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Abstract

For integration of growing amounts of volatile re-
newable energy in the European electricity system,
reliable weather prognosis gains importance. But,
depending on weather conditions, forecast reliability
of wind speed for predicting wind power can vary
drastically with time. Thus, relevance of risk-aware
system operation strategies is increasing based on
wind speed uncertainty a measure of which is pro-
vided by the standard deviations of ensemble fore-
casts of the German Weather Service. However,
lacking validity of this measure is known as a long-
standing problem.

Therefore, this work investigates how machine
learning based on a suitably selected set of physi-
cal quantities of weather ensemble data as well as
historic wind data allows for a more realistic uncer-
tainty quantification. A recurrent neural network
(RNN) based sequence-to-sequence architecture is
implemented and probabilistic wind speed forecasts
are generated for a region in northern Germany.

The results are evaluated and compared with the
forecasts of the German Weather Service thereby
revealing improved validity of such deep-learning
based uncertainty measures.

1 Introduction

Weather services are typically based on Numerical
Weather Prediction (NWP) [14]. For predicting
wind power at certain locations, specialized services
are provided by companies which use public NWP
forecasts as input and provide wind power expec-
tation values for future times. These forecasts are

used for trading the expected generated energy and
possibly for operation of energy storage, flexible
producers or consumers. Uncertainties that come
with any predicted values in general and with re-
newable energy generation forecasts in particular
are nowadays tackled by intra-day trading activi-
ties until few hours and even 15-minute intervals
before generation time. Since not all deviations
between predicted and actual generated power can
be eliminated by increasingly accurate forecasts,
recent focus has been on predicting uncertainties
based on confidence intervals that are not uniform
over time and, therefore affect energy markets and
finally energy costs. Once these uncertainties can
be quantitatively predicted, risk-aware operation
and trading strategies could be implemented and
contribute to cost reduction [15].

Considering NWP, uncertainty has two origins.
First, forecasts depend on initial values of numeri-
cal solutions of weather models, i.e. on measured
values or results of previous forecasts that both
are not exactly known. Also numerics cause errors
in the resulting predictions, such aleatoric sources
of uncertainty are typically described by random
fluctuations of initial values. So-called epistemic
uncertainties, on the other hand, arise from neglects
or simplifications in the weather models used in
NWP and can be hardly determined [4]. Aleatoric
uncertainties are treated by ensembles predictions
that combine the results of different but equally
possible initial values of an NWP model.

Probabilistic forecasts that are derived from such
ensembles form the basis for quantitative uncer-
tainty predictions. However a known problem of
ensemble predictions is that they systematically un-
derestimate the uncertainty [8] and therefore are
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not suitable for applying them directly to planning
strategies that are constructed to benefit from un-
certainty forecasts.

Consequently, the question of how uncertainty
quantification of ensemble forecasts can be improved
is explored in detail here. Machine learning (ML)
methodology is a promising tool since there is a
huge set of data available from ensemble predic-
tions. These cover a multitude of, partially weakly
correlated, meteorological variables in multiple al-
titude layers over the forecast horizon. The task
then is to select a suitable set of meteorological
quantities that are expected to influence wind speed
forecasts in a relevant way, and to avoid inefficiency.
This data is later used to approximate the forecast
uncertainty using ML such that epistemic uncertain-
ties are included, unlike the ensemble predictions.
In the case study deep learning (DL) is applied to
ensemble forecasts of the German Weather Service
for several weather stations in northern Germany.

2 Related Work

Statistical post-processing of numerical weather pre-
dictions, such as (Ensemble) Model Output Statis-
tics, which look at statistical relationships between
forecast results and observed meteorological data,
are common to improve the predictions of determin-
istic models [11, 2]. The goal is to reduce the devi-
ation between the model prediction and observed
data to the smallest possible level using linear, lo-
gistic and multiple regression. However, due to the
linearity of the regression, the modelability of rela-
tionships is limited, and the informativeness of the
uncertainty information hardly improves [10, 3].
Various Uncertainty Quantification (UQ) methods
based on Neural Networks (NN) or Machine Learn-
ing (ML) techniques [12, 1] have been able to achieve
good results in generating probabilistic predictions
in various application domains. Uncertainty quan-
tification is primarily used in classification problems,
image processing, prediction of financial indicators,
or renewable energy generation forecasts [13, 7],
but rarely for meteorological predictions. Besides
Bayesian NN’s, common architectures are RNN and
CNN (convolutional neural network), or mixtures of
the two, allow both spatial and temporal relation-
ships to be learned from the input data. Further-
more, various error functions can be found, which

allow to generate probabilistic predictions, i.e. dis-
tributional forecasts.

