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Abstract

We analyze the training process of the Deep Ritz
Method for elliptic equations with Dirichlet bound-
ary conditions and highlight problems arising from
essential boundary values. Typically, one employs
a penalty approach to enforce essential boundary
conditions, however, the näıve approach to this
problem becomes unstable for large penalizations.
A novel method to compensate this problem is pro-
posed, using a small penalization strength to pre-
train the model before the main training on the tar-
get penalization strength is conducted. We present
numerical evidence that the proposed method is
beneficial.

1 Introduction

After exceptional success in machine learning, neu-
ral networks become increasingly popular in numer-
ical analysis. Strategies to approximate solutions
of partial differential equations (PDEs) based on
neural networks can be traced back to [4] and [6].
Their approaches are currently being revived and
extended thanks to increased computational power
and ease of implementation in frameworks like Ten-
sorflow and PyTorch, see [12, 5, 11, 8, 1, 10].
Presently, a common drawback of neural network

based methods is their poor reliability – a failure
to learn even a simple solution to a PDE is not un-
common, see [14, 13]. In this note, we show that us-
ing the boundary penalty method known from the
finite element literature, see for instance [2], to ap-
proximately enforce Dirichlet boundary conditions
in the Deep Ritz Method leads to such an unreli-
ability. More precisely, large penalization param-
eters – albeit mandatory for an accurate solution
– lead to highly fluctuating errors and sometimes

∗Corresponding Author: mariusz@simula.no

even to a failure to approximate the solution at all.
We present a pre-training strategy to alleviate this
issue. The key idea is to pre-train the model using
a small penalization parameter and subsequently
to shift it by an optimal amount before conducting
the training with the desired large penalization. We
show that this approach reduces the variance of the
Deep Ritz Method and improves the accuracy up
to almost one order of magnitude in the best case.

Although our numerical results are conducted
for the Poisson equation on model domains, the
method is applicable to general domains and gen-
eral elliptic equations and can easily be combined
with more advanced optimization strategies as for
example proposed by [3, 7].

1.1 The Deep Ritz Method

We briefly recall the Deep Ritz Method and the
corresponding error estimates for the boundary
penalty method. In general, the Deep Ritz Method
proposed by [5], transforms the variational formu-
lation of a PDE – if available – into a finite dimen-
sional optimization problem using neural network
type functions as an ansatz class. Suppose we want
to approximately solve

−∆u = f in Ω

u = 0 on ∂Ω,
(1)

where Ω is an open and bounded set in Rd. It is well
known that for a function u ∈ H1

0 (Ω) and a right-
hand side f ∈ H1

0 (Ω)
∗ it is equivalent to solve (1)

and to be a minimizer of the following optimization
problem

u ∈ argmin
v∈H1

0 (Ω)

1

2

∫
Ω

|∇v|2 dx− f(v). (2)

Now, we want want to minimize (2) over a class of
neural network functions. However, it is unfeasible
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to enforce zero boundary values due to the uncon-
strained nature of neural networks. A solution is
to use the boundary penalty method which allows
to approximate (2) by an unconstrained problem.
This approach was used by [5]. More precisely, let
λ > 0 be a fixed penalization parameter and denote
by Θ a set of neural network parameters and con-
sider the problem of finding a (quasi-)minimizer of
the loss function Lλ : Θ → R

Lλ(θ) =
1

2

∫
Ω

|∇uθ|2dx− f(uθ) + λ

∫
∂Ω

u2
θds (3)

This is now an unconstrained optimization prob-
lem that enforces zero boundary conditions approx-
imately depending on the size of λ. To gain insight
into the nature of this approach, we consider the en-
ergy, i.e., the loss function extended to all ofH1(Ω),
namely Eλ : H1(Ω) → R given by

Eλ(u) =
1

2

∫
Ω

|∇u|2dx− f(u) + λ

∫
∂Ω

u2ds

and its associated Euler Lagrange equation

−∆u = f in Ω

∂nu+ 2λu = 0 on ∂Ω.
(4)

Thus, using (3) to approximate (1) means to use
a Robin boundary value problem to approximate a
Dirichlet condition. Let us denote by u0 ∈ H1

0 (Ω)
the solution to (1) and by uλ ∈ H1(Ω) the solution
to (4). The key observation is that using the bound-
ary penalty formulation (3) is only asymptotically
exact. More precisely, in [9] it is established that it
holds

∥u0 − uλ∥H1(Ω) ∈ O(λ−1)

and that this rate is sharp. This means that ac-
curately solving essential boundary value problems
with the boundary penalty method requires large
penalization strengths λ.

