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Abstract

Recommendation Systems (RSs) are ubiquitous in
modern society and are one of the largest points of
interaction between humans and AI. Modern RSs
are often implemented using deep learning models,
which are infamously difficult to interpret. This
problem is particularly exasperated in the context
of recommendation scenarios, as it erodes the user’s
trust in the RS. In contrast, the newly introduced
Tsetlin Machines (TM) possess some valuable prop-
erties due to their inherent interpretability. TMs
are still fairly young as a technology. As no RS
has been developed for TMs before, it has become
necessary to perform some preliminary research re-
garding the practicality of such a system. In this
paper, we develop the first RS based on TMs to
evaluate its practicality in this application domain.
This paper compares the viability of TMs with
other machine learning models prevalent in the field
of RS. We train and investigate the performance of
the TM compared with a vanilla feed-forward deep
learning model. These comparisons are based on
model performance, interpretability/explainability,
and scalability. Further, we provide some bench-
mark performance comparisons to similar machine
learning solutions relevant to RSs.

1 Introduction
Currently, most recommendation systems in pro-
duction are either implemented with largely black-
box models, such as deep neural networks (NN),
proprietary systems, or through solutions utilizing
overly simplistic collaborative filtering, which are
incapable of processing arbitrary continuous and
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categorical features. Each of these causes difficul-
ties when their developers wish to generate an ex-
planation for a single prediction. Since black-box-
like models are difficult to debug and modify, this
often results in unfortunate complications, such as
a music app presenting an inequitable presenta-
tion of artists based on nationality due to irrele-
vant common factors. Even though there exist tools
to offset this problem, they are less effective than
models that create these explanations innately [15]

Traditionally, explainability solutions for Ma-
chine Learning (ML) models determine their re-
sults based on modifying the model’s input data,
but such methods are severely hampered at larger
scales. As the number of classes in a multi-class
classification problem increases, so does the num-
ber of input values that need to be investigated.
The reason is that these input values take the form
of evaluating whether a change alters a single target
output class. When the number of input features
for a model decreases, so does the contribution of
any single feature, making individual contributions
more and more difficult to parse. Furthermore,
these methods only elucidate correlations within
the dataset. As laid out by [15], these issues will
persist while non-interpretable models remain in
use.

In this paper, we follow the definitions of [15]
which separates between explainability and inter-
pretability. Explainability, in this case, refers to
modifications or tools applied to an ML model that
is treated like a black box, i.e., we are unable to
examine the model beyond its input and output.
These model-agnostic methods are used to gener-
ate post-hoc explanations of ML models. Inter-
pretability, in this case, is explanations generated
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as a by-product of the machine learning model. As
outlined in [15], explanations generated by explain-
able models can often be misleading and are there-
fore less desirable than explanations generated by
fundamentally interpretable models. Explainable
model tools detect patterns that are correlated with
certain results, as opposed to interpretable models,
which are capable of explaining the causation of
certain results.

This paper presents a comparison between the
TM and other widely-used explainability solutions.
As such, we present experiments to compare the in-
terpretability and explainability of the models, as
well as to test and illustrate the viability of TM
as an RS by comparing its performance to other
ML models relevant within the field of RSs such as
NNs, Linear Regression (LR), Support Vector Ma-
chines (SVM), Decision Trees (DT), and Gradient
Boosted Decision Trees (GBDT). These methods
play an integral part in more advanced recommen-
dation system solutions and will therefore give a
reasonably good indication as to the viability of
TMs for such roles. We evaluate the models ac-
cording to (1) their performance, which means ac-
curacy and mean precision at k, (2) interpretability
and explainability, and (3) scalability. These eval-
uation metrics test the viability of the TM com-
pared to more established models in terms of its
strengths and weaknesses. This includes model per-
formance to ensure competitive recommendation
capabilities, interpretability, to highlight the dif-
ferences in parsing recommendations between TM
and other models. And scalability demonstrates
whether the model can perform as well in more re-
alistic conditions for an RS, meaning more data,
more classes, and more stringent latency require-
ments.