A first feasibility study [9] shows how CNN-LSTM
networks can be used to improve the uncertainty in-
formation of temperature ensemble forecasts, while
focussing on the savings in computational time and
power compared to regular forecasts.
In [17], a deep learning approach for Uncertainty
Quantification of weather forecasts is presented, pro-
ducing probabilistic forecasts of temperature, wind
speed, and relative humidity for ten weather sta-
tions in Beijing. A combination of NWP forecasts
and recent historic observations is used to feed a
GRU-based (Gated Recurrent Unit, [6]) seq2seq
[16], i.e. a RNN-based encoder-decoder architec-
ture, which appeared best in comparison of different
architectures studied. Their newly developed nega-
tive log-likelihood error loss function allows to learn
the parameters of time-varying predictive normal
distributions (µ, σ2), and to predict the underlying
forecast uncertainty this way. In comparison to the
numerical predictions used as input, the accuracy
was improved by 47.76 %, however, a small sample
size was evaluated, which does not represent a gen-
eral improvement of performance.
A modified configuration of [17] forms basis for this
work, extending it, in order to support ensemble
predictions as input data, using a different error
function, and evaluate the model performance using
more prediction points.

3 Conception

Aim of this work is to process and improve the un-
certainty information of given ensemble wind speed
forecasts (purely aleatoric), by learning about the
model uncertainty (epistemic). For this purpose,
existing numerical weather forecasts of several pa-
rameters for a forecast period and location as well
as previous measurements are to be processed by a
RNN architecture. In the following part, the gen-
eral problem is presented and evaluation metrics
are introduced.

3.1 Methodology

The following general problem formulation is in-
spired by [17]. Given historical ensemble forecasts
from numerical weather models for predefined mete-
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Figure 1: GRU-based Sequence-to-sequence architecture and data semantic for enhancing probabilistic
wind speed forecasts, utilizing deep RNN’s.

orological parameters and associated measurement
data for a specific weather station s from S, the
problem can be formulated as follows:

1. Recent Observations, representing a measure-
ments time series, is denoted by the vector e(t) ∈
RN1 whereby the wind speed, is the only mete-
orological value of the set N1 for the time t =
t0 + 1, . . . , TE .

2. Further the NWP Forecasts denoted by d(t) =
[d1(t), d2(t), . . . , dN2·Ne(t)] ∈ RN2·Ne with dn(t) be-
ing the forecast values of one ensemble of the
NWP parameter set N2 over the forecast horizon
t = TE+1, . . . , TE+TD, with each ensemble consist-
ing of Ne members. Giving TD = Tmax. Further
information on N2 is given in section 4.1

3. The Ground Truth time series of the target vari-
ables denoted as y(t) ∈ RN3 , where the set N3

consists purely of the wind speed as target variable
for t = TE + 1, TE + 2, . . . , TE + TD.

4. The Estimation of y(t) is denoted as ŷ(t). Since
the estimation errors of independent forecasts are
expected to be distributed around the mean, the
estimate is described by a normal distribution. Con-
sequently, each estimation consists of ŷµ(t), the
prediction mean, and ŷσ(t) a corresponding stan-
dard deviation.

5. ETE = [e(1), e(2), . . . , e(TE)] ∈ RTE×N1 , the ob-
servation matrix, aggregating the recent historical
observation vectors resulting in TE × N1 dimen-
sions.

6. DTD = [d(TE + 1),d(TE + 2), . . . ,d(TE + TD)] ∈
RTD×(N2·Ne), NWP forecast matrix, consisting of
the aggregated NWP ensemble forecast vectors,
corresponding to TD × (N2 ·Ne).

7. XTE,TD = [ETE ;DTD ], concatenation of the ob-
servation matrix and NWP forecast matrix.

8. ŶTD = [ŷ(TE + 1), ŷ(TE + 2), . . . , ŷ(TE + TD)] ∈
RTD×N3 is the estimation matrix.