1.2 Main Contributions

The main contributions we provide in this article
are

• Using the Deep Ritz Method with boundary
penalty, we demonstrate that large values of
the penalization parameter λ – albeit being
necessary for a reasonably exact method – lead

to numerical instabilities and possibly to a fail-
ure of the training process.1

• To alleviate this problem we propose a pre-
training strategy. The training process is
started with a low penalization value and the
network is subsequently shifted by an optimal
amount before fine tuning on the large target
penalization strength. We test this approach
on different examples and observe increased
accuracy and reduced variance in the training
outcome.

2 The Pre-Training Approach

Assume we want to solve the problem (1), i.e.,

−∆u = f in Ω

u = 0 on ∂Ω,

by using a neural network ansatz and the boundary
penalty method as described in the introduction,
i.e., employing the loss function Lλ with penalty
parameter λ

Lλ(θ) =
1

2

∫
Ω

|∇uθ|2dx− f(uθ) + λ

∫
∂Ω

u2
θds.

We propose the following two step pre-training
procedure:

(i) We set a pre-training penalization strength λP ,
typically with the value λP = 1, and train the
model using the loss function LλP

for a certain
amount of iterations. We denote the neural
network that results from this training by uθP .

(ii) We choose a (large) target penalization
strength λT and shift the network uθP adding
an optimal constant tλT

namely

uθT = uθP + tλT
,

where

tλT
=

∫
Ω
f(x) dx

2λT |∂Ω|
−

∫
∂Ω

uθP (x) dx

|∂Ω|
.

We denote the shifted function by uθT . We
then continue to train the network uθT using
the loss function LλT

corresponding to the tar-
get penalization strength λT .

1With failure we mean in this case that the constant zero
function is learned.
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The reason to choose the shift parameter tλT
in

this particular way stems from a calculus argument
which we provide as the next Lemma.

Lemma 1. Let λ > 0 and L : Rn × Rn → R a La-
grangian and u0 : Rn → R an admissible function,
then the energy

Eλ(u) =

∫
Ω

L(x,∇u(x)) dx−
∫
Ω

f(x)u(x) dx

+ λ

∫
∂Ω

|u(x)|2 dx

is minimized among all translations ut := u0+ t for
t ∈ R if

t = t̃ :=
1

2λ|∂Ω|

∫
Ω

f(x) dx− 1

|∂Ω|

∫
∂Ω

u(x) dx.

Proof. The translation ut for t ∈ R that minimizes
the energy Eλ has to satisfy

d

dt
Eλ(u+ t) = 0.

Hence, it has to hold

0 = −
∫
Ω

f(x)u(x) dx+ 2λ

∫
∂Ω

u(x) + t dx

which, after rearranging, implies the stated equa-
tion for the translation t̃ ∈ R. Due to the structure
of the energy this has to be a minimizer.

Remark 2. The above motivation is not limited
to the Laplace operator. In fact, the derivation of
the optimal shifting applies to more general elliptic
operators as well.

3 Numerical Experiments

In this Section we describe the numerical experi-
ments used to illustrate the effectiveness of the pro-
posed pre-training algorithm. We begin with the
general setup: The concrete test cases, the used
network architectures and training hyperparame-
ters. Then, in Section 3.1 we report the results of
the näıve training approach and finally in Section
3.2 we contrast this with the performance of the
pre-training approach.

The Test Examples. We test the proposed pre-
training method on three different geometries and
in cases where we have access to the true solutions.
More precisely, we use the following two dimen-
sional domains and right-hand sides

(i) The disk, i.e., Ω = B1(0) and f ≡ 1, where
Br(0) denotes the ball of radius r around the
origin.

(ii) The annulus, i.e., Ω = B2(0)\B1(0) and f ≡ 1.

