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Abstract

Automotive crash tests are an important aspect of
everyday safety, where accurate measurements and
evaluations play a crucial role. In order to auto-
mate this process, we implement a bayesian hybrid
computer vision model to detect two different kinds
of target markers. These are commonly used in
crash tests, by e.g. automotive manufacturers, to
aid the localisation of the car’s positional data by
attaching these markers at different positions to the
vehicle. A tracking algorithm is subsequently used
to add contextual time information to the marker
objects. The extracted information can then be
used in downstream tasks to calculate important
metrics for the crash test evaluation, e.g. the speed,
momentum, acceleration and trajectory at particu-
lar parts of the car during different stages of the
crash test. The model consists of a pre-trained
Faster-RCNN for the region proposals with the ad-
dition of a bayesian convolutional neural network
to estimate a statistical uncertainty on the model’s
classifications. This uncertainty estimation can be
used as a tool to improve safety in uncertain edge
cases in videos where lighting conditions and light
reflections are not optimal. Our pipeline achieves
an average recall and precision of 0.89 and 0.99,
respectively, when applied to test data. This out-
performs the recall of state of the art models like
the Faster-RCNN Resnet-152 by more than 28%
while delivering slightly better precision, increas-
ing robustness in most of the tested use-cases.
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1 Introduction

When detecting and classifying objects in images
and videos the inherent uncertainty of what ex-
actly the detected object is, is often not quantifi-
able. In this work, conducted in cooperation with
the BMW AG 1 we develop an approach to quan-
tify the model’s predictive uncertainty of an ob-
ject detection and classification pipeline by using
a bayesian convolutional neural net on top of dif-
ferent object detectors. We apply this method on
high resolution automobile crash test videos to de-
tect, identify and track the target markers attached
to the car. These target markers are used by engi-
neers to extract important physical and mechanical
quantities in their crash test evaluations. Among
other things, these quantities consist of the speed
and trajectory of different parts of the car, allow-
ing to derive further information from the collected
data and helping in modelling the deformation pro-
cess of the car on, and after, the monitored impact.
In highly dynamic environments with varying light-
ing conditions and reflections an object detector
must be robust and yield certain results. If addi-
tionally an uncertainty for a prediction can be es-
timated this adds another layer of trust in the ma-
chine learning algorithm. The developed approach
helps to very accurately track the target markers
with a robust prediction of the marker type to avoid
mix-ups in this highly dynamic environment. In ad-
dition to the robustness and accuracy the model’s
uncertainty on a prediction is measured. The devel-
oped approach to object detection and classification

1This research was conducted at the Data Science Lab
at of the University of South Westphalia in close collabora-
tion with the engineers from the Requirements and Strategy
Vehicle Safety department at BMW (EG-30).

https://doi.org/10.7557/18.6802

© The author(s). Licensee Septentrio Academic Publishing, Tromsø, Norway. This is an open access article distributed
under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

1

https://doi.org/10.7557/18.6802
http://creativecommons.org/licenses/by/4.0/


is easily applicable to other computer vision tasks
where aleatoric uncertainty is important in decision
making. The structure of this contribution is laid
out as follows: First, we show a brief overview of
existing methods in object tracking and bayesian
image classification and then contrast them with
our approach in 2. Subsequently we describe the
used dataset. Finally we present the model archi-
tectures and evaluation results of our analysis in 4
and discuss the results and implications in 5.

2 Related Work

Previous works have given examples on how to com-
bat the inherent lack of an uncertainty estimation
in neural network models. Especially in the case
of computer vision the task of calculating such an
uncertainty on the object’s bounding box itself re-
quires a redesign of the current state of the art neu-
ral network architectures. In [6] the authors use a
modified non maximum suppression algorithm to
acquire such an uncertainty measurement on pro-
posed object regions. Other models like the Faster-
RCNN require more modifications to the model’s
architecture. In [5] the authors benchmark a modi-
fied Faster-RCNN on the MNIST dataset and apply
it to a dataset from molecular biology to enhance
the classification output. In this work we combine
methods of Faster-RCNN and Bayesian-CNN net-
works to efficiently detect small objects in videos
while also quantifying a statistical uncertainty on
classification predictions where a standard neural
network yields a confidence not deemed trustwor-
thy enough.

