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Abstract

Numerous applications rely on the efficiency of
Deep Learning models to address complex classifi-
cation tasks for critical decisions-making. However,
we may not know how each feature in these mod-
els contributes towards the prediction. In contrast,
Rule Induction algorithms provide an interpretable
way to extract patterns from data, but traditional
approaches suffer in terms of scalability. In this
work, we bridge Deep Learning and Rule Induction
and define the RIDDLE (Rule Induction with Deep
Learning) architecture. We show that RIDDLE has
state-of-the-art performance in Rule Induction via
an empirical evaluation.

1 Introduction

The adoption of Rule Induction algorithms sup-
ports decisions in medicine [30, 27], fault and fraud
detection [33, 7], and brings benefits to chemical,
oil [4], and energy industries [32], among others.
These algorithms express patterns found in data in
the form of associative (‘if-then’) rules effectively
aiding users in decision-making [5, 6, 31, 22].

Rule Induction approaches have to solve hard
combinatorial problems, as the symbols available
for constructing the rules form a discrete space [5, 6,
20]. Hence, their scalability suffers when compared
to classification methods that can rely on tech-
niques tailored for the optimisation of differentiable
functions, such as Deep Leaning with gradient-
based optimisation [15, 22]. Indeed, Deep Learn-
ing approaches have excelled in many tasks, in-
cluding image segmentation [24] and text genera-
tion [16]. The success of Deep Learning approaches
have two well-known reasons: the flexibility to han-
dle many different forms of data and scalability
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powered by technological advances. Yet, the lack
of interpretability of Deep Learning models limits
their application in systems that directly or indi-
rectly influence critical decisions [6, 29].

Our main contribution is an original Deep Learn-
ing architecture dubbed RIDDLE (Rule Induction
with Deep Learning) which learns rules using a dif-
ferentiable error function. This means that our ap-
proach can employ the efficient optimisation meth-
ods, while providing interpretable rules. We show
with formal arguments the reasons that led the de-
velopment of the RIDDLE architecture. Since it is
based on the formal framework of Possibility The-
ory, RIDDLE builds rules equipped with certainty
degrees which express the reliability of each rule.
This has two main advantages over most traditional
Rule Induction methods: (1) they avoid having
‘sharp’ decision boundaries and (2) the orders of
the rules is irrelevant, that is, they yield rule sets
instead of lists [20]. Furthermore, we show that
our method has state-of-the-art performance (accu-
racy) on well-known datasets, especially those with
uncertain or missing information.

Related work. The most prominent Rule Induc-
tion algorithms belong to the decision tree fam-
ily such as RIPPER [5] that outputs binary (or
crisp) rules. FURIA is an extension that gener-
ates fuzzy rules [20]. To solve the issue of scala-
bility of Rule Induction systems in Big Data set-
tings, Elkano et al. [15] proposed CFM-BD, a dis-
tributed system for fuzzy Rule Induction using a
MapReduce paradigm. While CFM-BD has shown
promising results, it still solves a search problem
on a large discrete space.

We can also find works on neuro-symbolic ap-
proaches for Rule Induction. DR-Net [28] em-
ploys a simple 2-layer neural network architecture
to learn rule sets. DR-Net also controls the com-
plexity of the rules learned via a sparsity term. In
contrast, RIDDLE automatically prioritises simpler
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rules over complex ones as a consequence of weight-
decay. Kusters et al. [22] define a 3-layer neural net-
work architecture for rule induction, named R2N,
that can also identify potential new terms. R2N in-
tegrates neural networks and Rule Induction with
a differentiable function, but it can only learn posi-
tive DNF, a restricted class of rules where variables
cannot be negated [1]. RIDDLE instead can learn
any propositional formula, while also providing a
measure of the ‘reliability’ for each rule.

Glanois et al. [18] propose HRI, a hierarchical
approach to Rule Induction designed for Inductive
Logic Programming (ILP) [25]. The language of
rules differs considerably from propositional rules.
Their method also relies on pre-defined rule tem-
plates that determine the types of rules that can
be learned, while we do not impose such restric-
tions with our method.