2 Related Work

RSs are a useful tool for alleviating the problem
of product variety information overload for a given
user. [11] is a recently published paper, provides an
overview of the current state of the art. An inspira-
tion for evaluating recommendation systems in this
manner was a paper discussing the YouTube recom-
mendation engine by [4]. This paper discusses the
use of a feed-forward architecture for both candi-
date generation and ranking.

A large amount of work has been dedicated to

enhancing the explainability of machine learning
models in general, and NNs in particular. In some
cases, such as Local Interpretable Model-Agnostic
Explanations (LIME) by [14] or SHapley Additive
exPlanations (SHAP) by [12], this takes the form
of model agnostic methods which investigate the
impact of the model when certain input values are
altered or omitted. This altered value is sampled
from a distribution of training data. In the case of
TransPer by [13] uses Layer-Wise Relevance Prop-
agation to tailor interpretations to NNs.

There are existing interpretable machine learning
solutions that are used in modern recommendation
systems, such as gradient boosted trees [8] and LR
[16]. LR tends to be lacking in performance, and
GBDT belongs to a category of ML more perfor-
mant in competitions rather than in research and
industry. For instance, the winning solution in [9]
heavily incorporates gradient tree boosting. [10]
discusses a few potential reasons why this might be
the case.

Since the introduction of the TM in 2018 [5],
the TM has achieved competitive results in sev-
eral fields. These include computer vision with the
introduction of the convolutional TM [7] outper-
forming 4-layer CNNs on the MNIST datasets, and
natural language processing such as fake news de-
tection by [3] outperforming XLNet and BERT on
the PolitiFact and GossipCop datasets.

3 Method
Figure 1 shows a high-level overview of the TM
and the NN1. We apply our models to the task of
predicting customers’ future purchases. The series
of items purchased by the user is split based on
whether the purchase was made during the last 30
days, these subsets are used as training and testing
data respectively. We make predictions by provid-
ing the models’ input in the form of a set of cus-
tomer and item features, by concatenating the rel-
evant customer attributes with a series of item at-
tributes. The items in this series are the attributes
of the user’s most recent N purchases. If the pur-
chase history does not extend to N items, these are
substituted with simple padding values. Further,
to capture implicit relationships between customers
and items, both are fed through Alternating Least

1All code and experiments are openly available at
https://github.com/cair/Tsetlin-Machine-Deep-Neural-Network-Recommendation-System-
Comparison.
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Figure 1: A Diagram of the project’s architecture depicting the structuring of the dataset into input
vectors and being fed through the NN and TM. The input has been structured into pair of attributes
and ALS latents. With the first set of values denoting the customer and the final sequence denoting the
attributes and latents of the customer’s n most recent articles purchased.

Square matrix factorization as preprocessing. The
resulting latents are used to augment item and cus-
tomer attributes. Model performance is evaluated
in an environment with 400 classes. We choose 400
classes as it represents a balance between an abnor-
mally large count of classes and model performance
with a limited amount of GPU memory available.

We compare the scalability of the different solu-
tions by running these for 10 epochs on differing-
sized subsets of the dataset. Each subset contained
the top k most popular items from the dataset to
ensure more viable runs in the lower item configu-
rations. This weighting towards the use of popular
items first meant that while the number of output
items scaled consistently, the total portion of the
dataset used did not. As there are far too many
factors to balance for a fair comparison between the
run times of the NN and the TM (e.g., model hy-
perparameters, system environment), the run times
for each model are scaled relative to the run time of
the lowest item configuration run. The width and
height of the NN remained the same throughout all
runs. Table 1 lists the relative sizes of the datasets

for each run scale.