3 Data and model structure

The data for the training process was sampled from
different videos provided by BMW as well as using
public clips from NCAP crash tests on YouTube.
As the latter were only available as compilations,
these videos had to be cut to only show one par-
ticular test scenario per input video. Images taken
from these clips were then normalized and labeled,
the exact distribution of annotated samples can
be found in tab. 1. The resolutions of the input
videos range from 1920x1080 pixels to 2560x2200
pixels, where the largest portion falls into the first

Figure 1: Top: MXT (5 white circles) and DOT
crops as detected by the Faster-RCNN. These are
used as input for the Bayesian Neural Network.
Bottom: Distribution of the areas (in pixels) of the
two aforementioned marker types.

category. Resizing and data augmentation during
training and inference time was handled directly
by a Faster-RCNN ResNet-152, taken from the
tensorflow model zoo [7] [2] where all models are
pre-trained on the COCO 2017 dataset. Addi-
tionally it was also tasked with the detection of
the two different types of target markers displayed
in figure 1. The training data for the Bayesian

Faster RCNN BNN/LeNet
task videos MXT DOT MXT DOT
train 75 3181 2741 6432 6432
test 19 333 148 1440 1440

Table 1: Distribution of labeled training and test
samples taken from the crash test videos for the
different networks.

Neural Network was generated by utilizing the
previously trained object detector to automatically
create samples of target regions from the video
clips. Afterwards these were manually cleaned up
from misclassifications and misdetections. Some
examples of the target objects can be found on the
left in fig. 1. The histogram on the right side of
the same figure clearly shows that the area of the
vast majority of possible target regions is below
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322 square pixels. There are some outliers in the
object sizes due to the various camera positions
leading to a wide range of distances from camera
to object, these positions are presented in fig. 2).
From this distribution we set a unified input size of
only 16x16 pixels for the Bayesian Neural Network,
with a varying number of convolutional layers as
can be seen in tab. 3. One of the key aspects
of Bayesian Neural Networks is their ability to
model aleatoric and epistemic uncertainty by
utilizing probability distributions instead of fixed
values, leading in our case of Gaussian priors, to
a doubling in parameters (µ, σ instead of just the
weight w). As the epistemic uncertainty is not
quantifiable in our application due to the range
of different lighting conditions, camera angles
and background colors, we focus on the aleatoric
uncertainty. This is achieved by using a technique
called Variational Inference which focuses on the
approximation of the true posterior densities,
avoiding the problem of intractable calculations for
the latter, and presents a more scalable alternative
to Monte Carlo Markov Chains. In order to
achieve this it utilises a family of distributions
with variable parameters to optimize over and
among them tries to find the best approximation
q(z) of the true posterior distribution p(z|x).
The likelihood is determined by using a met-
ric called the evidence lower bound(ELBO), a
slightly modified version of the negative Kullback-
Leibler (KL) divergence without the oftentimes
intractable computation of the evidence log p(x):

KL(q(z)||p(z|x)) = E[log q(z)]− E[log p(z|x)]
KL(q(z)||p(z|x)) = E[log q(z)]− E[log p(z, x)] + log p(x)

ELBO(q) = E[log p(z, x)]− E[log q(z)]

Maximising the ELBO in turn leads to a min-
imisation of the KL divergence and thus a better
approximation of the target distribution.[3]As an
exact calculation of the former is again often times
infeasible, it was proposed by [4] to approximate
this function by Monte Carlo sampling from the
variational posterior q, where the samples are
gathered by using a modified version of the repa-
rameterisation trick from [8]. This method relies
on taking a sample ϵ ∼ N (0,1) from a distribution
of parameter-free noise and then shifting and
scaling it by the parameters θ = (µ,ρ) of q, where

σ = log(1+exp(ρ)). The transformation generates
a sample according to the deterministic function
t(θ,ϵ) = µ + log(1+exp(ρ) ◦ ϵ which can then be
used to optimize the cost function for the learning
process.