(iii) The square, i.e., Ω = [0, 1]2 and f(x1, x2) :=
8π2 sin(2πx1) sin(2πx2).

In these cases, the analytical solutions are known.

(i) On the disk, the analytical solution is given by
uD(x) := − 1

4 |x|
2 + 1

4 for x ∈ B1(0).

(ii) On the annulus, the analytical solution is given
by uA(x) := − 1

4 |x|
2 + 3

4 log(2) log(|x|) +
1
4 for

x ∈ B2(0) \B1(0).

(iii) On the square, the analytical solution is
given by uS(x1, x2) := sin(2πx1) sin(2πx2) for
(x1, x2) ∈ [0, 1]2.

The Network Architecture and Training
Process. We use small networks with moderate
depth to keep the computational cost manageable.
Our precise choices that are global for all experi-
ments are reported below.

(i) We use fully connected feed forward networks
with four hidden layers and input dimension
two and output dimension one. All hidden lay-
ers have 14 neurons. We choose the hyperbolic
tangent as our activation function.

(ii) We initialize the weights using Glorot uniform
initialization and the biases are initialized by
zero.

(iii) The numerical integration of the integrals for
the training is done using fixed evaluation
points. For a number N ∈ N we use points
in the lattice 1

NZ2 to approximate the integral
of a function f : Ω ⊂ R2 → R via∫

Ω

f dx =
1

N

∑
xi∈ 1

N Z2∩int(Ω)

f(xi).
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Figure 1: Experiment on the annular domain with
zero boundary values, not employing the proposed
pre-training. Reported is the median and the first
and third quartile (shaded area) over 25 runs for
different values of λ.

Integrals over the boundary of a domain are
approximated using arclength parametrization
with N · |∂Ω| many equi-spaced evaluation
points. Here |∂Ω| denotes the length of ∂Ω.
For the square and the annulus we use roughly
250, 000 evaluation points, i.e., the lattice con-
stants are N = 500 and N = 160 respectively.
For the disk we use roughly 90000 evaluation
points, i.e, N = 160. We chose these num-
bers such that no further improvement of the
method was noticeable upon refining.

(iv) For the optimization process we use the Adam
optimizer with 10000 iterations, either for the
use on one penalization strength or distributed
between pre-training and target penalization.
Depending on the experiment we vary slightly
with the learning rate. Details can be found in
the corresponding sections.

(v) The relative L2(Ω) and H1(Ω) errors are com-
puted using 106 uniformly sampled evaluation
points in Ω for every integral appearing in the
respective norms.

Figure 2: Experiment on the annular domain with
zero boundary values, employing the proposed pre-
training strategy. Reported is the median and the
first and third quartile (shaded area) over 25 runs
for different values of λ.

(vi) We use the boundary penalization strengths
λ = 1, 5, 10, 50, 100, 500, 1000, 5000 and 10000
and every experiment is conducted 25 times to
capture the stochastic influence of the initial-
ization.

3.1 Näıve Approach

We begin our experiments by directly training on
the target penalization strength, where we vary the
penalization parameter in a range between λ = 1
and λ = 10, 000 having in mind that a penalization
strength λ introduces an error of O(λ−1). We train
for 10, 000 iterations with a fixed learning rate of
0.001.
We observe an optimal penalization for values of

λ between 50 and 100, both for relative L2 and rel-
ative H1 errors, we refer to Table 1 and Table 2.
Furthermore, as clearly visible in Figure 1 and Fig-
ure 3 for the example of the annulus and the square,
both the error & the variance in the errors across
different runs increases dramatically beyond penal-
ization strengths of 100 to 1000.

In particular, for all three equations we fre-
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Figure 3: Experiment on the square with zero
boundary values, directly training on the target pe-
nalization strength. Reported is the median and
the first and third quartile (shaded area) over 25
runs for different values of λ.

quently observe a total failure to train in the large
penalization regime, i.e., relative errors of around
100%. In this case the zero function is learned.
Heuristically, we attribute the deteriorating accu-
racy to a growing number of increasingly attractive,
poor local minima in the loss landscape for large
penalization strengths until for very large penaliza-
tion parameters even the zero function can result
from training. A large value of λ forces the gradient
descent dynamics violently towards zero boundary
conditions at the expense of other features of the
PDEs solution, hence good minima become less at-
tractive and difficult to find.

