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Abstract

Recent research demonstrated that deep neural net-
works could generate meaningful feature represen-
tations from both eye-tracking data and sentences
without designing handcrafted features, which
achieved competitive performance across cognitive
NLP tasks, such as sentiment classification over
gaze datasets, but the previous works mainly en-
code the text and gaze data separately without con-
sidering the interaction between these two modali-
ties or applying large-scaled pre-trained models. To
address these challenges, we introduce PLM-AS, a
novel framework to take full advantage of textual
and eye-tracking features by sequence modeling in
a highly interactive way for multimodal fusion. It is
also the first attempt to combine large-scaled pre-
trained models with eye-tracking features in the
cognitive reading task. We show that PLM-AS cap-
tures cognitive signals from eye-tracking data and
shows improved performance in sentiment classifi-
cation within and across three datasets of different
domains.

1 Introduction

Recent research studies have shown that eye-
tracking features reflect cognitive information and
lead to stable improvement in natural language
tasks [1, 12, 16, 24, 28], such as sentiment clas-
sification [14, 17], sarcasm detection [18], named
entity recognition [8], coreference resolution [3]. It
can be mainly explained in the following aspects:
1) Entities, lengthy and complex words could catch
attention more easily than common words in terms
of lexical level. 2) While implicit expressions may
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also lead to a longer duration of fixation with a sec-
ond check in terms of semantic level when reading
the content. 3) Sentiment judgment is an auxiliary
task to content comprehension [2], the participants
will face difficulty in comprehension and will review
the whole sentence several times due to the complex
phrasal structure in terms of syntactic level [11].
In all these aspects, human gaze data can provide
a wealth of cognitive information for content com-
prehension and support sentiment classification at
the same time.

There have been breakthroughs in many fields
by the advances in deep neural architectures in the
recent decade, research on how to model text and
human gaze data with deep neural networks was
also conducted. A convolutional neural network
was first applied to learn feature representations
from both text and human gaze data [19], and the
gaze component in their model handled with two
fundamental eye-tracking attributes, including fix-
ation and saccade. Another multi-task deep neu-
ral framework based on recurrent neural network
LSTM also achieved competitive performance with
gaze features [20]. The sentence-level attention cor-
responding to fixated words and adjacent words
could also be applied to sentiment classification [2].
These works have limited capabilities from two as-
pects: (a) The text and gaze representations were
learned by these neural networks without any in-
teractions between two modalities, and the mod-
els just concatenated the final outputs for multi-
modal fusion (b) It is difficult to apply large-scaled
transformer architecture directly within such a two-
tower framework.

In this paper, instead of encoding two differ-
ent modalities separately with neural networks, we
propose a novel neural network structure that al-
lows us to encode text modality first and then per-
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form sequence modeling leveraging the fixation or-
der of words from gaze scanpaths intuitively with
the support of pre-trained language models. We
use the abbreviation PLM-AS for our proposed
model Pre-trained Language Models Augmented
with Scanpaths in the paper. We conduct various
experiments for evaluation based on different gaze
datasets, ETSA-I Dataset, ETSA-II Dataset and
ZuCo Dataset released by [9, 11, 18], respectively.
In summary, our contributions in this work are:
(1) We introduce a novel framework PLM-AS,
combing the text representation with eye-tracking
data in a more intuitive way than previous early-
fusion models, specifically by leveraging the pro-
cessing information encoded in the fixation order.
(2) It is also the first attempt to combine contextu-
alized embeddings from pre-trained language mod-
els with eye-tracking data over gaze datasets on
sentiment classification.
(3) We conduct a series of controlled studies by
organizing the outputs from pre-trained language
models to investigate the impact of eye fixations
towards the framework, e.g., fixation words, fixa-
tion order.
(4) We also test the cross-corpus capabilities of this
PLM-AS framework and analyze the results in the
aspect of generalization.