Figure 2: Examples of various camera perspectives
and distances found in the video material used in
training and testing.

Figure 3: Processing pipelines for testing. Left:
First implementation based on Faster-RCNN for
target detection. Middle: Faster-RCNN delivering
ROIs which are then classified by a BNN using mul-
tiple forward passes to determine the final result +
confidence. Right: Third iteration, relying on the
Faster-RCNN and only falling back onto the BNN
once the detection score is below a certain thresh-
old.

To mitigate the impact of the small target
regions on model and pipeline performance, an
additional dataset was created by resizing the
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Figure 4: The fourth iteration of the pipeline seg-
ments the image into 15 different slices evaluated
by the Faster-RCNN. The detected regions of the
slices are merged by removing duplicates, results
are furthermore evaluated by the BNN and only
accepted when both agree upon the result.

original images to 1920x1080 pixels. Each of these
were furthermore split into 15 partly overlapping
slices of 500x440 pixels, allowing the underlying
Faster-RCNN ResNet-152 to work on the input
without losing any more of the already sparse
information. The resulting overlap of at least 80
pixels in each direction in between these crops
ensures that for each marker there is at least one
slice where its bounding box will be able to be
completely captured.

These trained networks are then used as parts of
different processing pipelines. The ones that can
be seen in fig. 3 use different combinations of the
same underlying networks to achieve their goals of
correctly detecting, classifying and tracking each
target marker present in the recordings of the crash
tests, yet they are all based upon using the unsliced
input. The pipeline in fig. 4 however operates on a
Faster-RCNN trained on image slices while reusing
the same BNN. The latter was chosen due to the
results displayed in table 3, which were gathered
by classifying various test images, leading to the
decision to use BNN3 for all pipelines that involve
a Bayesian Neural Network, namely pipelines 2, 3
and 4. The subsequent tracking process of each
individual marker is handled by object trackers us-
ing the CSRT algorithm [9]. This offers high ac-
curacy and robust tracking of objects, even when
there are rapid changes in trajectory. One notice-
able drawback of this algorithm is its unstable pre-
dictions once the target gets occluded for several
consecutive frames, coming into effect when there
is deformation of the car during the crash. This
unwanted behavior gets filtered out by measuring
the overlap of the predicted bounding boxes of each

Figure 5: Sample output from the developed
pipeline. This image shows the small size of the tar-
get regions. The different marker types are found
accurately in the high resolution image.

active tracker with the ones provided by the Faster-
RCNN, using Intersection over Union (IoU) as a
metric, which is defined as

IoU(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
, (1)

with the bounding boxes A and B. Every match
leads to a renewed confirmation of the object, which
in turn keeps it alive longer. Once a target has not
been confirmed for a certain amount of consecutive
frames, its status is set to inactive and the posi-
tional data up to the last successful detection gets
filtered. This additionally helps to avoid some of
the misdetections that happen due to noise in the
environment e.g. bad lighting conditions, reflec-
tions and temporary occlusions. Filtered sample
output from the pipeline, showcasing the small tar-
get regions as well as both classes, can be found in
fig. 5.