In Section 2, we present the theoretical foun-
dations of our contribution. Then, we introduce
RIDDLE in Section 3. In Section 4, we provide
an empirical comparison between RIDDLE and FU-
RIA, a prominent fuzzy Rule Induction algorithm.
We conclude and mention future steps in Section 5.

2 Preliminaries

In this section, we present relevant notions re-
garding propositional logic [2], Possibility The-
ory [11, 12], and neural networks [19].

Propositional Logic. Let V be a finite set of
boolean variables. A literal over V, denoted with
the symbol l, is either a variable v ∈ V or its nega-
tion, in symbols, ¬v. The former is also called a
positive literal, the latter a negative literal. A clause
is a disjunction (∨) of literals. A formula1 is a con-
junction (∧) or set of clauses. A clause c can also
be expressed as a rule r of the form ant(r)→ con(r)
where ant(r) (the antecedent of r) is a conjunction
of all but one negated literals in c and con(r) (the
consequent of r) is a single literal. Example 1 illus-
trates these concepts.

Example 1. Let V = {v1, v2, t}. For instance,
(¬v1 ∨ v2 ∨ t) is a clause, (v1 ∧ v2) or {(v1), (v2)} is
a formula and ((v1 ∧ v2)→ t) is a rule.

1In general, formulas in propositional logic can combine
¬, ∨, and ∧ arbitrarily. However, we will assume that every
formula is in conjunctive normal form (CNF).

A (partial) interpretation I over V is a function
I : V → {>,⊥, ? } that states which variables are
regarded as ‘true’, ‘false’, and ‘unknown’. I falsifies
a variable v ∈ V if I(v) = ⊥, otherwise it satisfies
it. I satisfies a negative literal ¬v iff I(v) is equal
to ‘? ’ or ‘⊥’. I satisfies a clause c if it satisfies at
least one literal in c. Intuitively, I satisfies a clause
if there is a way of replacing ‘unknown’ values (?)
with ‘true’ (>) or ‘false’ (⊥) such that the clause is
satisfied. Also, I satisfies a formula φ, in symbols
I |= φ, if every clause in φ is satisfied by I. We
write I 6|= φ instead, if I does not satisfies φ. We
clarify these notions with the following example.

Example 2. I1 = {(v1,>), (v2,>), (t,>)}, and
I2 = {(v1,>), (v2, ?), (t, ?)} satisfy the clause in
Example 1. I3 = {(v1,>), (v2,⊥), (t,⊥)} does not.

For conciseness, we abuse the notation and write
⊥ and > when referring to the empty disjunction
and the empty conjunction, respectively.

Possibility Theory. A possibilistic clause over V
is a pair (φ, α), where φ is a clause over V and α
is a real number with finite precision in the inter-
val (0, 1], called the valuation of φ. A possibilistic
formula K is a conjunction of possibilistic clauses.
Given K, and a set Ω of interpretations over V, we
define a possibility distribution πK : Ω→ [0, 1] as

πK(I) := min
I∈Ω

({1} ∪ {1− α | I 6|= φ, (φ, α) ∈ K}).

The possibility degree ΠK(φ) of φ, indicates how
much φ is coherent with πK and NK(φ) expresses
the necessity degree of φ being implied by πK. They
are defined as follows

ΠK(φ) := sup
I∈Ω
{π(I) | I |= φ}

NK(φ) := 1−Π(¬φ).

A possibility distribution πK satisfies a possibilistic
clause (φ, α), written πK |= (φ, α), if NK(φ) ≥ α,
and it satisfies a possibilistic formula K if it satis-
fies each (φ, α) ∈ K. We have that (φ, α) is entailed
by K, written K |= (φ, α), if all possibility distri-
butions that satisfy K also satisfy (φ, α). We recall
key properties of this theory [14].

Lemma 1 ([9]). For every possibilistic formulas K
and (φ, α), we have that NK(φ) = max{α | K ∪
{(¬φ, 1)} |= (⊥, α)}.
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P1 Π(φ1 ∨ φ2) = max(Π(φ1),Π(φ2)); and

P2 N(φ1 ∧ φ2) = min(N(φ1), N(φ2)).

