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Abstract

We propose Dense FixMatch, a simple method for
online semi-supervised learning of dense and struc-
tured prediction tasks combining pseudo-labeling
and consistency regularization via strong data aug-
mentation. We enable the application of FixMatch
in semi-supervised learning problems beyond im-
age classification by adding a matching operation
on the pseudo-labels. This allows us to still use
the full strength of data augmentation pipelines,
including geometric transformations.

We evaluate it on semi-supervised semantic seg-
mentation on Cityscapes and Pascal VOC with dif-
ferent percentages of labeled data and ablate design
choices and hyper-parameters. Dense FixMatch
significantly improves results compared to super-
vised learning using only labeled data, approaching
its performance with 1/4 of the labeled samples.

1 Introduction

Semi-supervised learning (SSL) has shown great
potential to reduce the annotation costs of train-
ing deep learning models. Modern methods achieve
competitive results at a fraction of the amount of
annotated samples required for standard supervised
learning [II, 2, 25]. The potential cost savings are
even larger for structured or dense prediction tasks,
such as object detection, instance or semantic seg-
mentation since the annotation cost for such tasks
is much larger than for image classification.
However, SSL methods have been mainly devel-
oped and studied with image-level classification in
mind [27, 19, 30, [} 25]. Only more recently, meth-
ods have appeared adapting or proposing solutions
to structured or dense tasks such as object de-
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Figure 1: Dense FixMatch (blue) on unlabeled data
improves the performance of semi-supervised semantic
segmentation on Cityscapes val set using DeepLabv3+
with ResNet-101 backbone over supervised baselines
(red) across different amounts of labeled samples. *
represents the mean over four different runs with ran-
dom labeled data splits. Results for individual runs are
shown with circles.

tection [37, 13 26], 16, BI] or semantic segmenta-
tion [9, (20, 14 38, B, 12]. Still, most works have
focused on improving performance on specific tasks
and not aimed at finding methods that could be ap-
plied to different tasks. Only a handful of methods
are generic enough to be used for multiple tasks
with no or few changes [9] 30, B7, [5, 26]. Design-
ing task-generic methods is important for ease of
portability to new tasks and the goal of our work,
as well as a must in multi-task learning scenarios.

To this end, we perform simple but effective mod-
ifications to FixMatch [25] to adapt it for a larger
class of dense or structured task, staying as close
as possible to the original formulation. We call
our approach Dense FixMatch and summarise it
in Figure We align the reference frame of the
pseudo-labels obtained from the weakly-augmented
view with that of the predictions obtained from the
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Figure 2: Dense FixMatch diagram for semantic segmentation. From an input image (top-left), two different
views are created via « and A, the weak and strong augmentation pipelines respectively. The squares represent
the crops used for obtaining both views. Top: the first view is used by the teacher in the Mean Teacher [27]
framework to generate pseudo-labels, updated via the exponential moving average (EMA) of the student weights.
These are matched to the second view after applying the inverse of the weak augmentation o', and then the
strong one A. Bottom: the second view is passed to the student model to obtain predictions to train against
the pseudo-labels via the consistency loss, possible to define thanks to the shared structure and reference frame

between both.

strongly-augmented view. This way, we can define
a consistency loss at each output location while
still using the full set of possible augmentations.
Using strong and varied augmentations has been
identified as a key component of self-training with
input-consistency [29] 0] since they allow exploring
larger neighbourhoods of the training data points
in the input data manifold as well as in different
directions. In addition, we incorporate the Mean
Teacher (MT) framework for robustness to noisy
pseudo-labels and imbalanced class size [16 [32].

We evaluate our approach on semantic segmenta-
tion with Cityscapes and Pascal VOC 2012 datasets
and show the results in Figure [I] and Table [I] out-
performing supervised baselines across different la-
beled data regimes by a large margin and achiev-
ing comparable results to other works in the litera-
ture. We also compare different mini-batch sam-
pling approaches to assess whether it is feasible
to use our method for semi-supervised multi-task
learning where separate labeled and unlabeled data
sampling is not possible [17].

