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Abstract

The development of medical decision-support tech-
nologies that provide accurate biomarkers to physi-
cians is an important research area. For example,
in the case of Parkinson’s Disease (PD), the cur-
rent supervisions of patients become intrusive, oc-
casional, and subjective. However, new technolo-
gies such as wearable devices, signal processing,
computer vision, and deep learning could offer a
non-intrusive, continuous, and objective solution
to help physicians with patient monitoring. The
Parkinson’s Disease Spiral Drawings public dataset
was selected to face PD detection in this work by
comparing four representation methods of the X, Y,
and the pressure time series: signal, visual, hand-
crafted, and fusion. The signal approach uses the
Fast Fourier Transform of recording windows and
a Convolutional Neural Network for modeling; the
visual strategy employs visual transformer features
from gray-scale images; the hand-crafted technique
utilizes statistics calculated from temporal signals,
and the fusion combines the information from the
previous approaches. In these procedures, a Ran-
dom Forest classifier was used for PD detection us-
ing the attributes extracted from each type of rep-
resentation. The best results showed an F1 score
of 93.33% and 93.06% at the user level using a sig-
nal approach with the three signals for the Static
Spiral Task and an image-based proposal with X
and Y coordinates for the Dynamic Spiral Task,
respectively.
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1 Introduction

Deep learning has been evolving in recent years un-
til achieving state-of-the-art performance in differ-
ent research fields such as time series prediction
[5] or image classification [11] in different appli-
cations. In particular, clinical applications that
involve healthcare [6; 13] could help physicians
through medical-decision support tools.

Parkinson’s Disease (PD) is a neuro-degenerative
condition caused by the loss of dopamine hor-
mones activity that could provoke symptoms such
as tremors, bradykinesia, micrographia, and postu-
ral instability [9]. An accurate analysis of these
main symptoms could offer medical support to
physicians in an early PD diagnosis. Current proce-
dures are based on visits to the hospital where the
expert checks the patient to adjust the drug dosage.
However, these visits are short and occasional and
the patient could not suffer symptoms during these
medical appointments. In this context, a continu-
ous, remote, and non-intrusive supervision of the
disease could complement these on-site visits and
provide accurate information on the evolution of
the symptoms. Moreover, an early diagnosis could
enable the development of customized therapies for
PD patients [1].

By now, the most employed medical tests for ex-
amining patients’ motor systems functioning con-
sist of drawing tests of spirals or holding something
at a certain distance to estimate their tremor lev-
els, which are tasks that could be automatized for
helping in the final diagnosis. Following this aim of
studying assistant tools for doctors, Gallicchio et al.
[3] proposed the use of the time series of the draw-
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ings of spirals, the pen pressure and the grip angle
as inputs to the Deep Echo State Networks obtain-
ing an accuracy of 89.3%, Khatamino et al. [10] de-
signed a Convolution Neural Network (CNN) based
on a LeNet architecture obtaining an accuracy of
72.5%. These two previous works were focused on
detecting PD at the user level using the raw data
extracted from the whole drawing. Gil-Mart́ın et al.
[4] used a CNN approach employing the spectrum
information from fractions of the drawing to detect
the PD at the window level obtaining an accuracy
of 96.5%. In this work, we proposed and compared
four different approaches using the same dataset to
detect PD at the user level. These previous works
used a subject-wise cross-validation strategy where
the data from the same subject was included in the
same subset during training, validation, and test
procedures.
In contrast to signal-based approaches, Das et

al. [2] proposed visual solutions to detect PD from
drawings. The first approach considered hand-
crafted features obtained from a histogram of ori-
ented gradients, which counts the occurrences of
orientation in the gradient in localized areas of an
image. The second approach evaluated features ex-
tracted from a pre-trained VGG16 model. Both
procedures used different machine learning algo-
rithms to perform the PD classification. They ob-
tained an accuracy of 98% for the mixture image
set, but they did not specify the evaluation strategy
followed or if they used data from the same subject
in both training and testing subsets.
As a result of the analysis of previous work,

this paper proposes and compares four different
approaches to face PD detection using handwrit-
ing recordings following a Leave-One-Subject-Out
(LOSO) evaluation. The signal approach consists
of feeding a deep learning network with motion
information, the visual method employs a Vision
Transformer (ViT) on drawn images, the hand-
crafted approach by extracting statistics character-
istics from raw data, and a fusion approach where
features from previous methods are combined. The
aim of this comparison is the deepening into these
techniques and into the effects of combining XY co-
ordinates together with the pressure information,
as well as studying how features extracted from
a transformer model could compete with a fine-
tuned CNN model trained with the spectrum of
the hand-written signals and with a more classic

hand-crafted feature approach.

2 Material and methods

This section describes the dataset used in this
study, the cross-validation process, and the signal,
visual, hand-crafted and fusion approaches followed
for PD detection from drawing movements.

2.1 Dataset

The Parkinson’s Disease Spiral Drawings Using
Digitized Graphics Tablet dataset [8; 12] was cho-
sen for this study. This public dataset contains spi-
ral drawings from 77 people: 15 healthy people and
62 with PD. It was recorded using the Wacom Cin-
tiq 12WX graphics tablet [7], which allows inter-
actions with a digital pen. The dataset contains in-
formation about X-Y-Z coordinates, pressure, and
grip angle for each drawing as shown in Figure 1.