Neural Networks. We assume an arbi-
trary but fixed ordering of the variables in V:
(v1, . . . , vn, t1, . . . , tm). We will predict the cer-
tainty degree of the variables tj with the informa-
tion provided by vi. In this work, a neural net-
work model is a function g : [0, 1]

2n → [0, 1]
m

. It
takes as input a vector denoting the possibilities
of each literal and it outputs the possibilities of
each tj . The function g contains parameters to be
optimised by iterative updates of the backpropaga-
tion algorithm. To take advantage of the optimi-
sation steps, we employ the function log-sum-exp:
LSEα(x1, . . . , xn) := 1

α ln(eαx1 + · · · + eαxn), as a
smooth approximation of the max (min) function
when α → ∞ (α → −∞). We write LSEmax for
LSE30 and LSEmin for LSE−30.

3 Introducing RIDDLE

In this section, we describe the theoretical moti-
vations that led the development of RIDDLE. Our
goal is to predict Π(¬t) (or Π(t)), of a target
variable t, from the possibility degrees of literals
V := {v1,¬v1, . . . , vn,¬vn}. If needed, we can com-
pute how necessary the target variable is according
to our input with N(t) = 1−Π(¬t) (or N(¬t)).

We assume the general setting in which we have a
dataset of (partial) interpretations I := {I1, . . . , Id}
where some rules of the form φ→ t generally hold.
We can convert the statements in I ∈ I to possi-
bilistic degrees via the method proposed by Joslyn
[21] to estimate possibilities from imprecise data.
We first define the set II := {I ′ ∈ I | ∀v ∈ V, I(v) =
? or I(v) = I ′(v)} that contains precisely the in-
terpretations in I that differ only on the unknown
values of I. Then, from II , we count the number
of interpretations that satisfy a literal l which is
given by cII (l) := |{I ∈ II | I |= l}|. Finally,
the possibility associated to a literal l, according
to the facts in I and I, is defined as ΠII (l) :=
cII (l)/max(cII (l), cII (¬l)). Therefore, from I we
can get the set of possibility degrees for each in-
put literal D := {x1, . . . ,xd}, where for any Ii ∈ I,

xi := (ΠIIi (v),ΠIIi (¬v1), . . . ,ΠIIi (vn),ΠIIi (¬vn)).
The number j in xij corresponds to the value at

the j-th position. We denote the formula associ-
ated to xi w.r.t. Ii ∈ I by X i := {(l, 1−ΠIIi (¬l)) |
ΠIIi (¬l) < 1}. Example 3 provides a clarification.

Example 3. Let β = {I1, I2} as in Example 2.
x1 = (1, 0, 1, 0, 1, 0), and x2 = (1, 0, 1, 1/2, 1, 1/2).
x2

4 is 1/2 and X 2 := {(v1, 1), (v2, 1/2), (t, 1/2)}.

Theoretical Motivation. We assume that the
unknown formula K = {(φi → t, αi) | 1 ≤ i ≤ k}
holds in the dataset of possibility degrees D, and
that NK(t) = 0.

Lemma 2. Given K = {(φi → t, αi) | 1 ≤ i ≤
k}, and F = K ∪ {(lj , αj) | 1 ≤ j ≤ s}, we get
ΠF (¬t) = min{max{1−αi,ΠF (¬φi) | 1 ≤ i ≤ k}}.

Proof. By Lemma 1 and definition of K, we have

NF (t) = max{α | F ∪ {(¬t, 1) |= (⊥, α)}
= max{NF (φi ∧ (φi → t)) | 1 ≤ i ≤ k}.

From P2, we get NF (t) = max{min(NF (φi), αi) |
1 ≤ i ≤ k}. Also, for any x ∈ [0, 1]

n
, it holds that

(1 −max(x)) = min(1 − x), hence by the relation
between possibility and necessity:

ΠF (¬t) = 1−max{min(NF (φi), αi) | 1 ≤ i ≤ k}
= min{max{1− αi,ΠF (¬φi) | 1 ≤ i ≤ k}.