Our contributions are as follows:

e We propose Dense FixMatch, a simple method
that adds a matching operation between
pseudo-labels and predictions to FixMatch
thereby enabling its use on semi-supervised
learning for any dense or structured task.

e We study its performance on semi-supervised
semantic segmentation on Cityscapes and Pas-

cal VOC 2012, showing improvements across
multiple labeled data regimes over supervised
baselines. For Cityscapes, we get improve-
ments of up to +0.1 mean Intersection-over-
Union (mIOU) for 93 and 186 labeled samples
reaching 0.6697 mloU and 0.7110 mloU re-
spectively, and +0.04 mIoU when using all la-
beled samples and extra unlabeled data reach-
ing 0.8082 mloU.

e We ablate our design choices and hyper-
parameters to give practitioners insights on
how to tune it for new tasks and datasets.

2 Related work

The success of semi-supervised learning [34] has
come mainly from its application to image classi-
fication with deep learning. Wei et al. [29] proved
that SSL methods based on (a) self-training and
(b) consistency regularization will achieve high ac-
curacy with respect to ground-truth labels with
the key to their success being to explore large
enough neighbourhoods of the pseudo-labeled ex-
amples in the input data manifold, for example
via aggressive data augmentation. Self-training
or pseudo-labeling methods rely on bootstrapping
current model predictions on unlabeled data and
using them as labels. Consistency regularization
relies on the assumption that small perturbations



of the data points in either input or latent space
should not change the output.

FixMatch [25] and Noisy Student self-
training [30] are two methods combining such
building blocks: the former follows an online
approach where pseudo-labels are generated
during training, and the latter has subsequent
pseudo-labeling and re-training phases. Both use
strong data augmentation to train against the
pseudo-labels. Other works have also used other
kinds of perturbations for the consistency objec-
tive, such as adversarial examples [19], network
perturbations [15, 27, B0] or MixUp [36, [] as
well as other techniques to tackle distribution
misalignment between true- and pseudo-labels [2].

SSL applied to tasks other than image classi-
fication has also seen significant developments in
recent years. For semi-supervised object detec-
tion, multiple works have used consistency regu-
larization and perturbations via data augmenta-
tion [13, 26] 16 B1]. For semi-supervised seman-
tic segmentation, the work in [9] found that strong
and varied perturbations are required and proposed
CutMix [35] as the strong augmentation. CCT [20]
enforces consistency between predictions perturb-
ing latent features. GCT [I4] uses two differently
initialized networks for co-training and a flaw detec-
tion module. CPS [5] instead enforces consistency
against hard pseudo-labels. Pseudoseg [38] uses
strong augmentation and fuses pseudo-labels from
decoder predictions with ones from GradCAM [24].
ST++ [33] does self-training with strong data aug-
mentation in the re-training phase while selecting
and prioritizing reliable images. AEL [12] focuses
on balancing the performance between classes via
different task-specific strategies. U2PL [28] uses
unreliable pseudo-labels for negative learning.

In contrast, we follow FixMatch as close as pos-
sible to keep the benefits of using online pseudo-
labeling and consistency regularization between
predictions on weakly and strongly augmented im-
ages. We add only a spatial matching operation to
enable its use in dense and structured tasks and the
MT framework for improving pseudo-label quality.

3 Dense FixMatch

We adapt FixMatch [25] for its use in structured
and dense prediction tasks in SSL.

Our method assumes the standard framework of
semi-supervised learning where labeled samples X,
contribute to the supervised objective L4 and un-
labeled samples Xy are used in an unsupervised
objective L£,,, with the option to use the labeled
samples also for the latter. The unsupervised loss
weight A trades off the contribution of both objec-
tives to the final loss: £ = L4(x,y,0) + ALy (x,0).

To define the unsupervised or consistency objec-
tive, FixMatch uses image-level pseudo-labels ob-
tained from a weakly-augmented version of the un-
labeled images (via augmentation pipeline «/) to su-
pervise learning on the strongly-augmented version
of the same images (via A). For image classifi-
cation, the output is expected to be invariant to
the applied transformations and so the obtained
pseudo-label can be directly used for this purpose.
In contrast, this is not possible when the output
of the task at hand has a spatial structure related
to that of the input and thus will vary depend-
ing on the applied augmentations. This is the case
for dense or structured tasks such as semantic seg-
mentation or object detection, among others. For
those tasks, any geometric transformation of the in-
put equivariantly transforms its corresponding out-
put. Therefore, when using geometric transforma-
tions as part of the weak and strong augmentation
pipelines, the obtained pseudo-labels will not gen-
erally match pixel-to-pixel or at each location.