Num items Item entries Dataset percentage

8 15208 1.616%
64 75635 8.039%
512 295944 31.456%
2048 571843 60.781%

all (28729) 940816 100.000%

Table 1: Relative dataset scaling comparison

3.1 Dataset

The dataset used for this project is constructed out
of the dataset “H&M Personalized Fashion Recom-
mendations” (H&M dataset), which was used for a
fashion-based recommendation system competition
hosted on Kaggle by [9]. We chose this dataset
because of its large size compared to other simi-
lar datasets and because it comes from a market
leader. Thus, this grants us a larger set of diverse
training data.Further, the online leaderboard for
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the competition provides a good overview of how
well a Mean Average Precision 12 (MAP12) mea-
sures up to other existing solutions. Hence, we can
easily compare our model with the published model
results section of the H&M Personalized Fashion
Recommendations leaderboard.

3.2 Model setup

Since we are more interested in discovering fewer
sets of recurring patterns between user behavior
and results, we reduce the number of TM clauses
per class to far fewer than other state-of-the-art
solutions. This was done primarily to ensure rea-
sonable time and consumption per run but is un-
likely to have impacted performance too badly. In
contexts such as the MNIST dataset for convolu-
tional TMs [7], we aim to discover a robust set of
patterns that denote every single output class oc-
currence. In the MNIST example, 8000 clauses are
used per class, as compared to 200 per class in this
project.
The NN solution consists of a series of five succes-

sive dense layers with sigmoid activations, culmi-
nating in a softmax activation. These layers have a
gradually diminishing width of [120, 110, 90, 80, 70].
Each of the other benchmark solutions is given

the same input format as the NN.

4 Results and Discussion

4.1 Model performance

Table 2 compares the models’ performance-based
and Mean Precision at K (MAP@k). The results
show a similar performance between the TM and
NN. Both models fail to converge to a MAP@1
value, tending to oscillate by about 0.01%. Even
though all models perform significantly better than
baseline calculated random guessing, i.e., simply se-
lecting the most prevalent class from among the
8729 classes, they could yield even better results
through hyperparameter tuning and scaling of the
network. The results of the TM are likely ham-
pered by the lack of integrated multi-label classifi-
cation and significantly fewer clauses per class than
most SoTA solutions. The NN model performs sig-
nificantly worse than expected on larger map@k k
values. This decreased performance is likely the re-
sult of a bug. Although not much time was spent
experimenting with the GBDT solution, it would
likely benefit from some hyperparameter optimiza-

tion. Both the TM and NN significantly outper-
form the LR, SVM, and DT comparison methods
and the GBDT solution to a lesser extent.

In terms of MAP@12, the TM solution outper-
forms the winning [9] solution of 0.03792 by 0.007.
It should be noted that the TM has the signifi-
cant advantage of heavily limiting possible output
classes, from 8729 to 400. The reader should also
note that the machine learning solutions presented
operate with significant differences in both struc-
tures and hyperparameter setups, and hence, the
comparability of performance could be improved.
All in all, these model performance results should
be considered promising. Though these results
demonstrate the TM still slightly underperforms in
terms of MAP@n. Despite the presence of highly
continuous elements in the form of latent values,
they still demonstrate the capability of detecting
the highly sparse relationships inherent to RS prob-
lems at a comparable level to the NN.

Model MAP@1 MAP@12 MAP@100

NN 0.0219 0.0291 0.0409
TM 0.0215 0.0449 0.0554
LR 0.0138 0.0318 0.0410
DT 0.0152 0.0232 0.0232
SVM 0.0127 0.0303 0.0410
GBDT 0.0207 0.0368 0.0455

Table 2: Comparison of model

4.2 Interpretability and explainabil-
ity

This section discusses interpretability and explain-
ability. We focus on the models’ interpretability,
i.e., parsing model predictions based solely on their
internal workings, and the models explainability,
i.e., parsing predictions through model agnostic
methods.