For convenience, we denote by ψi := li,1 ∨ . . . ∨
li,si the clause ¬φi for any rule (φi → t, αi) ∈ K.
By Lemma 2 and P1, for any formula X we can
compute ΠK∪X (¬t) with

min{max{1− αi,ΠK∪X (ψi) | 1 ≤ i ≤ k}} (1)

ΠK∪X (ψi) = max(ΠK∪X (l1,i), . . . ,ΠK∪X (l1,si))

By definition of K, ΠK∪X (ψi) = ΠX (ψi), so we can
propagate the known uncertainty of input x ∈ D
to obtain the certainty degrees of the unknown tar-
get variable t with min-max operations. In prac-
tice, we do not know what rules φi → t hold in
K and their necessity degree αi. But, such rules
constrain every possibility degree in D that we can
use to induce φi and αi, with 1 ≤ i ≤ k. Now, we
describe RIDDLE, a novel neural network architec-
ture for Rule Induction leveraging the uncertainty
propagation properties of Possibility Theory.
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Architecture. We can alternatively compute
ΠK∪X (ψi) as a parametrised combination of prod-
uct and maximum operators:

max(wψi1 ΠX (v1), wψi2 ΠX (¬v1), . . . , wψi2nΠX (¬vn))

where for odd (even) 1 ≤ t ≤ n, wψit ∈ [0, 1] selects
to what degree vt (¬vt) appears in ψi. In matrix
notation with input x ∈ D, this operation becomes

fψ(x) := x ?wψ = x ? [wψ1 , w
ψ
2 , . . . , w

ψ
2n]

T
,

where ? denotes the matrix dot product with the
sum replaced by the LSEmax operator. Lemma 3
states that for any clause ψ and input x, we can
find fψ : [0, 1]n → [0, 1] such that ΠX (ψ) = fψ(x).

Lemma 3. For any clause ψ and formula X over

V, there is wψ ∈ [0, 1]
|V|

, s.t. fψ(x) = ΠX (ψ).

Proof. Let ψ := l1 ∨ · · · ∨ ls. By P1, we have
ΠX (ψ) = max(ΠX (l1), . . . ,ΠX (ls)). We can assign

for odd 1 ≤ t ≤ n, the valuewψi
t = 1 (wψi

2t = 1) if vt
(¬vt) appears as a top-level literal in the disjunct
ψi, otherwise the value 0. By definition, we get
max(wψ

1 ΠX (l1), . . . ,wψ
2nΠX (¬vn)) = fψ (x).

As a consequence, we can approximate the com-
putation of ΠK∪X (¬t) in Eq. (1) with

LSEmin(LSEmax(β,x ? [wψ1 , · · ·wψk ]))

= LSEmin(LSEmax(βi, fψi(x)) | 1 ≤ i ≤ k).
(2)

The vector β ∈ [0, 1]
k

is the parameter that ap-
proximates 1 − αi. Therefore, the rule induction
problem of finding rules in K is reduced to select-
ing the right value of each parameter wψi and βi.

We can improve this method by exploiting the as-
sociative property of the LSEmax operator and com-
pute fψ(x) as LSEmax(fΨ1

(x), . . . , fΨl(x)), where
each Ψj is a subformula of ψ (Example 4). More-
over, some rule antecedents φi, φj (with i 6= j) in
K may share subformulas, so we can decrease the
number of parameters by stratifying each fψi(x).

Example 4. Given ψ1 := v1 ∨¬v2 ∨ v3, ψ2 := v1 ∨
¬v2 ∨ v4, and possibilities x ∈ [0, 1]

8
, we can com-

pute fv1∨¬v2(x) = x?wv1∨¬v2 , fv3(x) = x?wv3 , and
fv4(x) = x?wv4 at first and then compute fψ1

(x) =

([fv1∨¬v2(x), fv3(x), fv4(x)] ? [1, 1, 0]
T

). Similarly,

fψ2(x) = ([fv1∨¬v2(x), fv3(x), fv4(x)] ? [1, 0, 1]
T

).