We adopt a simple approach to align the predic-
tions of one view (e.g. weak augmentation «) to
the reference frame of the other view (e.g. strong
augmentation A). Specifically, we first apply the
inverse geometric transformation of the first view
to the predictions obtained on it and then apply
the geometric transformation of the second view so
that predictions on both views end up in the same
reference frame. This simple mechanism enables
to define a consistency objective between the two
views for any dense or structured task, including
semantic segmentation, object detection, and in-
stance segmentation, while still being able to use
different geometric transformations in both aug-
mentation pipelines. Figure |2] illustrates our ap-
proach for the case of semantic segmentation.

For our experiments on semantic segmenta-
tion, we define the supervised objective L, as
a per-sample, location-wise cross-entropy loss be-
tween predictions on a weakly-augmented view
of labeled samples and their corresponding (aug-



mented) ground-truth labels, and averaging over
all valid locations. The unsupervised or consis-
tency objective L, is defined by applying the same
location-wise cross-entropy objective between the
predictions of a strongly-augmented view and the
pseudo-label obtained from a weakly-augmented
view of the same sample after spatially matching
the latter. Note that, for the unsupervised loss
L., gradients are back-propagated only through the
predictions on strongly-augmented samples, and
not through the pseudo-labels.
From prediction to pseudo-label. For our
experiments in semantic segmentation, the model
outputs normalized classification probabilities, us-
ing softmax operation, for each possible class at
each output location. Obtaining a “hard” pseudo-
label means retaining only the most likely class at
each location, achieved by applying the argmax op-
eration. In addition, it is common to use only high-
confidence predictions as pseudo-labels [30, 25] via
a confidence threshold 7 above which to retain the
labels. Locations with prediction confidence below
the threshold do not contribute to the loss.
Matching operation. In order to spatially align
or match predictions and pseudo-labels, we bring
the pseudo-label to the prediction reference frame
by first applying the inverse of the geometric trans-
forms in the weak augmentation pipeline, a~!, and
then the transforms of the strong augmentation
pipeline, A, to the pseudo-label y;. In this way,
we avoid back-propagating gradients through the
matching operation. However, some locations of
the matched pseudo-label will end up with invalid
values which should not contribute to the loss.
match(¥;; o, A) = A(a™ 1 (7). (1)
Augmentation pipelines. We adapt the aug-
mentations of FixMatch [25] to semantic segmen-
tation. We use flip-and-shift as the weak augmen-
tation « and RandAugment [7] for the strong aug-
mentation A for simplicity, including both geomet-
ric and color transforms. We use random crops for
both pipelines before applying the rest of the trans-
forms to ensure the same input size and instead of
the shift operations. Other works focusing on dense
tasks and inspired by FixMatch avoid the misalign-
ment by dropping the geometric transforms [38] [16],
applying the same to both views [I8], or applying
them only as part of A [31].

Mean Teacher. To obtain cleaner and more
stable pseudo-labels [32, 6], we generate them
using the teacher in MT [27] instead of the same
model. The teacher is updated via the exponential
moving average (EMA) of the student weights.

4 Experiments

Datasets. We use Cityscapes [6] and Pas-
cal VOC 2012 [8] datasets for evaluating our
method on semi-supervised semantic segmentation.
Cityscapes consists of 2975 samples for training,
with fine annotations for 19 classes, and 500 sam-
ples for evaluation. In addition, further 20000 sam-
ples are available in the extra set with coarse an-
notations, but we will use them later as unlabeled
samples only. Pascal VOC consists of 1464 samples
for training in the original set with annotations for
21 classes including background, and 1449 samples
for evaluation in the validation set. Moreover, there
are further 9118 labeled samples in the augmented
set from SBD [I0]. As is common in the litera-
ture, we simulate the semi-supervised setting with
labeled and unlabeled splits of the training set with
different labeled data regimes or ratios of labeled
samples. For each split, we generate four different
random splits with no guarantees of class balance.
For Pascal VOC, we split the original set and use
the augmented set as unlabeled data.