2 Motivation

The concept of scanpath is first proposed by [22],
which refers to the trajectories (paths) of the eyes
when scanning the visual field and viewing and
analyzing any kind of visual information. When
it comes to human reading [25], the scanpath
mainly demonstrates the sequence of eye fixations
(50–1500 ms pause of viewing a fragment of text),
revealing the saccades (a quick movement between
two or more phases of fixation in the same direc-
tion) and the regression (backward saccade to a
previously visited fragment).
The inspiration for our proposed model is that

human reading is not a linear process in only one
direction strictly, but the trajectory of the eye-
movements could still be organized as the time se-
ries of eye fixations, and the composition of this
new sequence is highly overlapped with the text it-
self, which means that we could represent the fixa-
tion sequence using different fragments of text, and
it should work naturally in recurrent neural net-

Figure 1: The scanpath of reading the sentence S
from ETSA-II Dataset [18]. The fixation sequence
records the positions of fixation words in the sen-
tence, following the time series of eye fixations.

works [26], e.g. GRU architecture [5], due to its
sequential nature. Since the annotations are evalu-
ated by the subjects, this means that the cognitive
information would be automatically included in the
scanpaths when they read the sentences. Applying
the eye-tracking scanpaths into the deep neural net-
works directly is equivalent to combining the cog-
nitive features with the corresponding text features
in a more intuitive way.

Our framework would follow this way: 1) Firstly,
contextualized word representation is generated
by transformer architecture over the reading sen-
tences, and we take full advantage of the final layer
from BERT [7] as text representation; 2) By re-
trieving the features of the corresponding positions
step by step from BERT according to the index
sequences of fixated words (scanpaths), we would
have the text feature sequences in the fixation or-
der; 3) Since recurrent neural network is designed
for sequence modeling in deep learning, the new
generated feature sequences are regarded as the in-
put of the scanpath encoder, the GRU architecture
[4], for the final multimodal fusion; 4) According to
the actual length of the fixation sequence, the out-
put of scanpath encoder in the final step is picked
up for sentiment polarity prediction.
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Figure 2: PLM-AS: Pre-trained Language Models Augmented with Scanpaths

3 Proposed Model

In this section, we introduce the PLM-AS frame-
work with contextualized representation and the
scanpath encoder, and give the details on loss func-
tions over different label settings for sentiment clas-
sification.
Text Representation: Given a sentence S,

each word would be cut into subword level by
wordpiece tokenizer before the BERT architecture.
Then we have subword sequence x0 with two special
tokens [CLS] and [SEP] inserted at the beginning
and the end of the sequence, respectively.

x0 = [[CLS], w1, ..., wS−1, [SEP ]] (1)

Each token could be represented by the con-
catenation of word embedding, position embed-
ding, and segment embedding, and undergoes bidi-
rectional multi-head self-attention across multiple
transformer blocks:

x
′
l = MSA(LN(xl−1)) + xl−1, l = 1...L (2)

xl = MLP (LN(x
′
l)) + x

′
l , l = 1...L (3)

where

MSA(X) = Watt[Att1(X), ..., Attm(X)]⊤ (4)

Atti(X) = softmax
((WQiX)⊤WKiX)√

D/m
(WViX)⊤ (5)

Finally, we have the output sequence v from the fi-
nal layer of BERT as a text representation (P refers
to the dimension of hidden layer in BERT):

v = xL (6)

Scanpath Encoder: Given a subword-based
fixation index sequence f , we retrieve the features
of the corresponding position step by step from the
output sequence v according to the index sequence
of fixated words, then generate the new scanpath
feature sequence s (N refers to the set of the fixa-
tion word index)

f = [f1, f2, f3, ..., fm], fi ∈ N (7)

si = vfi , i ∈ M (8)

s = [s1, s2, s3, ..., sm], si ∈ RP (9)

The scanpath feature sequence s is then passed to
the GRU architecture and we have the output se-
quence o from the scanpath encoder: (Q refers to
the output dimension of the scanpath encoder)

oi = GRUscanpath(si), i ∈ M (10)

o = [o1, o2, o3, ..., om], oi ∈ RQ (11)

Finally, we use the output in the last time step
for training and evaluation (t refers to the actual
length of the fixation index sequence).

ofinal = ot (12)

Sentiment Polarity Classification: For the
final classification, we take the outputs of GRU in
the last step as the final features, according to the
actual length of fixation index sequence.
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1) Binary classification: The feature vector is
then passed to the linear layer with a sigmoid acti-
vation function to predict the sentiment label {0,1},
positive or negative.