For l ≥ 1, let HLli : [0, 1]
lh → [0, 1] be the layer

that takes as input lh arguments and for x ∈ D
computes fψi(x) as follows

HLli(x) := LSEmax{wl
i,jHLl−1

j (x) | 1 ≤ j ≤ lh}
HL0

j (x) := xj ,

where each 1 ≤ s ≤ l, wti,j ∈ [0, 1]. In other words,
for 1 ≤ s ≤ l and 1 ≤ j ≤ lh, the function HLsj(x)
computes ΠX (Ψ) for a subformula Ψ of ψi, in the
same way fψi(x) computes ΠX (ψi). Each layer
HLsj : [0, 1]

u → [0, 1]
v
, 1 ≤ s ≤ l, is a function

with u, v ≥ 1 freely chosen (hyperparameters) that
obey the constraint posed by the standard matrix
dot product. Finally, we can define RIDDLE(x) as

LSEmin(LSEmax(βi,HLli(x)) | 1 ≤ i ≤ k)). (3)

Theorem 1. Given K = {(φi → t, αi) | 1 ≤ i ≤ k}
with NK(t) = 0, we can find a configuration of the
parameters in RIDDLE s.t. for any formula X =
{(lj , αj) | 1 ≤ j ≤ s}, RIDDLE(x) = ΠK∪X (¬t).

Proof. For all literals l, by definition NK(l) = 0.
Hence, for any antecedent ψ, ΠK∪X (ψi) = ΠX (ψ).
By Lemma 3 and associativity of max, we can set
the values of the parameters in HLli(x) so that it
computes ΠX (φi). By Eqs. (2) and (3), we get that
RIDDLE(x) computes ΠK∪X (¬t) as in Eq. (1).

Multi-class tasks are modelled with many out-
put nodes or with multiple RIDDLE instances in
parallel. Theorem 1 shows the generality of our
approach but it relies on Lemma 3 which requires
parameters in [0, 1]. Thus, after updating the pa-
rameters with SGD [3], we replace negative values
with 0 and values greater than 1 with 1.

Rule Extraction and Injection. When the op-
timisation procedure terminates, we can track the
literals that are used to discriminate the target pos-
sibility value by inspecting the value of each param-
eter. Indeed, every parameter lies in the interval
[0, 1] and by the semantics given to their values,
we can apply the argument in Lemma 3, to extract
the literals included in the clause of each layer HLli.
We observed that the parameters always collapse
to either 0 or 1 after a sufficient number of updates
(Section 4). Also, the introduction of hidden layers
can be considered a way of having predicate inven-
tion as in ILP settings [25].
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We can also manually inject rules of the form
φ→ t to a RIDDLE instance before or after training.
Due to Lemma 3, we just need to append to the
operation LSEmin in Eq. (3) a layer HL′ : [0, 1]

2n →
[0, 1], corresponding to the function f¬φ.

4 Experimental Results

We implemented the RIDDLE model in Python 3.9
that is fully integrated in the PyTorch [26] ecosys-
tem. The implementation is freely available
at the following link: https://git.app.uib.no/

Cosimo.Persia/riddle. The gradient of the
model parameters are computed with PyTorch’s
automatic differentiation package and after the up-
date, they are ‘clamped’ to the range [0, 1] to pre-
serve the correctness of the model. We conduct the
experiments on an Ubuntu 18.04.5 LTS server with
i9-7900X CPU at 3.30GHz, 32 physical cores, 8
GPUs NVIDIA A100 with 80GB, and 32GB RAM.

Test settings. Often, the features in the consid-
ered datasets include a mixture of nominal, contin-
uous, and integer fields. Using feature discretiza-
tion, we divide continuous or integer values in 8
bins such that all bins for each feature have the
same number of points. Each bin will be associ-
ated with a new variable that it is going to be set
to ‘true’ if the value of the original value belongs
to the respective bin. Missing values assign the
value ‘unknown’ to all related new binarised vari-
ables. In this way, we can generate a set of in-
terpretations D := {I1, . . . , Id}. From D, we can
derive the dataset D := {xi | Ii ∈ D} as explained
in Section 3. D expresses the possibility values
of variables and their negation for each interpre-
tation in D. The first column in Table 1, shows
the datasets that we considered for the benchmark.
These are freely available at UCI machine learning
repository [8]. Briefly, with ‘breast cancer’, ‘hep-
atitis’, ‘horse’, ‘hypothyroid’, ‘lymphography’, and
‘primary tumor’, the model should predict the type
of disease or the patient’s survival. With ‘auto’,
‘credit’, ‘chess’, ‘glass’, ‘mushroom’, and ‘wine’, the
model should classify the specific type of object un-
der scrutiny; for example, whether a mushroom is
edible. More details about these can be found at
the UCI website2. Most datasets have a substantial