For each unique forecast horizon f from F all sta-
tions s from S are considered. With given XTE,TD,
the primary goal is to estimate the ground truth y(t)
by the mean value ŷµ(t) as close as possible, fur-
ther, the estimated standard deviation ŷσ(t) should
give insights on the (un)certainty of the forecast,
reflecting expected inevitable errors with a well
parameterized time-varying probability density dis-
tribution.
Adopting the fusion methodology of [17], the pro-
posed model includes recent measurements of rele-
vant weather dynamics only ETE

to account for the
recent seasonal conditions. Furthermore, numerical
ensemble wind speed forecast data DTD

are used
that contain trends and aleatoric uncertainties of
the target variable. Together, ETE

and DTD
serve

as an initial baseline for the predictions to be gener-
ated. Including forecasts of further meteorological
parameters DTD

that are physically related to the
target variable will introduce useful information
about the atmospheric and meteorological state.
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3.2 Evaluation Metrics

Adopting the inflation factor r from [18], giving
insights on the balance of standard deviation to ac-
tual error, with i being the index for each individual
forecast point:

r =
1
n

∑n
i=1

√
(µi − yi)2√

1
n

∑n
i=1 σi

(1)

For an optimal forecast model, an inflation value of
r = 1 is expected. If r < 1, i.e. the mean standard
deviation dominates over the mean error, meaning
the standard deviations are systematically too large,
otherwise, if r > 1 the standard deviation is too
narrow.
To compensate for the uncertainty underestimation
of the NWP model, the standard deviations are
increased by the factor r for the entire evaluation.
Further the mean absolute error (MAE) and the
continuous ranked probability score (CRPS) [8] are
considered:

MAE =

∑n
i=1 |µi − yi|

n
(2)

CRPS(Φ,y) =

∑n
i=1

∫
R(Φ(µi)− 1(µi ≥ yi))

2dµi

n
(3)

The CRPS can be seen as a generalization of the
MAE for probabilistic predictions, with both MAE
and CRPS being negatively oriented; accordingly,
smaller values are desirable.
Probability distributions hold the exact information
of the uncertainties, however, the margins of the
distribution functions can extend to infinity or neg-
ative values, creating an unrealistic picture of the
uncertainties. For this reason, forecast uncertain-
ties are often described using prediction intervals,
denoted γ, which can be determined directly from
the parameters of the distribution density function:

γ =
l − µi

σi
<

yi − µi

σi
<

u− µi

σi
(4)

=
l − µi

σi
< Zi <

u− µi

σi
(5)

Where y corresponds to the measured value, l and
u to predefined limits and Z being the standard
score. Prediction intervals are given as percentages,
e.g., γ90%, that it is expected, by given independent
draws from the underlying distributions, 90% of the
draws will be within the interval.

4 Case Study

In this work, a RNN is implemented and optimized
to estimate the parameters of a probability density
distribution ŶTD

, utilizing ability to learn temporal
relationships as they are predominant in this appli-
cation. The error function of the network has to
depend on the two quantities ŷµ(t) and ŷσ(t), as
well as the true values y(t).
For this case study, wind forecasts of 11 selected
weather stations in northern Germany are consid-
ered. In the following, the data source, data prepro-
cessing, sample definition and the model architec-
ture will be discussed.

4.1 Data

The wind speed measurements for ETE
and YTD

are taken from the German climate-data-center 1.
The NWP data DTD

is taken from daily 0, 6, 12,
18 o’clock forecasts of the ICON-EPS-D2 model
[14] of the German Weather Service 2. The NWP
ensemble forecasts include our selected set of 18
parameters, hence N2=18, (see table 1) related to
the wind speed, partially considered for different
altitudes indicated by their pressure level. Each en-
semble forecast consists of 20 independent ensemble
members, hence Ne = 20, with point predictions
on every full hour over an forecast horizon of 24
hours, giving the number of the target times TD=24.
Accordingly, the lead times was chosen as TE=24,
so that they share the same length.
Considering the four daily forecasts over one year
starting 07.2021, results in 1460 potential samples
which include features of all seasons. Missing data
on the edges or for more than four consecutive val-
ues, leads to the whole forecast horizon being dis-
carded, otherwise being filled by linear interpolation,
leaving F=885 forecasts. Overall following tensors
are created:

Input Tensors ETE
, DTD

:

(F, TE , S,N1) = (885, 24, 11, 1)

(F, TD, S,N2 ·Ne) = (885, 24, 11, 360)

Output Tensor YTD
:

(F, TD, S,N3) = (885, 24, 11, 1)

1Climate Data Center of the German Weather Service
https://cdc.dwd.de/portal/

2OpenData Portal of the German Weather Service
https://opendata.dwd.de/weather/nwp/
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Observation and Ground Truth Description
ETE , YTD

Wind speed at [m
s
]

at 2 m

NWP Parameter Description
DTD

Cloud coverage [%]

Relative humidity [%]
at 10 m and at pressures of 1000, 700, 500 hPa

Temperature [K]
at 2 m and at pressures of 1000, 700, 500 hPa

Wind speed in north-south direction [m
s
]

at 10 m and at pressures of 1000, 700, 500 hPa

Wind speed in west-east direction [m
s
]

at 10 m and at pressures of 1000, 700, 500 hPa

Maximum (directionless) wind speed [m
s
]

at 10 m

Table 1: Listing of the considered meteorological
quantities and corresponding altitudes.

Each of these sets is divided into a training set of
815, a validation set with 50 and a test set with
20 forecasts respectively. To speed up the learning
process and minimize the possibility to get stuck in
local minima, every parameter is normalized by a
min-max rule to a value range of [0,1].

4.2 Model

The investigated architecture is based on a sequence-
to-sequence model [16], as it can be seen in figure
1. The decoder and encoder network consists each
of two deep layers, with 50 GRU-cells (Gated Re-
current Units, [6]) per layer. Utilizing the RNN-
architecture, it is possible for the model to learn
general interrelationships as well as temporal fea-
tures from the data.
The encoder RNN-network extracts the current me-
teorological and atmospheric context of ETE

and
transfers its internal state to the decoder network.
The decoder will then incorporate the NWP fore-
casts DTD

embedded in station and time informa-
tion via two embedding layers, making it easy for
the model to learn the representation. Based on the
given initial state, the decoder is able to generate
sequential probabilistic estimations ŶTD

consisting
of the two parameters ŷµ(t) and ŷσ(t), where the

standard deviation is guaranteed to be positive by
utilizing the softplus activation function.
At train time, the model is learning to minimize the
logarithmic loss (LL), making it possible to account
for the standard score of the normal distribution
ϕµ,σ directly and optimizing probabilistic forecasts:

LL = −log
(
ϕŷµ(t),ŷσ(t)(y(t))

)
(6)

The principle of LL is based on the fact that cor-
rectly predicted events are neglected as small errors,
while incorrect predictions are given more weight
by applying the logarithm.
The training is done iteratively with a batch size of
512 and a maximum of 100000 iterations, with every
50 iterations testing the model against the valida-
tion set. Each sample corresponds to one forecast f
of one station s, with 885 forecasts and 11 stations
resulting in 9735 individual samples (training: 8965,
validation: 550, test: 220). For every training step,
the sample and corresponding station are chosen at
random.
To prevent over-fitting, an early stop mechanism is
implemented, a maximum of 10 consecutive tests on
the validation set without improvement will stop the
training. The model is realized using the tensorflow-
interface keras [5].

5 Results

Figure 2: Comparison of NN and NWP probabilis-
tic wind speed forecasts over a horizon of 24h, the
ground truth is indicated by the orange line. Un-
certainty underestimation of the NWP model can
bee seen clearly.

The forecasts generated by the Neural Net (de-
noted NN) of the 220 test set samples, resulting
in 5280 individual probabilistic predictions, will be
compared with those of the NWP ensemble pre-
dictions and evaluated using established statistical
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criteria. Corresponding designations used through-
out this section were introduced in section 3.2. In
order to make the ensemble forecasts comparable,
velocities per wind direction are combined to one
directionless velocity. Furthermore, a normal distri-
bution is calculated from this directionless ensemble
forecast. The generated NN forecasts are re-scaled
to the original scale, a randomly selected example
can be seen in figure 2.

NWP standard deviations are inflated by the fac-
tor rNWP=1.579, for the NN model, a hypothetical
inflation factor rNN=0.775 (rather a deflation fac-
tor) can also be calculated, but the NN standard
deviations remain unchanged for the evaluation.