Table 1: Best relative L2 errors without pre-
training.

Domain Best relative L2 error

Disk (3.14± 0.82) · 10−2 with λ = 100
Annulus (6.19± 1.55) · 10−2 with λ = 50
Square (3.17± 0.12) · 10−2 with λ = 100

Figure 4: Experiment on the square with zero
boundary values, employing the proposed pre-
training strategy. Reported is the median and the
first and third quartile (shaded area) over 25 runs
for different values of λ.

Table 2: Best relative H1 errors without pre-
training.

Domain Best relative H1 error

Disk (4.61± 1.61) · 10−2 with λ = 50
Annulus (9.33± 1.68) · 10−2 with λ = 50
Square (4.62± 1.14) · 10−2 with λ = 100

3.2 Pre-Training Approach

In the previous Section, we have seen that the näıve
approach using the boundary penalty method in-
troduces large errors and unstable training dynam-
ics. To mitigate this effect, we propose the pre-
training strategy detailed in Section 2. We find
that the proposed pre-training significantly reduces
both the errors and the errors’ variance.

For the experiments in this Section we set the
pre-training penalization strength to λP = 1 and
pre-train for 4000 iterations. Here, the first 1000 it-
erations the learning rate is set to 0.01 and for the
remaining 3000 iterations we use 0.001. We pro-
ceed by shifting the neural network by the optimal
amount tλT

and train 6000 iterations with learning
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rate set to 0.001 on the target penalization strength
λT .

We report the relative L2(Ω) and H1(Ω) errors
obtained through using the proposed pre-training
strategy in Figure 2 and the best results we ob-
tained in Table 3 and Table 4.

We clearly see beneficial effects for both the ac-
curacy and the variance of the errors for all three
equations. We refer also to Figure 2 and Figure 4
that should be contrasted with their counterparts
without pre-training, i.e., Figure 1 and Figure 3.

In case of the disk, the relative error is almost
reduced by a full magnitude. Also on the annu-
lus, we see a drastic improvement of accuracy. For
the square, the improvement in accuracy is smaller,
however, the variance in the reported errors is de-
creased drastically as well. This is no surprise as
the example of the square possesses an oscillating
solution in the interior and we believe that the main
error is due to this comparatively complicated so-
lution. In the following, we list the advantages of
our proposed pre-training strategy.

(i) Improved accuracy and increased reliability as
discussed above.

(ii) Potential computational savings. Even though
our method requires to pre-train the model we
believe that the overall computational cost can
be reduced. In fact, using larger learning rates
is possible as the loss landscape is less rough for
small values of λ. We have already exploited
this in our experiment setup. Also in the main
training, potentially larger learning rates can
be used as the model is already in a reasonable
state. We leave the fine-tuning of learning rate
schedules for future research.

(iii) Decreased sensitivity to the choice of penal-
ization parameter. Particularly, the experi-
ments on the disk and the annulus suggest that
the accuracy of the method does not depend
as strongly on the penalization strength as in
the case without pre-training. This facilitates
choosing a reasonable penalization strength.

Table 3: Best relative L2 errors with pre-training.

Domain Best relative L2 error

Disk (0.63± 0.48) · 10−2 with λ = 500
Annulus (1.81± 0.80) · 10−2 with for λ = 500
Square (3.05± 0.21) · 10−2 with λ = 100

Table 4: Best relative H1 errors with pre-training.

Domain Best relative H1 error

Disk (1.17± 0.21) · 10−2 with λ = 500
Annulus (1.97± 0.47) · 10−2 with λ = 100
Square (4.54± 0.48) · 10−2 with λ = 100

4 Conclusions and Future Re-
search

We observe that approximately enforcing essen-
tial boundary conditions in the Deep Ritz Method
leads to an unstable training process and reduced
accuracy. To mitigate this effect, we employ a
pre-training approach and show that the proposed
method stabilizes the training and increases accu-
racy.

Future research can concentrate on fine-tuning
the interplay of the learning rate and the penaliza-
tion parameter, as we observed that smaller penal-
ization parameters potentially allow larger learning
rates and hence an accelerated training procedure.
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