], based on BERT [6],
trained on a large dataset of protein sequences, to
process those sequences (right) and a dense layer
for the protein properties (left), which include
their sequence length, molecular weight,
isoelectric point, subcellular location,
superkingdom, and function.

Once the encoding of both the proteins and the
drugs from different modalities are computed, the
obtained representations are concatenated and fed
into the DTI prediction component, with several



Table 1: Datasets used for the verification of the properties of FastDTL.

Name #Drugs #Proteins | #Interactions Purpose
KIBA 2,111 229 118,254 Benchmark against SOTA models
STITCH¢un 116,224,359 | 9,643,763 | ~1,600,000,000 | Creating STITCHnuman
STITCHhuman 79,047 1,934 9,418,794 Create a general DTT prediction model

dense layers and an output layer to produce the fi-
nal prediction scores. All the layers incorporate a
ReLU activation function. Subseqgeuntly, the train-
ing is conducted by optimizing a Mean Squared Er-
ror loss function. In addition, we train the model
to make it robust to partially missing data due
to some unknown properties of either proteins or
drugs. To do so, some values are replaced by a
missing value with a configurable probability dur-
ing training. This ensures the model is exposed to
various combinations of present and missing values,
securing robustness to missing data.

4 Empirical Study

4.1 Experimental Setups

In this section, we evaluate the performance of
FastDTI compared to several state-of-the-art tech-
niques for the problem of drug-target prediction on
both small- and large-scale data. Accordingly, we
first conduct the experiments on the KIBA (Ki-
nase Inhibitor BioActivity) dataset [24], which is a
relatively small benchmark data to compare DTI
predictions methods, including the models that are
computationally expensive and cannot be easily
evaluated on larger-scale datasets. We prepare the
data according to the procedure described in [10],
for a fair comparison of DTT prediction models. In
addition, to examine the performance of FastDTI
on a larger dataset, we use the STITCH data [23],
which is by far the most extensive DTI data that
exists, and encompasses a vast number of proteins
across numerous organisms, not just humans. Ta-
ble [[l summarizes the statistics of both datasets.
Subsequently, the data is split into training
(80%) and testing (20%) sets, and we employ 5-
fold cross-validation on the train set to tune the hy-
perparameters. After model selection, most dense
layers have 1024 neurons, except for the layers af-
ter the first two concatenations, which have 512.

Dropout is set to 0.3 for the KIBA dataset, but 0.0
for the STITCH data. In addition, we utilize four
metrics to compare the performance of the mod-
els: (i) Mean Squared Error (MSE), (ii) Concor-
dance Index (CI), (iii) r2, [19], and (iv) seconds per
epoch (for the KIBA dataset and only for training
time). Furthermore, we compute the standard de-
viation for the CI and 72, measures. The standard
deviation of the MSE of most models is unfortu-
nately not available, so this is omitted for FastDTI
as well. Moreover, a selection of baseline models
is made from the best-performing state-of-the-art
deep learning techniques, as well as two methods
that are not based on deep learning. The references
to the baseline methods are indicated in Table

4.2 Experimental Results
4.2.1 Overall Performance

In the first experiment, we compare FastDTI to
the state-of-the-art DTI prediction approaches on
the KIBA dataset. This is especially important
because most existing work cannot train on the
STITCH dataset, due to high computational re-
quirements. However, the results on the time com-
plexity in this experiment can be generalized to a
larger data such as STITCH. The evaluation re-
sults for the baseline methods are taken from the
reported values by their authors (which use the
same setup as this experiment), except for “sec-
ond per epoch”. This metric is independently veri-
fied to ensure the comparison is made on the same
hardware, which is a cloud-based machine using
an NVIDIA RTX A5000 graphics card and AMD
Ryzen Threadripper 1950X processor. Moreover,
FastDTI is trained 10 times, each for 1000 epochs.

The overall performance of different techniques
in terms of four above-mentioned measures is out-
lined in Table[2] The experimental results illustrate
that FastDTI performs well on the KIBA dataset,
and outperforms all the competitors on all th ee-



Table 2: FastDTI compared to various state-of-the-art models, as well as traditional methods of SimBoost
and KronRLS. Note that seconds per epoch is not a valid metric for KronRLS and SimBoost, due to
not training using epochs. Additionally, the authors of C-A DTI did not report the r2, or make their

code available for measuring the seconds per epoch.

Model | MSE | CT (std) | rg, (std) | Seconds / epoch
(Non-DL) Machine learning methods
KronRLS [I7] | 0.411 | 0.782 (0.001) | 0.342 (0.001) N/A
SimBoost [10] 0.222 | 0.836 (0.001) 0.629 (0.007) N/A
Deep learning methods

FastDTI 0.107 | 0.931 (0.002) | 0.820 (0.004) 6
DeepH-DTA [2] | 0.111 | 0.927 (0.003) | 0.799 (0.004) 1412
FusionDTA [30] | 0.130 | 0.906 (0.001) 0.793 (0.002) 258
GraphDTA [15] | 0.148 | 0.891 (0.001) 0.730 (0.015) 1344
C-A DTI [11] 0.175 | 0.874 (0.001) N/A N/A
DeepDTA [16] 0.181 | 0.868 (0.004) 0.711 (0.021) 162
ML-DTT [29] 0.196 | 0.862 (0.006) 0.727 (0.012) 25

valuated metrics. Additionally, a t-test is carried
out to compare the r2, of FastDTI with DeepH-
DTA, which results in a conclusion that FastDTI
has a higher r2 with p < 0.0001. Furthermore,
our approach is over 200 times faster than the sec-
ond most accurate model in the state-of-the-arts,
indicating that our approach manages to avoid the
trade-off between accuracy and training time.