4 Experimental Results

We evaluate the performance of our developed
pipeline in two stages. First the standalone per-
formance of the trained neural networks is evalu-
ated while in the second step we focus on the dif-
ferent pipelines with various combinations of the
models. The results for the object detector train-
ing can be found in tab. 2. The metrics for the
evaluation were taken from the documentation for
the COCO challenges and calculated via tensor-
flow, focusing on average precision (AP) and av-
erage recall (AR) at different IoU thresholds and
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target sizes.[1] The primary metric for the COCO
challenges, (AP0.50:0.95), averages over multiple IoU
values at different thresholds (usually 10 thresholds
with a stepsize of 0.05) to gather its results. We fur-
thermore opted to present the outcomes for an IoU
of 50% or above (AP50), meaning that only the best
prediction with the highest overlap (min. 50%) of
the correct area is taken into account. The table
clearly shows a significant decline in AP and AR
once the target is categorized as small (APs, ARs),
meaning its area is less than 32x32 pixels, when
compared to the results for medium-sized markers
(APm, ARm) which are encompassing an area be-
tween 32² and 96² pixels. Slicing the input how-

network
training
steps

AP0.5 AP0.50:0.95 APs APm ARs ARm

Faster RCNN 5k 0.73 0.41 0.40 0.68 0.54 0.70
10k 0.76 0.45 0.44 0.83 0.59 0.85
20k 0.76 0.48 0.47 0.78 0.59 0.80

Faster RCNN 10k 0.93 0.66 0.66 0.81 0.73 0.84
(cropped input) 20k 0.89 0.67 0.67 0.78 0.74 0.85
EfficientDet4 20k 0.70 0.36 0.36 0.67 0.49 0.70

Table 2: Evaluation metrics for the different object
detectors, evaluated on the labeled test dataset.
The metric used for the accuracy evaluation is the
Average Precision APIoU with an IoU threshold to
compare the label region with the predicted region.
AP and AR are calculated for different label sizes.

ever lead to improvements in both of these metrics
for that specific category, with gains of up to al-
most 50%. This is quite significant for the suc-
cess of the pipeline as most of the markers fall
into this category. The amount of training steps
has a negligible impact once a certain threshold is
reached. A longer training might lead to diminish-
ing returns or even overfitting, thus we stopped the
process early. The EfficientDet neural network [10],
which was tried for comparison, could not reach
the performance of our developed models in every
metric. The built Bayesian Neural Networks are
shown in tab. 3. It becomes apparent that these
mainly vary by the number of parameters, which is
caused by different amounts of convolutional layers
per model. The training and test data was shuf-
fled, parts of it augmented and the models were
trained using a custom loop with early stop func-
tionality. The networks were then evaluated by us-
ing TensorFlow internal metrics as well as a man-
ual evaluation step which is more representative of

conv
layers

Act
BN

test MXT DOT

model epochs params auc acc loss prec recall prec recall
BNN 1 58 1 x 10k 0.96 0.97 0.14 0.98 0.93 0.98 0.95
BNN 2 64 2 x 55k 0.97 0.97 0.34 0.98 0.96 1 0.95
BNN 3 9 3 x 211k 0.98 0.98 0.1 0.98 0.973 0.99 0.97
BNN 4 13 3 211k 0.69 0.8 1.0 0.99 0.4 0.67 0.99
LeNet 7 3 x 61k 0.99 0.99 0.01 0.99 0.99 0.99 0.99

Table 3: Bayesian model scores, evaluated on test
data. The evaluation metrics are calculated on
both classes together and separately. The param-
eters of the networks is displayed for evaluation of
complexity against the scores.

the actual usage of the model inside the process-
ing pipelines. For the latter, inference was per-
formed on 700 samples from the test dataset with
100 forward passes each, where the more likely pre-
diction was taken as the result for every pass. This
can then be seen as a sampling from the learned
posterior distributions providing the aleatoric un-
certainty estimation. Two example results from
this process are displayed in figure 6. These eval-
uations are quite similar and strong for the first
three BNNs from the table, with negligible differ-
ences between them. Even though the third model
technically reaches the highest scores, there clearly
is some overhead when compared to the two shal-
lower ones. The different sets of tests deliver similar
results when run on the same model, which con-
firms the applicability for the use case. It appears
that the trained model is robust against changes in
data. Besides the trained models themselves, the

