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Abstract

Measuring the similarity of images is a fundamental
problem to computer vision for which no universal
solution exists. While simple metrics such as the
pixel-wise L2-norm have been shown to have sig-
nificant flaws, they remain popular. One group of
recent state-of-the-art metrics that mitigates some
of those flaws are Deep Perceptual Similarity (DPS)
metrics, where the similarity is evaluated as the dis-
tance in the deep features of neural networks. How-
ever, DPS metrics themselves have been less thor-
oughly examined for their benefits and, especially,
their flaws. This work investigates the most com-
mon DPS metric, where deep features are compared
by spatial position, along with metrics comparing
the averaged and sorted deep features. The metrics
are analyzed in-depth to understand the strengths
and weaknesses of the metrics by using images de-
signed specifically to challenge them. This work
contributes with new insights into the flaws of DPS,
and further suggests improvements to the metrics.
An implementation of this work is available on-

line[l

1 Introduction

Similarity metrics are a fundamental part of many
machine learning processes. In computer vision,
widely used metrics, such as the pixel-wise L2-
norm, have been carefully studied and their benefits
and flaws are well-known which lets users make an
informed decision when using them.

Many improvements to pixel-wise metrics have

Ihttps://github.com/guspih/deep_perceptual _
similarity_analysis/

https://doi.org/10.7557/18.6795

been proposed, with a common goal being to mimic
human perception with a so-called perceptual simi-
larity. A recent approach is to utilize deep features
learned by machine learning models for measuring
perceptual similarity. This practice, called Deep
Perceptual Similarity (DPS) measures the similar-
ity of two images by comparing their respective ac-
tivations in the deep layers of neural networks, in-
stead of using the pixel values directly.

DPS metrics have outperformed previous mod-
els on perceptual similarity [31]. Additionally, such
metrics have been used as part of the loss func-
tion for training models, which have achieved im-
pressive results on a host of tasks. These tasks
include, image generation [I7], style transfer and
super-resolution [12], object detection [19], and im-
age segmentation [22].

While there are clear benefits of DPS, its flaws
are not as well studied. Deep perceptual similar-
ity is vulnerable to adversarial examples, which is
expected from any method depending on deep net-
works. Existing methods for protecting from ad-
versarial attacks such as ensembles may be uti-
lized [I3]. Additionally, adversarial examples are
quite complex compared to the known flaws of
other metrics.

This work aims to analyze if and how DPS can
successfully handle the flaws of the pixel-wise L2-
norm, and investigate if there are any similar un-
explored flaws of DPS and how those may be mit-
igated. Additionally, several different DPS metrics
are analyzed for flaws and then evaluated on the
BAPPS dataset [31], to check if those flaws trans-
late into performance on an actual dataset.

The investigation of DPS is performed by cre-
ating image pairs that are similar to each other
compared to some reference images and checking
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in which cases the DPS metrics succeed or fail in
identifying the image pairs as more similar than the
reference. The feature maps of the CNNs used for
calculating similarity are analyzed to gain insight
as to what underlies the successes and failures.

2 Related Work

Pixel-wise metrics have long been known to be poor
similarity metrics as they disregard high-level im-
age structures |27, [28]. Instead many different per-
ceptual similarity metrics have been proposed in-
cluding Dynamic Partial Function [I8], the Struc-
tural Similarity Index Measure [29], and Structural
Texture Similarity [32]. Despite known flaws and
suitable alternatives, pixel-wise metrics have con-
sistently been used for image comparison within
computer vision in general, and to calculate the
loss for machine learning models specifically.

One powerful attribute of deep learning is that
the deep features learned by the networks typically
contain information useful for other tasks than the
one the network was trained for. This attribute was
used to great effect with the introduction of neural
style transfer, where the content and style of images
were compared using different sets of deep features
within a neural network [7]. This practice of train-
ing models to minimize the difference between the
activations of a deep network in order to get vi-
sually similar images is known as deep perceptual
loss.

Deep perceptual loss has since its introduc-
tion been successfully applied to a large num-
ber of computer vision tasks such as improving
the performance of variational autoencoders [9, [8|,
2], Generative Adversarial Networks [I7], Super-
Resolution [6, 20], and style transfer [12]. The
method has been proven effective at the task of
perceptual similarity where it significantly outper-
formed previous methods [3I]. This method of cal-
culating perceptual similarity using the deep fea-
tures of neural networks is referred to as deep per-
ceptual similarity (DPS).