2http://archive.ics.uci.edu/ml

amount of missing values.

Evaluation. RIDDLE minimises the MSE (mean
squared error) during training (see column ‘MSE’
in Table 1). Compared with arbitrary linear/ReLu
feedforward deep network architectures, RIDDLE
performs slightly better (in addition to being ex-
plainable). Therefore, we will focus our compari-
son on the accuracy of the FURIA algorithm [20]
that represents the state-of-the-art in propositional
Rule Induction with confidence values. We use the
FURIA implementation available on Weka [17], and
compare it with RIDDLE on classification tasks us-
ing the standard definition of accuracy. To use
the trained RIDDLE model for classification, we
look at RIDDLE output (Π(¬t1), . . . ,Π(¬tm)) and
if Π(¬ti) ≤ 0.4, then the variable ti is preferred
over its negation and we assume that the variable
ti is predicted to be true (N(t) = 1 − Π(¬t)). We
carried our tests on the same benchmark datasets
used by the aforementioned rule induction system.

Model selection. We split each dataset in 70%,
10%, and 20% for training, validation and test, re-
spectively. Finding the best combinations of hy-
perparameters (number of layers, nodes per layers,
learning rate etc.) can be a time-consuming task.
But, we noticed that, in general, RIDDLE performs
well even with small networks and extremely well
with deeper configurations. We adjust the hyperpa-
rameters on a grid search fashion using Tune [23].
The number of hidden layers varies from 1 to 10
and the number of nodes per layer from 2 to 500,
the batch size from 8 to 64, and the learning rate
from 0.1 to 0.001. The final models’ sizes correlate
positively with the number of variables given as in-
put and with the number of rules that hold in the
dataset. On average, the resulting network has 6
layers with 50 nodes. Each model is trained with
a batch of size 16 over 100 epochs with a learn-
ing rate of 0.01, and with early-stopping. That is,
we stop the training routine if the validation loss
has not has not decreased by more than 0.01 for 10
subsequent epochs. Moreover, we fixed a weight-
decay factor of 0.001. This means that the gradi-
ents used for updating the parameters are summed
to the constant value 0.001.

Results. Table 1 shows the results of our ex-
periments. The column ‘Inst.’ shows the num-
ber of instances, #V shows the number of vari-
ables in the original dataset and #DV is the num-
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Accuracy Model complexity
RIDDLE FURIA RIDDLE FURIA

Dataset Inst. #V #DV MSE Size Count Size Count
Anneal 798 39 286 1e-4 97 97 2.9 17.1 3.2 21.7
Audiology 226 71 708 4e-3 95 91 1.7 19.0 2.1 19.3
Auto 205 26 354 3e-4 98 85 2 3.4 2 3.3
Credit-A 690 15 158 2e-1 87 89 3.1 6.8 4.1 7.3
Credit-G 1000 21 166 2e-2 74 72 2.2 10.3 3.1 10.2
Breast cancer 699 21 160 3e-2 91 90 3.3 5.1 3.6 9.9
Chess 3196 37 146 1e-2 91 99 4.6 15.3 4.7 28.3
Glass 214 10 72 4e-3 94 68 1.8 5.9 2.0 16.7
Hepatitis 155 20 122 4e-4 86 75 3.1 3.4 2.2 4.1
Horse 368 28 252 5e-3 83 85 1.8 5.9 2.7 5.0
Hypothyroid 3163 30 140 8e-3 95 95 4.8 11.3 6.3 18.1
Lymphography 148 19 118 9e-4 86 86 2.1 5.4 2.2 5.3
Mushroom 8124 19 234 1e-4 97 98 2.8 5.3 2.4 6.0
Primary tumor 339 18 60 6e-5 94 75 1.9 3.6 1.9 4.0
Wine 178 14 112 1e-4 96 90 3.4 8.2 3.4 8.1