4.2.1 Interpreting the Tsetlin Machine

This paragraph briefly explains how the decision-
making of a TM is structured. For further details
on for instance, the feedback mechanism or how the
TM maitains states, we refer the reader to [6]. An
overview of a simplified TM is displayed in Figure
2. A TM consists of a series of Tsetlin Automata as
the atomic component. Each of the classes in a TM
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form sets of Tsetlin Automata into clauses wherein
each input feature is assigned two automata that
determine whether a feature gets included or ex-
cluded. These clauses come in pairs of positive and
negative clauses. All of these clauses vote indepen-
dently to determine whether the input belongs to
a class. A positive clause, e.g., x1 ∧ ¬x2, votes for
this given class if feature 1 equals 1 and feature 2
equals 0. At the end of the voting round, the class
with the highest total votes is predicted to be the
class of the input features.

Figure 2: A general overview of the structure of
TMs. Depicting a TM with two clauses and two
features.[5]

Figure 3 presents each clause’s set of included
and excluded features. The graph is intended to
give a rough overview of feature inclusion. For in-
stance, we can observe set intervals of feature in-
clusion. These are correlated with purchased item
attributes. Further, most clauses prioritize the ini-
tial features over later ones. These early features
are related to user attributes.
The negative features are more difficult to parse

due to their quantity. The prevalence of positive
features compared to negative ones depends on pre-
diction rates. Table 3 shows the number of features
present in clauses for a few example classes with dif-
fering prediction rates. In this case, count refers to
how often the given class was predicted as the most
likely class in the test dataset. The output classes
with a larger presence in the dataset and within
prediction show a correlation with more intricate
positive patterns and less intricate negative clause
patterns.

Rarity count pos ¬pos neg ¬neg
prevalent 5067 234 2917 105 92
medium 182 193 1243 119 79
rare 16 160 651 156 1093

absent 0 125 342 164 1374

Table 3: TM scaling clause complexity relative to
prediction counts

By counting the occurrences of features in clauses,
we can readily note outliers in terms of clause im-
portance. a0 section name Collaborations is, for
instance, the most heavily weighted feature, be-
ing included in 331 positive clauses across all 400
classes. For reference, the mean clause inclusion
rate is 26.2. Categorical values are included at a
rate of 26.0 as opposed to latent values, which are
included at a rate of 27.7.
This section briefly discusses some TM global

trends, but interpretation can be far more gran-
ular. For example, Class nr. 17 has resulted in
clauses that target young mothers purchasing items
for their children. Class nr. 110 targets similar
items but includes some more upper body clothes
as well. For the 249th user in our test dataset,
these two classes are tied for being predicted as the
most likely class. Both received a score of 92. Had
the 7th most recent purchase made had the spots
graphical appearance tag, item nr. 110 would have
been the predicted item.

4.2.2 Interpreting the Neural Network

When referring to the NN so far, we’ve used the
term ‘black-box-like’ model. While it is not practi-
cally possible to read a NN’s behavior based only
on its weights and biases, due to the size and com-
plex highly non-linear dependencies in the NN. The
fact that the majority of the data is categorical fur-
ther hinders our ability to interpret these weights.
However, we can still observe some rudimentary be-
havior from the weights of the input layer. Note
that all of the input features to the NN have been
normalized when interpreting the model, which was
done to make the first layer of weights and biases
easier to parse.

By summing the weight values from the input
layer to the first hidden layer, we get some insight
into the model’s emphasis on each value. Customer
age, for instance, is the only customer attribute
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Figure 3: Visualisation of the TM clauses vs classes where the Y-axis denotes the clauses and X-axis
denotes features for a single TM class. A blue circle is an included clause feature and a red cross is an
excluded feature.

with a positive weight sum. Customer factors, the
latent features of each customer, heavily outweigh
the other customer attributes by around a factor of
10. These weights indicate a higher relative impor-
tance for customer age and a significantly higher
importance for customer factors than the other in-
cluded features, which is in line with what we intu-
itively expect the NN to emphasize. Table 4 shows
selected mean first layer weights.

club member status age user factor 0

-0.098743 0.153792 0.976568

Table 4: Input weights for three NN input values.