One potential problem with DPS is that it re-
lies on deep neural networks, which are known to
be vulnerable to adversarial examples. Adversarial
examples are almost imperceptible perturbations
to images or other input data that induce signifi-
cant changes or errors to the prediction model [T1].

While no perfect protection from adversarial ex-
amples is currently known, there is a wide array of
defenses that can be used, including using ensem-
bles [13].

Another paradigm for creating similarity met-
rics is to optimize a machine learning model for
the task [23]. This has been applied to DPS with
the LPIPS method, though it notably only per-
formed marginally better than using methods that
had only been pretrained [3I]. Like with many
other machine learning methods the results can be
improved somewhat with the use of ensemble meth-
ods, though still comparable to pretrained mod-
els [13].

Where this work analyzes DPS through deep
analysis of cases where it fails, another recent work
investigates how different network architectures
and pretraining procedures affect performance [16].
That work found, among other things, that better
pretraining performance on ImageNet [5], does not
necessarily lead to better perceptual similarity, It
additionally showed that a good pretrained model
can outperform models trained specifically for the
similarity task.

As DPS metrics rely on the deep activations of
neural networks, most commonly CNNs, analyzing
these activations is inherently interesting. Many
methods for such analysis exist and one of the most
common is to visualize the feature maps of the
CNNs [30], which is utilized in this work.

3 Deep Perceptual Similarity

Most uses of deep perceptual similarity and deep
perceptual loss have directly compared the cor-
responding activations of the two images. This
method, referred to as spatial DPS, is formalized
as the distance measure between z and z in Eq.[I]
where f is a norm such as L1 or L2 and p is a con-
volutional feature extractor with extraction layers
l € L each with C} channels with height H;, and
width Wl.
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This work evaluates two additional methods of
calculating deep perceptual similarity besides the
spatial method. These two are the mean method
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tested in [I6] and a sort method that is introduced
in this work. The two methods are formalized in
Eq. [2| Eq. |3] where Z and 2t are the average and
descending reordering of x respectively.
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Both of these methods ignore the spatial posi-
tions of the features. The mean method compares
the average of the features in each channel and
the sort method pairs the features of each chan-
nel with one another in such a way as to mini-
mize the norm. In the sort method the norm is
minimized for any convex function f, compared to
any other ordering of the features. This follows
from z <y — Y f(z) <Y f(y) and at — b* =
a*t+(=b)T < a+0b [21]. The reasoning behind com-
paring average and sorted channels is that a strong
activation in one channel often represents different
concepts than a similar activation in another.

A problem with the mean and sort methods on
their own is that humans would likely say that a
lower translation is more similar to the original
than a greater one. As such completely ignoring
spatial position is not desirable. Thus, this work
also investigates metrics that use the sum of the
spatial method with one of the two non-spatial
methods.

3.1 Experimental Setup

DPS relies on neural networks whose deep features
contain useful information for image comparison.
While networks can be trained specifically for the
task, the most common use of DPS and deep per-
ceptual loss is pretrained networks.

This work uses mostly the same feature extrac-
tion and comparison setup as [31]. The methods
are analyzed and evaluated with the L2-norm as
the comparison function (f) using three models (p)
pretrained on the ImageNet dataset [5]. The archi-
tectures for the three models are SqueezeNet [10],
AlexNet [15] [T4], and VGG-16 [25]. The deep fea-
tures are extracted from the same multiple lay-
ers for each network as in [3I]. The features ex-
tracted in the original work were channel-wise unit-

normalized, and this work analyzes and evaluates
both using and ignoring this practice. However,
for brevity, the analysis in Section [4] concerns only
the case without unit-normalization and the use of
unit-normalization is later discussed in Section