Table 1: Accuracy and model complexity of RIDDLE and FURIA compared with different datasets

ber variables after discretization and binarization.
‘MSE’ is the loss of RIDDLE on the test data. Of-
ten, RIDDLE converges to a minimum after only
30 epochs and soon after the early-stopping rou-
tine stops the training. The average training time
with the largest datasets (mushrooms, chess, and
hypothyroid) is 2 seconds for RIDDLE and 1 for
FURIA. The ‘Accuracy’ columns in Table 1 show
that in most cases RIDDLE generalises from train-
ing data better than FURIA. However, FURIA per-
forms better in complete information scenarios as in
the ‘chess’ dataset. But, even in such case RIDDLE
outputs a simpler model. In contrast, RIDDLE
yields better accuracy in datasets with more miss-
ing data, such as ‘glass’, or ‘hepatitis’.

The rightmost part of Table 1 reports the size
and the number of induced clauses found by each
model per dataset. For instance, rules found by
RIDDLE in the ‘hepatitis’ are

((1.9 ≤ bilirubin) and ¬has ascites→ dies, 0.8)

((3.7 ≤ albumin) and firm liver→ lives, 1).

Moreover, RIDDLE has better model complexity
with fewer and shorter rules, even when RIDDLE
performed worse in terms of accuracy. This sug-
gests a bias towards simpler models. When RIDDLE
encodes known rules with additional layers (end of
Section 3), the performance improves.

Dataset Min Max Median S.D.
Anneal 93 98 96 1.18
Audiology 94 96 95 0.63
Auto 95 99 98 2.48
Credit-A 66 92 86 4.12
Credit-G 68 82 76 5.65
Breast cancer 85 96 91 4.52
Chess 83 98 88 6.04
Glass 81 99 88 4.54
Hepatitis 71 89 86 6.83
Horse 78 86 84 5.71
Hypothyroid 91 98 94 4.37
Lymphography 83 88 87 2.91
Mushroom 94 98 97 1.17
Primary tumor 85 99 93 5.13
Wine 84 98 95 3.59

Table 2: Additional statistics from the empirical
evaluation of RIDDLE obtained by running 40 train-
ing instances.
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Table 2 shows the statistical results concerning
the experiments. For each dataset, we stored the
minimal and maximal accuracy. Then, we com-
puted the median and standard deviation (S.D.).
From Table 2 we can conclude that RIDDLE has
consistent performance in most of the datasets con-
sidered.

We remark that another advantage of RIDDLE is
that the values provided with the rules have a clear
meaning, in terms of necessity. Meanwhile, fuzzy
approaches such as FURIA provide a weaker foun-
dation for the interpretation of the values associ-
ated with the rules. Additionally, the necessity val-
ues also distinguish RIDDLE from approaches such
as decision trees which, usually, do not provide a
measure of a rule’s reliability.

5 Conclusion

In this work, we introduced RIDDLE: a novel deep
learning architecture specialised in performing Rule
Induction in the presence of incomplete or uncer-
tain data. RIDDLE is a white-box model as its
trained weights have a clear meaning concerning
the decisions that the model takes while perform-
ing inference on the input. These weights can be
translated into propositionally complete rules that
are simpler than the rules found by state-of-the-
art algorithms. In addition, each rule is associ-
ated with certainty degree expressing the confi-
dence of the model about the induced rule. Not
only that, RIDDLE can also seamlessly incorporate
background knowledge via rule injection. Thus,
RIDDLE provides an efficient, flexible, and inter-
pretable solution for Rule Induction.

Future work. The next step is to optimise the ma-
trix computation in RIDDLE’s implementation and
speed-up both training and inference time. Also,
we will evaluate the effect of different methods of
drawing possibilities distributions from imprecise
data [10, 13] on accuracy.
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