LBCE = − 1

N

N∑
i=1

yi · log(ŷ) + (1− yi) · log(1− ŷ) (13)

We optimize the model with binary cross-entropy
loss between the true labels and the predicted val-
ues during the training stage.

2) Multi-label classification The feature vector
is passed to the linear layer with a softmax function,
we pick up the index with the highest probability
as the sentiment label {0,1,2}, positive, negative,
or neutral.

LCE = − 1

N

N∑
i=1

3∑
j=1

yij · log(ŷj) (14)

We optimize the model with softmax cross-
entropy loss between the true labels and the pre-
dicted values during the training stage.

4 Experiment Setup

4.1 Datasets

All the experiments followed the principle: a pair of
one single scanpath and one sentence was treated
as an example, instead of multiple reading scan-
paths with one sentence, so we reconstructed the
examples in this way over three cognitive datasets.
Apart from that, we removed some examples with
senseless annotation results from readers.

ETSA-I: We also worked on another cogni-
tive reading dataset, Eye-Tracking and Sentiment
Analysis-I, which have been used by [11] for senti-
ment classification. The dataset contains 1059 sen-
tences in total from movie reviews and tweets, and
the annotations come from five subjects, including
eye-tracking data recorded by a remote eye-tracker
Tobii TX 300 with sentiment labels (positive, neg-
ative, and neutral) for each sentence.

ETSA-II: We first applied our proposed frame-
work based on the cognitive reading dataset re-
leased by [18]. The original dataset, Eye-Tracking
and Sentiment Analysis-II Dataset, mainly supple-
mented with advanced eye-movement information
over NLP dataset, contains fixation sequence data

with 383 positive and 611 negative sentences, in-
cluding sarcastic quotes, short movie reviews, and
tweets. Eye-tracking data from 7 subjects are all
included for each sentence, recorded by an SR-
Research Eyelink-1000 eye-tracker during the read-
ing.

ZuCo: Experiments were also carried out for
cross-domain learning based on a cognitive dataset,
the Zurich Cognitive Language Processing Corpus
released by [9], combining EEG and eye-tracking
recordings from subjects reading natural sentences
as a resource for the investigation of the human
reading process in adult English native speakers.
This dataset includes simultaneous EEG and eye-
tracking signals collected from 12 subjects during
natural text reading, but in this case, we just ex-
tracted the textual features and the gaze features.
The gaze data was recorded by an SR-Research
Eyelink-1000 Plus eye-tracker. The corpus contains
400 sentences in total, of which 140 are positive, 123
are negative, and 137 are neutral, including movie
reviews and biographical sentences.

4.2 Parameter Settings

As for ETSA-I and ETSA-II datasets, we sim-
ply split the dataset into two subsets, 90% of the
dataset are treated as training samples, while 10%
of them are used for validation. We follow the
instruction in [21] to perform 25 runs for each
model setting with the different random initializa-
tion, using the same data split and the same hyper-
parameter settings, and the final results are aver-
aged over these runs. The training is performed
for 20 epochs with the batch size of 16, we adopt
the AdamW optimizer by [15] with a learning rate
of 0.0002 to minimize the loss and the default set-
tings in PyTorch framework are kept unchanged,
the learning rate is linearly increased for the first
10% of steps and linearly decayed to zero afterward.