Model. Following the literature, we use
DeepLabv3+ [4] on ResNet-50 or ResNet-101 back-
bones [II] to define our semantic segmentation
model, giving predictions at the same spatial reso-
lution as the input. The model is initialized with
ImageNet [23] pre-trained weights.
Implementation details. We implement and
train our models using PyTorch [21I] with dis-
tributed training and mixed precision on up to four
NVIDIA A100 GPUs, depending on the total batch
size and the backbone used. We use the computer
vision library Kornia [22] for implementing the data
augmentation pipelines for its support of invertible
geometric transforms and differentiable augmenta-
tions for multiple tasks, including semantic segmen-
tation. We follow EMAN [3] and use the expo-
nential moving average of the Batch Normalization
statistics of the student to update the teacher.
Evaluation. We evaluate the performance of



Method Backbone Sampling 93(1/32) 186(1/16) 372(1/8) 744(1/4) 1488(1/2) 2975All
Supervised RN-50 55794 0001 -6004+ 0012  -6550+.0051 -6943+0065 -7332+.0095 7608+ 0054
RN-101 568640080 61224 0025 66281 0081 697940040 .T421+0081 7652+ 0023
RN-50 Explicit ~ .65811 0202 701310079 -72431.0049 750410063 -7599+ 0063
Dense Implicit ~6554iA0158 -7065;b0065 ~7339i,0055 ~7547:b0070 .7637i,0079
FodMateh o) Bplicit  6097w0i0 10061 T283i0060 757240015 766640050
Implicit .6481:&'0178 .70831_0098 ~7391:E.0028 .75651,0058 ~7635:t.0088

Table 1: Results of Dense FixMatch for semantic segmentation (mloU) on Cityscapes val set with few labeled
samples on different amounts of labeled data, ResNet-50/101 backbones and DeepLabv3+, and either explicit or
implicit mini-batch sampling settings. Dense FixMatch significantly improves over the baselines for both settings.
Results highlighted with color match those reported in Figure [I]

Method Backbone Sampling 92(1/15) 183(1/8) 366(1/4) 732(1/2) 1464()7.@1'7“11 10582Augmented
Supervised RN-50 A0754 0114 536140257  6183+0153 678840056 72144 0029 75224 o038
RN-101 44824 0256 57710247 65341 0081 7059+ 0041 7454+ 0023 17224 o017
RN-50 EXpliCit -5215i.0246 .6249i_0374 ‘6902i,0045 .7169i40010 ~7391i.0012
Dense ’ Implicit .49283:'(]234 ‘58923:.0334 .67293;,0076 ~7031j:40028 .74323:,()045
FodMatch = op ERPlicit 548550 6382054 T20dwoosy TAT3woons 771620020
Implicit 4984+ 0300 -6133+£0313 704710053 741440044  -7710+ 0046

Table 2: Results of Dense FixMatch for semantic segmentation (mIoU) on Pascal VOC 2012 val set with few
labeled samples on different amounts of labeled data, ResNet-50/101 backbones and DeepLabv3+, and explicit

or implicit settings.

our method using as the main metric the mean
Intersection-over-Union (mIOU) over all classes.
For simplicity, we use full-resolution, single-scale,
and single-pass evaluation in contrast to the sliding
evaluation approach used in other works [5l 12, 28].
For stability, the model used for evaluation has
weights following the EMA of the weights obtained
during training. For most experiments, this means
exactly using the teacher in the MT framework for
evaluation. For each labeled data regime, we train
our model on each of the four random data splits
using also a different random seed for each training
run. We take the best checkpoint of each run ac-
cording to the mIOU and compute the mean and
standard deviation over the four runs.

Training details. We follow the training details
of [28]. The baselines use a standard augmentation
pipeline with random resized crops and horizontal
flips. We employ two different mini-batch sampling
strategies for SSL: (a) the common ezplicit setting
in which labeled and unlabeled data are sampled
separately, and (b) the alternative implicit setting
in which all data is sampled uniformly regardless of
labels [I7]. We train each setting for the equivalent
of 80 or 240 epochs on the full train set for the

supervised baseline, i.e. 52910 or 89250 updates,
for Pascal VOC and Cityscapes, respectively.