4 Qualitative Analysis of DPS
on Distortions

This work carries out a qualitative analysis of deep
perceptual similarity metrics over images specifi-
cally designed to test for its strengths and poten-
tial flaws. The analysis is carried out by distorting
images in ways for which DPS is previously known
to work well or speculated to perform poorly. The
similarity of the distorted image with the original
is then compared to the similarities of a set of ref-
erence images and the original, where the reference
images are intended to be notably less similar than
the distortion. The feature maps at various layers
of the DPS networks are then analyzed for each case
to gain a deeper understanding of why the metric
performed the way it did in this case. Such insight
is then used to create further image pairs to test
against. Finally, for one category of images, spe-
cific reference images were created for each image
pair. These reference images, like the others, were
created to be perceived by humans as less similar
than the distorted versions but specific to that im-
age pair. An aggregation of how well the different
metrics identified the correct image to be more sim-
ilar can be found in Table [Il

The images used in the tests are 96 x 96 pix-
els and have been designed and distorted by hand.
The distortions tested are divided into four cate-
gories; color inversion, translation, rotation, and
color stain. Seven reference images were created;
mono-colored images of black, white, gray, red,
green, and blue, as well as one with randomly col-
ored pixels.

4.1 Black-and-White Color Inver-

sion

Color inversion of black-and-white images is typi-
cally used as an example of when pixel-wise metrics
break down since each pixel now has the opposite
color. Despite this being used as an example of



why pixel-wise metrics are worse than DPS met-
rics, there has been little investigation of how well
DPS performs in these scenarios. For these reasons
the first set of images created for analyzing DPS
were color-inverted black-and-white patterns.

While pixel-wise metrics fail by definition on this
category of images, all tested DPS metrics get al-
most perfect scores. Analysis of the feature maps
reveals that many channels are activated by con-
trasts or higher-level structures like lines or shapes.
These activations are often completely agnostic to
inversion and identify the structures regardless of
color. This makes the black-and-white inversion
pairs almost exactly the same for many channels in
the feature space, which leads to good performance.

4.2 Translation and Rotation

It is also clear from the feature maps that all ac-
tivations are strongly spatially correlated to where
those features appear in the input image, which can
be seen in Fig. This is obvious as CNN archi-
tectures in general are built around each activation
depending only on a small region of the input or
previous layer. This has been previously suggested
as a potential flaw of spatial DPS [16].

To investigate whether this would have a signif-
icant impact on spatial DPS and whether other
DPS metrics could handle these cases, the cate-
gories of translation and rotation have been tested.
The translation images have a region containing
much structure in otherwise plain images which
have been distorted by translating that region. The
rotation images are simply images that have been
distorted by rotation in steps of 22.5 up to 90 de-
grees, as well as one rotated 180 degrees.

Both the pixel-wise metric and spatial DPS fail
to identify any translated image as more similar
than the reference images, while the other DPS
metrics succeed in each case. For rotation, both
pixel-wise and spatial DPS metrics fail on about the
same amount of cases, slightly less than half, while
the other DPS metrics almost succeed on each im-
age pair. This clearly shows that the spatial DPS
metric on its own is not suitable for these types of
scenarios, while translation-invariant DPS metrics
can handle them very well.

Figure 1: Image pairs from the color stain cate-
gory (above) with their specific reference images
(below).

4.3 Color Stain

Another revelation from feature map analysis is
that many channels tend to activate strongly from
specific colors, textures, or random noisy struc-
tures. This might be challenging for non-spatial
methods as ignoring the spatial position of activa-
tions might lead to confusing noise for interesting
structures. To test for this the color stain category
is used.

The image pair for the color stain category con-
sists of a plain image with a structurally interest-
ing region, and a distorted version with a similar
or same interesting region but the plain color is
changed, and noisy features are added for some im-
ages. The color stain category uses specific refer-
ence images for each pair, instead of the ones used
previously. These reference images have the same
plain color as the non-distorted image, but their in-
teresting region is significantly different compared
to the distorted version. Examples of image pairs
and their specific reference image are shown in
Fig.

For the color stain category, the pixel-wise metric
again fails for each image pair. Notably, both the
mean and spatial+mean DPS fails almost all image
pairs. The remaining DPS metrics tested perform
well, with spatial DPS being the best.

One specific image in this category is a white im-
age with a red, green, and blue irregular circle in
one corner. The distorted image retained the cir-
cles but the plain white background was colored a
darker shade of green with random yellow stains.
By observing the feature maps of these images it
is clear that the color change and stains add sig-
nificant activations to the otherwise sparse feature
maps, especially in later layers. This is shown in
Fig. |2, where the image and its distortion are dis-
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Figure 2: An image (top-left) and its color stain dis-
torted version (bottom-left) with their respective
feature maps from the second (middle) and fourth
(right) ReLU layer.

played together with feature maps from the second
and fourth SqueezeNet ReLU layer.