In table 2 a comparison of evaluation metrics be-
tween the NWP model and the investigated NN
approach is presented.

Metric NWP NN

Number of sample points 5280 5280

Inflation factor r 1.579 0.775

MAE 1.664 m
s

0.727 m
s

CRPS 0.896 0.523

γ50% 29.3% 48.9%

γ75% 47.4% 73.9%

γ90% 61.8% 90.03%

γ99% 79.1% 98.4%

Table 2: Comparison between NN generated pre-
dictions and NWP predictions using established
statistical metrics shows the overall improvements
in point predictions and uncertainty quantification
using the deep learning method.

Considering the MAE, the prediction performance
can be evaluated neglecting the uncertainty infor-
mation. The MAE of the NWP model with 1.664
m
s was improved by a factor of 56.4% using the deep
learning application, resulting in an average error
of 0.727 m

s .
When considering the CRPS that includes the

uncertainty information, there still is a strong im-
provement of the NN model CRPSNN=0.523 com-
pared to the NWP prediction CRPSNWP=0.896.
The reason for this is twofold. In contrast to the
NN model, the NWP model was not optimized for
accurate uncertainty quantification since it only ac-
counts for aleatoric uncertainties. On the other
hand, predictions with deviating average and too

small standard deviation will receive strong penal-
ties when evaluated with the CRPS, which appears
often in NWP forecasts.

Resulting prediction intervals for the NWP model
are well below the expected values, meaning that
the uncertainties are systematically underestimated
in agreement with the interpretation of the CRPS.
For the prediction intervals of the NN model, on
the other hand, the predictions appear to reflect the
uncertainties better.

Besides the above quantitative comparisons it is
common to evaluate probabilistic forecasts via visual
methods. The histogram of the emerged standard
score is shown in figure 3. The discussed prediction

Figure 3: Histogram of the standard scores for the
NN and NWP forecasts, also showing the theoretical
optimum, a normal distribution with mean 0 and
standard deviation 1.

behavior of the models, i.e., the strong underesti-
mation of the uncertainties by the NWP model can
be clearly seen in the graphical representation of
the z-statistics (Figure 3). An ideal prediction cor-
responds to a standard normal distribution that is
indicated by the orange colored line . A large part
of the NWP distribution lies outside the ideal dis-
tribution indicating a lack of validity. In such cases,
the uncertainty is underestimated, i.e., the standard
deviation is too small, and the result is a to-wide
z-statistic. The statistics for the NN model is closer
to the ideal case but has some shift towards neg-
ative values, which indicates that predicted mean
values larger than the measured values occur more
frequently. Reliability plots are shown in figure 4.

6



The comparison of the observed frequency with the
predicted proportion shows how well the predicted
probabilities match the observations.

Figure 4: Reliability plot of the two forecast models.
A perfectly calibrated forecast model is indicated
by the orange dashed diagonal.

The reliability curve of the NWP, which lies below
the diagonal line, again indicates too low predictive
power (i.e., too small standard deviations); the NN
model, on the other hand, corresponds almost per-
fectly to the ideal case and can thus be classified as
reliable. Finally, it should be mentioned how the

Figure 5: Illustration of how Gaussian wind speed
forecast uncertainties can translate into different
power output uncertainties. The transformation is
nonlinear due to the saturation of the rated power
curve of the wind energy plant.

wind uncertainty results can be applied to power
generation. Power generation uncertainty can be
derived from generated normal distributed forecasts,
as exemplary shown in figure 5. That way it is obvi-
ous how the improvement of wind speed uncertainty
forecasts translates straight into more accurate and
reliable probabilistic power generation forecasts.

6 Conclusions

In this paper, we investigated how more realis-
tic wind speed uncertainty quantification can be
achieved by a deep learning approach based on a
suitably selected set of meteorological quantities
taken from the ensemble NWP and recent obser-
vations. The methodology can be used to signif-
icantly improve the actual point prediction and
both the reliability and validity of the uncertainty
forecasts. The results obtained exhibit validated
uncertainty quantification that, in addition to the
aleatoric causes included in the ensemble NWP,
takes the epistemic uncertainty causes into account
and overcomes the short-comings of the NWP un-
certainty prediction.

Future work includes application of this approach
to combine weather and energy market data for a
more general risk quantification[15].
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