4.1 Results on few labeled samples

In Figure [I] and Tables [I] and [2] we show results
for the common splits of 1/32 to 1/2 of all the full
train set for Cityscapes and 1/16 to the full orig-
inal train set for Pascal VOC 2012, respectively.
We compare few-supervision baselines using only
the labeled data with Dense FixMatch, which also
uses the unlabeled samples in either the explicit
or implicit settings. Our method performs better
than the baselines for both mini-batch sampling ap-
proaches. The explicit setting is slightly better for
more label-scarce regimes but both give similar re-
sults with more labeled data.

4.2 Results on full labeled set and
extra unlabeled samples

In addition, we evaluate Dense FixMatch in the
more realistic setting where all labeled samples
are used and extra unlabeled data is available in
Cityscapes. We use all samples from the extra set



T A mloU
Method Backbone mloU 02 06566
Supervised RN-50 7608+ 0054 0.5 0.6464
RN-101 76524 0023 0 1 0659
: 2 0.6581
train extra Explicit Implicit 5  0.5699
v 78694 0018 0.1 0.6447
RN-50 v 91640026 79354 o7 0.2 0.6609
Dense v v .7998:‘:,0020 .7948:|:,0016 0.5 0.6495
FixMatch 05 1 0.6501f
v .7907 1 0020 2 0.6554
RN-101 v 800510010  -TITAL 000 5 0.6090
v v 80824 go24 -80124 go13 10 0.5276
0.8 1 0.6388
Table 3: Results on Cityscapes full labeled set and extra unlabeled samples
for the supervised baselines and semi-supervised Dense FixMatch in both 09 1 0.6148
the explicit and implicit mini-batch sampling settings for SSL. We also
compare using our method as a regularization on the labeled data only Table 4:  Ablation study on the

and using it on both labeled and unlabeled data. Tis our setting for the

main experiments.

Method mloU
Supervised 0.5409
Mean Teacher* 0.5820

Crop relation Augmentation MT
Same Crop+color ' 0.5794
Same Crop+-color+cutout v 0.6531
Min. overlap Crop+-color+cutout ' 0.6542
Min. overlap Crop-+geom. v 0.6539
Dense M%n. overlap Crop+geom.+cutout v 0.6517
FixMatch Min. overlap Crop+-color+geom. v 0.6579
Same Crop+-color+geom. v 0.6157
Any Crop+color+geom.+cut. v/ 0.6300
Same Crop+color4+-geom.+cut. v 0.6660
Min. overlap ~ Crop+color+geom.4-cut. v 0.65941
Min. overlap  Crop+-color-+geom.+cut. 0.6275

Table 5: Ablation on the use of Mean Teacher (MT)
framework, the relation between crops in the two views
of Dense FixMatch and the use of the geometric, color
or all augmentations in RandAugment. *Using MT on
its own with the augmentation pipeline of the super-
vised baseline. We use a logistic warm-up schedule for
the consistency weight during the first 60 epochs. Tis
our setting for the main experiments.

but discard the coarse annotations and just treat
them as unlabeled samples. We also compare to
the fully-supervised baseline using only the labeled
data and using the consistency loss as a regulariza-
tion term only, i.e. computed on the same labeled
data as the supervised loss. Results are shown in
Table Computing the loss on both labeled and
unlabeled samples gives the best results.

pseudo-label confidence threshold 7
and the consistency loss weight A.
Tvalues used in the main experiments.

4.3 Ablations

In Table @] we ablate the main hyper-parameters
of our method using the 93 labeled samples regime
of semi-supervised semantic segmentation with
Cityscapes, with a single data split and seed, and
the explicit setting. For dense tasks such as se-
mantic segmentation, other works have reported
that using a low 7 or removing it altogether gives
better final results [38], hypothesizing that dis-
carding predictions of lower confidence makes the
loss dominated by easy classes [18, [12]. Moreover,
low-confidence predictions in semantic segmenta-
tion tend to concentrate in truly ambiguous regions
such as the boundaries between objects of different
classes [28] so discarding them means removing su-
pervision mainly from boundary pixels which are
in fact the most informative. Values for A between
0.2 and 2 give comparable results.