All these settings are applied to BERT and the
scanpath encoder equally. The scanpath encoder is
designed as a single-direction GRU with one recur-
rent layer, the hidden size of GRU is set to 768, and
the dropout with 0.1 are applied to the recurrent
layer in GRU. We initialize the hidden state of scan-
path encoder by using the special token [CLS] out-
puts from the final layer of BERT. Our implementa-
tion uses the PyTorch framework, and pre-trained
models are loaded from HuggingFace Transform-
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ETSA-II ETSA-I

Configuration P R F P R F

Traditional
systems based on

textual features

* Näıve Bayes 63.0 59.4 61.14 50.7 50.1 50.39

Multi-layered Perceptron 69.0 69.2 69.2 66.8 66.8 66.8

SVM (Linear Kernel) 72.8 73.2 72.6 70.3 70.3 70.3

CNN architectures*

[19]

Text only 72.17 70.91 71.53 60.51 59.66 60.08

Gaze only 65.2 60.35 62.68 52.52 51.49 52.0

Text and Gaze 79.89 74.86 77.3 63.93 60.13 62.0

BERT Text only 89.81 91.67 89.74 83.61 82.75 82.95

PLM-AS Text and Gaze 90.09 91.75 90.48 84.34 83.6 83.82

Table 1: Performance evaluation over cognitive reading datasets [11, 18]. Except for removing a few
noisy samples, we applied the same way to split the datasets as the previous work (*) did in [19]. We
report macro-averaged precision (P), recall (R), and F1 score (F).

ers [27], an open source machine learning library in
Python.

5 Performance Evaluation

Similar to previous cognitive studies in [19], we
evaluate the PLM-AS over two cognitive reading
datasets for sentiment classification task. The goal
of our experiments is to investigate if the proposed
model could take full advantage of textual and eye-
tracking features for multimodal fusion over sen-
timent classification task and analyze where the
improvement comes from by controlled baselines.
Table 1 presents the performance of the previous
works and our proposed model. In addition, we
also evaluate our proposed model in cross-domain
learning over three different datasets, shown in Ta-
ble 3.

Single modality vs. Multimodality: The
previous works in [19] show that CNN architectures
learned from both text and eye-tracking data out-
perform those settings with single modality only.
However, applying large-scaled pre-trained models
has become the mainstream approach across differ-
ent natural language tasks. The results show that
the BERT model become another strong baseline
on this task, even with text input only, but our
proposed framework, PLM-AS, could perform mul-
timodal fusion and beat the new baseline over both
these datasets by taking advantages of large-scaled
pre-trained models and gaze features at the same
time. It would always be good to replace the BERT
with other advanced pre-trained models for text
representation, e.g. RoBERTa in [13] to achieve

more gains over all these related settings, but it is
not our main research purpose here.

Effect of fixation words (a): We consider
the fixation words are selected subconsciously by
the human cognitive process during reading, con-
tributing to sentiment judgments after the content
comprehension [2]. We also question if our pro-
posed model could work smoothly with random
word choices instead of this kind of certain word
choices from human. To further investigate this
question in PLM-AS, we carried out our first con-
trolled baseline by randomly shuffling the BERT
outputs before feeding them into the scanpath en-
coder, the results, Table 2, show that the perfor-
mance of PLM-AS is better than the setting (a)
over both datasets, to some extent, all these word
choices selected during the natural reading by hu-
man share the common ground in cognition and
support the sentiment judgments within our pro-
posed model.

Effect of fixation order (b): The core idea of
our proposed model is to capture the eye-tracking
features by the fixation sequences, which provide
cognitive information about the word choices and
fixation order. To better understand the impact of
the fixation order in PLM-AS, we try to shuffle the
fixation order before feeding them into the scan-
path encoder but with the word choices remained.
Unsurprisingly, PLM-AS is better than the shuf-
fled setting (b) from Table 2, which means that the
fixation words could not contribute to the overall
performance individually without the order infor-
mation in PLM-AS, at least not in such a RNN
sequential model setting [26] of the scanpath en-
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ETSA-II ETSA-I