5 Evaluation

In order to investigate how the insights from the
qualitative analysis translate to performance on a
perceptual similarity dataset, the DPS metrics are
evaluated on the BAPPS dataset, using the same
procedure as in the original work [3I]. This evalu-
ation follows that of the pretrained networks in the
original work which means f is the L2 norm and
the features extracted from p have been channel-
wise unit-normalized.

5.1 BAPPS

BAPPS is an image dataset consisting of 64 x 64
image patches sampled from the MIT-Adobe 5k [3],
RAISElk [], DIV2K [I], Davis Middleburry [24],
video deblurring [26], and ImageNet [5] datasets as
well as a host of distortions of those same patches.
The BAPPS dataset consists of two sets with dif-
ferent labels and intended use, Two Alternative
Forced Choice (2AFC) and Just Noticeable Differ-
ences (JND).

2AFC consists of image patches and two dis-
torted versions of each patch, as well as human an-
notations as to which distorted patch is most simi-
lar to the original. The task of 2AFC is to predict
human similarity judgments. The 2AFC part ha
six subdivisions defined by the type of distortions
that are applied: (1) Traditional augmentations,
outputs from (2) CNN-based autoencoders, (3)
superresolution, (4) frame interpolation, (5)
video deblurring, and (6) colorization.

JND consists of an image patch as well as a
barely distorted version along with human anno-
tations of whether they thought the two patches
were the same after seeing them briefly. The task
of JND is to make a model that gives a higher simi-
larity to those samples that human annotators had
difficulty telling apart.

6 Results

An aggregation of the outcome of the tests de-
scribed in Section[d]is shown in Table[I} The perfor-
mance is presented as the number of images, where
the metric did not find any of the reference images
to be more similar than the distorted version.

The results of the evaluation on the BAPPS
dataset are shown in Table [2] for the 2AFC part
as a whole, its subdivision, and for the JND part.
The results for the evaluated metrics are presented
along with human performance for reference. Note
that, since the task is to estimate human percep-
tion, the human performance is also the maximum
achievable.

7 Discussion

The purpose of this work has been (i) to evalu-
ate if and how DPS metrics can handle the typical
cases where pixel-wise metrics fail and (ii) to inves-
tigate whether similar flaws exist in current DPS
implementations. All tested DPS metrics handle
color inversion and the clear preference for struc-
tures in feature maps indicates that DPS metrics
are well-suited to handle other similar cases. By far
most common form of DPS metrics used is spatial
DPS, which performs poorly on the rotation and
translation test cases. While the non-spatial DPS
metrics perform well on these weaknesses, they do



Table 1: Fraction of distorted images that were rec-
ognized as more similar than the reference images
for the different metrics

Inv- Rot- Tran- Color

Method Network ert ate  slate Stain
Pixel-Wise - 0/11 17/30 0/5 0/5
Squeeze 11/11 20/30 0/5 5/5

Spatial AlexNet 11/11 11/30 0/5 3/5
VGG-16 10/11 6/30 0/5  4/5

Squeeze 11/11 28/30 5/5  4/5

Sort AlexNet 11/11 30/30 5/5 2/5
VGG-16 11/11 30/30 5/5 3/5

Squeeze 11/11 29/30 5/5 3/5

Mean AlexNet 11/11 28/30 5/5 2/5
VGG-16 10/11 30/30 5/5 1/5

Squeeze 11/11 22/30 0/5 5/5

Spatial+Sort  AlexNet 11/11 19/30 0/5 4/5
VGG-16 11/11 21/30 1/5 4/5

Squeeze 11/11 22/30 0/5 5/5
Spatial+Mean AlexNet 11/11 15/30 0/5 2/5
VGG-16 10/11 9/30 0/5  4/5

not perform as well as spatial metrics on the color
stain category of tests. This is especially true for
mean DPS which failed most of the color stain tests.
The spatial and non-spatial combined metrics per-
form similarly to spatial DPS, indicating that per-
haps combining metrics using unweighted summa-
tion gives a preference for spatial DPS. Though the
combined metrics improved over spatial on rota-
tion, indicating that there are some benefits to this
strategy.