Figure 6: Example results obtained by the Bayesian
Neural Network after 100 forward passes. On the
left there are misclassifications on around 20% of
the forward passes while the input on the right is
correctly classified with less uncertainty.

complete pipeline consisting of the object detectors,
classifiers and object trackers to add context in the
videos was also evaluated. The building blocks for
pipeline 1 to 3 consist of the Faster-RCNN with
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20k training steps and, if needed, the third BNN
model from table 3. For the last pipeline the object
detectors were exchanged, using the Faster-RCNN
trained on the cropped images (20k steps) to in-
fer upon the sliced input frames. To perform the
evaluation, single sample images were taken out of
the test videos and then processed in isolation from
the context of the video. These were then compared
one-by-one to the same frame, taken from the fil-
tered output of the pipeline after processing the en-
tire clip. It can clearly be seen, that the additional
information from the object trackers help to miti-
gate some of the short comings the object detector
shows when it comes to small targets. The im-
provement in the underlying object detector model
for the last pipeline directly translates to 10− 20%
better recall for both target classes, which is way
less than the 50% increases seen before when com-
paring only the trained models. This furthermore
confirms the positive impact of the later parts of
the pipeline.

MXT DOT
pipeline test env precision recall precision recall

1 isolated frame 0.99 0.67 0.97 0.7
video context

(filtered)
0.99 0.77 0.94 0.75

2 isolated frame 0.99 0.69 0.97 0.69
video context

(filtered)
0.99 0.81 0.95 0.76

3 isolated frame 0.99 0.71 0.96 0.70
video context

(filtered)
0.99 0.79 0.93 0.73

4 isolated frame 0.99 0.83 0.99 0.71
video context

(filtered)
0.98 0.94 0.99 0.84

Table 4: Results of different pipelines, evaluated on
samples from test videos. This comparison shows
the performances of the same frame, isolated and
in the context of the video.

5 Discussion and Outlook

In this work we showcase how to develop a pipeline
that efficiently combines state of the art object
detection models with Bayesian Neural Networks
to classify the detected objects. This approach
leads to high performance object detections as well
as an added security feature when estimating the
aleatoric uncertainty of the model itself. Estimat-
ing this uncertainty helps to build trust into a ma-
chine learning model.

This approach can also be used in many differ-
ent applications whenever small, seemingly hard
to detect objects have to be tracked in highly dy-
namic environments. It shows that the pipeline, us-
ing contextual information, delivers constantly bet-
ter results in comparison to isolated measurements.
The filtering methods help to detect outliers, mis-
classifications and unstable object trackers, thereby
cleaning the output from unwanted noise. As the
detection of small objects still remains a challenge,
even for modern machine learning models, this con-
tribution once again confirms that a loss of infor-
mation (e.g. resizing) leads to significantly worse
results when it comes to this specific range of tar-
get sizes. The performance on medium sized target
markers on the other hand is not affected by this
in any relevant way.
Further work will focus on improving the recall for
the DOT class, which is lacking behind its counter-
part, as well as improving tracking and refining the
model structure. One drawback of the improved
metrics in the latest version of the Faster-RCNN
model, and in turn the fourth pipeline, is a 5x in-
crease in runtime when compared to its predeces-
sors. Potential optimizations in this regard could
be the skipping of certain grid boxes, as only few
contain the sought after information at any given
time. As the runtime aspect does not play a cru-
cial role in our case, the focus was set on the max-
imization of the detection accuracy for the target
markers, allowing for an accurate post-crash anal-
ysis based on videos. This seems to be achieved
to a high degree when looking at the data pre-
sented in section 4, even though there still might
be potential improvements to be found. Thanks to
the cooperation with BMW we will be able to fur-
ther try and evaluate the software on current crash
tests provided by them. Data and code used to
produce the results in this work can be accessed
at https://github.com/DataScienceLabFHSWF/

crashtest_targetmarker_detection. We thank
the EG-30 at BMW for the cooperation and provi-
sion of additional data for the training of our mod-
els.
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