Configuration P R F P R F

BERT Text only 89.81 91.67 89.74 83.61 82.75 82.95

PLM-AS Text and Gaze 90.09 91.75 90.48 84.34 83.6 83.82

Other baselines

Shuffle BERT outputs (a) 89 91.1 89.26 83.56 82.3 82.73

Shuffle fixation sequence (b) 89.38 91.45 89.81 83.4 82.51 82.81

Replace fix. sequence with natural text (c) 89.35 91.5 89.78 84.05 83.13 83.38

Table 2: Performance evaluation based on controlled baselines. Noted that the text inputs of pre-
trained language model stay the same without any shuffle or replacements in order to provide the text
representation across all these settings, but in the next stage of encoding with GRU: (a) we create a
subword-based index sequence with random words from the sentence to replace the fixation sequence; (b)
we create another index sequence by shuffling the fixation sequence; (c) we replace the fixation sequence
with natural text, the same order as text inputs for the pre-trained language model.

coder. RNN architecture might not be the only
option for modeling the fixation feature sequences,
especially in capturing the order information, but
we left it to future research.

Effect of encoder architecture (c): We also
question that the improvement might come from
the scanpath encoder itself rather than the eye-
tracking features, so we carried out our third con-
trolled baseline by replacing the fixation sequences
with word sequences of natural text, the only differ-
ence between this setting and BERT is by adding an
extra GRU architecture, and it becomes a text-only
setting. The results in Table 2 show that the perfor-
mance of this setting (c) is close to the BERT base-
line but lower than the performance of PLM-AS,
which indicates the GRU architecture itself with-
out any cognitive features might not contribute a
lot to the overall performance of PLM-AS.

Cross-domain evaluation: Apart from these
controlled baselines, we also perform a cross-
domain evaluation based on the ZuCo dataset. The
results in Table 3 show that our PLM-AS frame-
work can achieve more competitive cross-domain
performance to the BERT baseline while the mod-

Train Test Models P R F

ETSA-I ZuCo
BERT 87.97 87.47 86.9

PLM-AS 87.66 86.5 85.77

ETSA-II ZuCo
BERT 67.11 67.67 62.66

PLM-AS 68.7 68.53 64

Table 3: Cross-domain evaluation over three
datasets.

els are trained on ETSA-II Dataset rather than
ETSA-I Dataset. Noted that the reading texts in
the ETSA-II Dataset are collected from two popu-
lar sarcastic quote websites, Tweet and the Amazon
Movie Corpus, [23], with a higher level of complex-
ity and diversity than the ETSA-I Dataset and the
ZuCo dataset. Nearly half of the reading texts in
the ETSA-II Dataset are sarcastic, it could be as-
sumed that the eye-tracking data (scanpaths) in
ETSA-II Dataset would be more abundant and di-
verse, which improve the overall performance. In
addition, human scanpaths might vary not only
from the text domains but also from person to per-
son due to reading behaviors. Instead of provid-
ing eye-tracking features on average across all the
subjects at a time, our PLM-AS framework might
learn the reading patterns from a certain group of
subjects and face challenges in generalizing these
learned reading patterns to other subjects in such a
subject-based sample construction. When it comes
to the testing stage of cross-domain measurements,
to some extent, the inconsistency between datasets’
subjects should also be considered for the undesir-
able results when the models are trained on the
ETSA-I Dataset.

6 Conclusion

In this paper, we propose a novel framework to fully
combine text representations with eye-tracking fea-
tures by scanpath modeling and carry out experi-
ments to evaluate our model (PLM-AS) for sen-
timent classification. The results show that PLM-
AS captures cognitive signals from the eye-tracking
data and shows improved performance on senti-
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ment classification within and across three datasets
of different domains. This indicates that the order
of fixation during text reading carries linguistic in-
formation that is useful for NLP tasks.

Since all the experiments are carried out on small
datasets with limited texts and unstable results are
observed when applying large-scale language mod-
els, we decide to follow the evaluation strategy in
[21], to obtain convincing results. Since it is not al-
ways practical to obtain related eye-tracking data
for augmentation at the test time, many research
studies have been proposed for gaze feature predic-
tion on text [10] and image [6] in recent years. How-
ever, scanpath prediction on text has not yet been
explored sufficiently, which could be investigated
as an auxiliary task over different NLP challenges
during training, to be free of this limitation.
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