Analyzing the BAPPS scores for the different
DPS metrics shows that spatial DPS, in general,
performs worse than the other DPS metrics. This
is especially true for the traditional augmentations
which include operations such as rotation, transla-
tion, and skewing which indicates that the weaker
is due to the flaws identified in this work.

Another notable result is that mean DPS, in gen-
eral, performs best on BAPPS, even though it was
most vulnerable to color stain distortions. How-
ever, both mean and sort DPS metrics perform sim-
ilarly and are both better choices than spatial DPS.
It is possible that color stain and related distortions

are not so common to be a problem in a real-world
scenario, or that the BAPPS dataset does not in-
clude many such cases.

7.1 The effects of unit-normalization

As mentioned in Subsection the qualitative
analysis described in Section [f] was also performed
with channel-wise unit-normalization of the ex-
tracted features. This had three notable effects.
First, the success rate in the rotate category rose
for all DPS metrics. Second, the combined met-
rics are somewhat improved in the translate cate-
gory. Likely due to normalizing making the spatial
metrics lower which means the non-spatial metrics
account for a larger fraction. Finally, using nor-
malization made each DPS metric perform poorly
in the color stain category.

On the BAPPS dataset unit-normalization has a
small positive effect on performance. Likely aug-
mentations similar to the color stain procedure are
not common in the dataset.

8 Future Work

From the results and analysis presented in this work
there are some notable directions of research to ex-
plore.

Both this and a prior work [I6] has shown that
spatial DPS does not perform as well as on percep-
tual similarity tasks as other implementations of
DPS. One future possibility is to investigate if this
translates to related field such as deep perceptual
loss and content-based image retrieval. If it does,
simply changing the way perceptual loss is calcu-
lated could improve the results on many different
tasks.

While most DPS metrics outperform previous
perceptual similarity metrics, the discrepancy in
performance of DPS metrics indicates that explor-
ing how to calculate DPS metrics is an open prob-
lem. For example, a DPS metric that make use
of both spatial and non-spatial comparisons could
perhaps gain the benefit of both. Additionally,
the upsides and downsides of unit-normalization re-
main inconclusive.



Table 2: Performance of the evaluated DPS metrics on the BAPPS validation set (best values in bold)

Distortions Real Algorithms All  JND
Trad- CNN- Super- Video Color- Frame
Method Network itional based All res  Deblur ization Interp All Al JND
Human - 80.8 84.4 82.6 73.4 67.1 68.8 68.6 69.5 73.9 -
Squeeze 73.3 82.6 78.0 70.1 60.1 63.6 62.0 64.0 68.6 60.2
Spatial AlexNet  70.6 83.1 768 71.7 60.7 65.0 62.7 65.0 68.9 57.6
VGG-16  70.1 81.3 757 69.0 59.0 60.2 62.1 62.6 67.0 59.1
Squeeze 77.1 82.3 79.7 69.9 60.0 65.2 63.1 64.5 69.5 63.6
Mean AlexNet  73.9 82.8 784 71.4 60.7 65.5 63.5 65.3 69.6 60.2
VGG-16 779 81.8 79.8 68.9 59.5 64.0 63.0 63.8 69.2 65.2
Squeeze 76.8 82.0 794 69.8 60.1 64.6 61.9 64.1 69.2 62.0
Sort AlexNet  73.3 82.8 T78.0 Tl.1 60.6 64.6 62.6 64.7 69.2 58.5
VGG-16 78.1 81.5 79.8 68.1 59.2 62.7 61.5 629 685 64.8
Squeeze 75.0 82.5 788 69.9 60.1 64.5 62.1 64.2 69.0 61.5
Spatial+Mean AlexNet  71.8 83.0 774 T1.6 60.7 65.5 62.7 65.1 69.2 58.5
VGG-16 734 81.9 777 69.3 59.4 64.5 62.5 639 68.2 61.0
Squeeze 75.5 82.5 79.0 70.0 60.1 64.4 61.9 64.1 69.1 61.2
Spatial+Sort  AlexNet  72.2 83.1 7r.7 713 60.6 64.9 62.8 649 69.2 58.5
VGG-16  74.9 819 784 694 59.4 62.3 62.1 63.3 684 61.9
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