4.2.3 Model Explainability

The previous section demonstrates the relative ease
of interpreting a pure TM as compared to a pure
NN. However, such comparisons do not tell the
whole story. There exist a myriad of tools designed
to bridge the gap between explainability and in-
terpretability. For instance, the left of Figure 4
displays a SHAP beeswarm diagram of the 17 most
impactful features for a single class for the NN.

As SHAP is a model-agnostic tool, we can also
use it to diagnose TM’s predictions. The right
side of Figure 4 displays the resulting SHAP val-
ues. Though these model impacts are a reflection
of correlation on a subset of the data, as estimat-
ing SHAP values for every single test entry is too
computationally and time intensive to be realistic,
this approach is capable of pointing out which in-
put elements caused a certain prediction from the
TM. In this example the features with the decidedly
most impact was the section numbers for the NN,
as compared to the TM which had latent values as
the most impactful features.

Figure 4: Beeswarm diagram of the top 10 most
impactful features of a single class, using the NN
model and the TM.

4.2.4 Interpretability Performance

The TM-based solution significantly outperforms
NNs in interpretability. The entangling, non-linear
dependencies of NNs render them essentially non-
interpretable while the properties of the TM enable
a degree of insight into RS behavior not present
in the current SotA. As with most other machine
learning models, the TM remains compatible with
model-agnostic tools and should therefore be con-
sidered on par in terms of explainability.

4.3 Scalability

All results for the TM described in this paper have
been performed on the CUDA implementation of
the TM. This implementation is remarkable for its
almost constant time scaling in terms of the number
of clauses [1]. However, the domain of RSs presents
challenges in terms of the number of classes far be-
yond what the TM has been evaluated on before,
and this section will therefore document the scaling
potential of the TM as compared to the NN. Fig-
ure 5 presents the relative scalability of the TM

6



Figure 5: Time required to train the models for 10
epochs, train the models for a single epoch, and test
the models for a single epoch. The X values denote
the number of label classes present in the dataset,
and the Y values denote the time to train as com-
pared to the smallest model configuration. e.g. the
TM configuration with 64 items took ∼ 1.98 times
longer to train than the smallest configuration of 8
items.

and NN. The NN training and run-time scaling
performs worse with fewer classes but appears to
handle extreme class quantities of > 1000 better
than the TM. The TM performs consistently worse
in terms of relative test time. Even in an envi-
ronment with a generous portion of GPU memory
available (up to 1500GB depending on server load),
we could not evaluate the TM solution with all pos-
sible classes. These scalability issues will need to be
resolved before a TM-based RS can be considered
for more traditional RS problems.

5 Future Work

The structure of multi-class TMs causes a degree
of modularity not present in NNs, ensuring that
output classes can be inserted or removed without
any modification to the rest of the model. Such
a structure can be used to organize a far more
dynamic training and evaluation process when
compared to NNs. Essentially each class can
be trained independently and with independent
clauses. This opens the potential for a TM-based
integrated candidate generation and ranking
system in which the TM is tasked with performing
multi-class classification on an entire inventory
of items. We can calculate which clauses are
described as the most prevalent when ranking
each class/item. A potential approach to this

is presented with the introduction of the integer
weighted TM by [2]. We can then perform rela-
tively cheap elimination of items that do not fulfill
the highest weighted clauses for the given input.
We then gradually apply more and more clauses
for the remaining items/categories until a final
selection of top items remains.

6 Conclusion

While the TM-based recommendation system solu-
tion presented in this paper is not viable for use
in a production environment, we have presented
a direct performance comparison to existing RS
methods. The TM is capable of competing with
the NN in terms of performance while providing a
significant improvement in interpretability. How-
ever, the TM’s scaling capabilities show some wor-
rying trends in terms of both time and memory
consumption. Finally, we have proposed a poten-
tial architecture for overcoming some of these issues
and playing to the TM’s strengths.
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