4.2.2 Performance on STITCH data

The second experiment explores how FastDTI fares
on the STITCH data, which is significantly bigger
than the KIBA dataset. Consequently, we examine
to what extent our approach is able to predict the
STITCH interaction values in a reasonable time.
To this end, FastDTI is trained on the STITCH
data for 50 epochs and the predicted values are
compared to the true values in terms of MSE.
The evaluation result demonstrates that FastDTT
is able to achieve the MSE of 0.094 on the test
set, indicating that the error of prediction is small
on average. To better understand this value, the
predictions from our model are visually compared
against the true values in Figure [2| The plot rep-
resents a random subset of 10,000 points from the
STITCH data, due to the full data being too large,
and the scores are converted from log-odds back to
the probabilities for better interpretability. Sub-
sequently, the figure shows that the model appears

to have a harder time making predictions compared
to the first experiment, which might be due to the
fact that the STITCH data is more complex than
the KIBA dataset. However, note that the MSE
is not comparable between the KIBA and STITCH
datasets, due to expressing the interaction strength
in different units. The STITCH set is much less
filtered and contains several orders of magnitude
more drugs and proteins, including numerous types
of proteins, while the KIBA dataset exclusively
contains kinases. Nevertheless, the model performs
promisingly well on this large-scale data.

0.8
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Figure 2: FastDTI Performance on STITCH data.
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Figure 3: The sum of the absolute values for the
weights of the drug and protein properties used by
FastDTT on the STITCH dataset.

4.2.3 Impact of Multimodality

In this experiment, we study the impact of multi-
modality to verify whether the additional modal-
ities of drug and protein properties would bene-
fit the performance. Furthermore, the usefulness
of each individual property is evaluated using the
weights of the model. To do so, we compare the
performance of the model with and without prop-
erties, and the effect of each property is examined
from the weights that the model assigns to them
during the training. Hence, we use two configura-
tions of the model for this experiment: FastDTI
in its full form with five modalities and FastDTI
without drug and protein properties. Each model
is trained 10 times for 50 epochs on the STITCH
dataset. Consequently, the weights of the proper-
ties in the trained model are extracted, by comput-
ing the sum of absolute values per each property.
For properties using a one-hot encoding, the sum is
taken over each dimension of the encoding as well.

The performance in terms of average MSE over
the 10 runs on the test set is 0.104 without prop-
erties and 0.094 with properties, showing a 0.010
(with a standard deviation of 0.003) advantage
of incorporating the properties. In addition, Fig-
ure displays the weights of the trained net-
work per property for drugs as well as proteins,

which demonstrates that for the drug properties,
the sequence length has the highest weight, fol-
lowed by the molecular weight, and finally the
polar surface area. Note that the sequence
length for the drug is the length of the SMILES
representation. Meanwhile, for the proteins, the
subcellular location has the highest weight,
and the superkingdom has the lowest weight by
a large margin, which denotes lower importance.

The results illustrate that the model decreases
the average error by 0.010 when additional modal-
ities of the drug and protein properties are incor-
porated. This indicates that using properties en-
hances the model’s predictive performance, which
is a valuable addition to DTI prediction. Nonethe-
less, the weights for the drug properties show some
variation in their usefulness. Interestingly, the
polar surface area has the lowest weight, even
though it is hypothesized to be highly significant
for DTI prediction due to indicating the size of
the molecule. On the contrary, the molecular
weight has a significant effect to the model, and the
sequence length is even more so. Similarly, the
results for the protein properties show considerable
variance. The superkingdom has a relatively low
weight, while subcellular location and molecu-
lar function have high weights. This potentially
indicates that the superkingdom does not provide
any significant information that the model can use
for DTT prediction, unlike the other properties.

To summarize, it is explicit that the model bene-
fits from additional properties. However, not every
property is equally useful, therefore, there is the
potential in future work to use expert knowledge
to design better properties to further enhance the
performance of the model for DTT prediction.

5 Conclusion

We presented FastDTI, a novel approach to fast but
accurate drug-target interaction prediction that
leverages pretrained models to compute embed-
dings of the input while including additional modal-
ities in the form of drug and protein properties.
Previous models either achieve a good performance
at the cost of time complexity or a good train-
ing time at the cost of the performance. FastDTI
has a statistically significant improvement in per-
formance compared to the state-of-the-arts while



being several orders of magnitude faster to train.
Additionally, FastDTI is the first deep learning DTI
model to be trained on the STITCH dataset, which
encompasses a far wider range of proteins, allowing
for a general DTI prediction model. The empirical
results indicate that our approach outperforms the
competitors in terms of the predictive performance
on the small benchmark dataset, while greatly im-
proving the computational complexity.

In the future, FastDTI can be improved by fur-
ther fine-tuning the pretrained models for the DTI
prediction task, at the cost of extra training time,
or by incorporating additional properties for the
drugs and proteins. Moreover, the application of
FastDTI to other related problems, such as protein-
protein prediction, can be explored as future work.
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