In Table |5| we ablate our design choices: the re-
lation between crops in both views, the choice of
augmentations, and the use of MT. The best re-
sults are obtained when using MT and all possible
augmentations, although using the same crop in-
stead of overlapping crops between views improves
results. We hypothesize this is due to a larger num-
ber of valid locations in the matched pseudo-labels.



Method Road Side. Build. Wall Fence

Pole T.light T.sign Veg. Terr. Sky Person Rider Car Truck Bus Train Motor. Bic Mean

% pixels 36.02 7.06 2561 041 0.81 1.16 0.18 0.59  14.08 1.22 3.80 1.08 0.09 673 025 023 021 0.14 0.34
Supervised 962 722 873293 296 .500 497 563 896 469 914 734 336 .888 114 276 318 273 677 5584 262
Dense FixMatch (E) .976 810 .902 414 424 574  .619 710 906 575 .935  .T78 544 .924 .560 .699 295 488 715 6764105
Dense FixMatch (I) ~.974 .820 .900 .467 .432 .578  .603 688  .913 .587 .931 769 448 1924 495 667 .4T1 AT5 661 6744184
Method Bg. Plane Bicy. Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor. Person Pott. Sheep Sofa Train Tv Mean

% pixels 72.45  1.09 083 015 094 1.57 3.46  2.60 058  0.65 1.25 2.08 113  0.58 0.90 5.27 0.56 0.34 049  1.72 1.35
Supervised 883 702 379 227 574 443 764639 336 114 429 215 309 332 542 647 199 511 202 610  .307 446+ 206
Dense FixMatch (E) .890 .784 .523 .639 500 555 .843 684 .776 188 .514 .439 384 .388 752 622 .356 576 .352 743 .553 .574..1g0
Dense FixMatch (I) .899  .740 459 010 559 .583  .833  .721 431 .192 469 347 418 559 693 672 .364 356 333 747 545 5201213

Table 6: Class-wise IoU on val set of Cityscapes (top) when training on a 93 labeled samples data split and
on val set of Pascal VOC 2012 (bottom) when training on a 92 labeled samples data split. We show in bold
the best result for each class and in red the classes that perform worse than the supervised baseline for both the

explicit (E) and implicit (1) mini-batch sampling settings.

Supervised

Dense FixMatch(E)

Dense FixMatch(I) Ground truth

Figure 3: Qualitative results for semi-supervised learning on Cityscapes with 93 labeled samples for the super-
vised baseline and Dense FixMatch in the ezplicit (E) and implicit (I) mini-batch sampling settings, shown on

samples in the validation set.

4.4 Class-wise analysis

In both Cityscapes and Pascal VOC, the predom-
inant classes appear in orders of magnitude more
pixels than the least frequent ones [6}8]. In Table|6]
we give per-class results comparing the supervised
baseline to Dense FixMatch on a single data split
of 93 or 92 labeled samples for each dataset re-
spectively. For Cityscapes, our method improves
significantly on average over the baseline, and does
so while improving for all but one class. Impor-
tantly, it also reduces the effect of class imbalance
since the gap between the best-performing classes
and the worst-performing ones is reduced signifi-
cantly, as shown by the lower standard deviation
across classes. For Pascal VOC, Dense FixMatch
improves the results on average, but up to 3 classes
get lower ToU.

4.5 Qualitative results

In Figure 3] we give some examples for the 93 la-
beled samples experiments with Cityscapes com-
paring the baseline and Dense FixMatch for both
the explicit and implicit settings. Both settings
give similar results and outperform the supervised

baseline. Some examples are the cleaner bound-
aries between road and side-walk and for poles.

5 Conclusions

We proposed Dense FixMatch, a simple method
that puts together the most important components
in modern deep semi-supervised learning and adds
a matching operation on the pseudo-labels. In this
way, it can be used for multiple dense or struc-
tured prediction tasks with the full strength of
data augmentation pipelines, including strong geo-
metric transformations. We evaluated it on semi-
supervised semantic segmentation on Cityscapes
and Pascal VOC and ablate design choices as well
as hyper-parameters. This gives future practition-
ers insights on how to tune the proposed method
for other datasets and tasks.
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