Figure 1: Recorded signals from tablet: X-Y-Z co-
ordinates, pressure, and grip angle.

Three types of handwriting tasks were performed
by all the subjects. First, the users completed the
Static Spiral Test (SST) [14]. In this task, sub-
jects retraced Archimedean spirals that appeared
on the screen. Second, the subjects performed
the Dynamic Spiral Test (DST). In this case, the
Archimedean spiral appeared and disappeared for
a few seconds, forcing people to keep the image in
their mind while drawing. Finally, they followed
the Stability Test on Certain Point where the sub-
jects had to hold the pen on a red point for several
seconds without touching the screen. In this study,
we only used the data of the X and Y coordinates,
and the pressure for both SST and DST tasks.
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2.2 Leave-One-Subject-Out Cross-
Validation

We followed a LOSO cross-validation. In the val-
idation set, data from one subject was used for
adjusting the main parameters of each approach,
samples from another subject for testing, and the
remaining subjects were employed as the training
set. The experiments were repeated by modifying
the training, validation, and testing subsets in each
fold and ensuring that data from healthy and PD
patients were included in all the subsets. Results
show the average of the cross-validation process,
using the F1 score as the evaluation metric.

2.3 Signal approach

The signal approach followed a previous work [4]
methodology: windowing the signal recordings,
computing the magnitude bins of the Fast Fourier
Transform, and feeding a CNN with the spectra
corresponding to the 0-25 Hz frequency band. In
this case, we divided the sample sequences of X, Y,
and pressure signals into 3-second windows sepa-
rated by 0.5 s. Since the sampling frequency of the
signals was 110 Hz and the final frequency of the
spectrum was 25 Hz, the neural architecture was
fed with examples of 75 magnitude bins per signal.
The neural network was composed of two convo-
lutional layers (using 16 filters of 1x5 dimensions)
and an intermediate Maxpooling layer between the
convolutional ones for feature learning and three
fully connected layers (128, 32, and 1 neuron re-
spectively) for classification. Dropout layers were
included to avoid overfitting. The network archi-
tecture was optimized over the validation subset in
the previous work [4]. Figure 2 shows the neural
network architecture. The inputs were assembled
in a 2 D matrix with N × 75 dimensions, where N is
the number of signals considered in the CNN: two
when considering only the X and Y coordinates or
three when also including the pressure. In the opti-
mization process, the validation subset was used to
adjust some parameters of the network: 25 epochs,
batch size of 100, and ReLU as the activation func-
tion in all intermediate layers. The optimizer was
fixed to the root-mean-square propagation method
as in previous works [10]. The network was imple-
mented in Python using the Keras library.

This network focused on learning from recording

Figure 2: Neural Network architecture of the signal
approach.

windows and classified these examples into healthy
(labeled as class 0) and PD people (labeled as class
1). The last layer of the architecture used a sig-
moid function to classify between these two classes
and the binary cross-entropy as the loss metric. As
a difference from the previous work, we conducted
three methods to offer performance at the user level
to compare with the other approaches that used
the whole drawing. The first method was based on
a voting scheme where a user was diagnosed with
PD when more than a specific percentage of the
analyzed windows were predicted as PD. This per-
centage (around 30%) was optimized over valida-
tion. The second method consisted in averaging or
computing the standard deviation of the 32 or 128-
dimensional embeddings of each subject’s window,
extracted from the last dense layers of the CNN.
These embeddings were used as input to a Ran-
dom Forest (RF) classifier to perform the detection
of Parkinson’s. The last method consisted in gener-
ating a normalised distribution based on the scores
of the analyzed windows. Figure 3 shows the dis-
tribution of scores for a control subject, where it is
possible to observe that most of the windows ob-
tained a predicted score lower than 0.5. This scores
distribution was used as input to a RF classifier to
perform PD detection.

2.4 Visual approach

The visual approach consisted in generating gray-
scale images of the drawn Archimedean spirals by
the participants, using the OpenCV library. The
default images generated contained a white stroke
on the annotated X and Y components, in which
subjects moved the digital pen, over a black back-
ground.

To include pressure information on the images,
we compressed the pressure levels into the 0-255
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Figure 3: Normalised Scores Distribution for a
Control Subject.

range of gray-scale values, where 0 represented
values with the minimum pressure and 255 those
where the subject did more strength while draw-
ing. Some examples of the resultant images can be
observed in Appendix A. In all cases, the spiral was
centered into the image and the final images were
re-sized to 775x775 square images to satisfy the in-
put requirements of the Visual Transformer (ViT)
that received them.
After that, the obtained set of images was passed

to a ViT of the HuggingFace library (’google/vit-
base-patch16-224-in21k’), pre-trained on the Ima-
geNet dataset. From this model, we extracted 768-
dimensional embeddings from its last pooling layer.
Subsequently, these embeddings were fed into an
RF to perform the PD detection.

2.5 Hand-crafted approach

An analysis of hand-crafted features was also
included to compare more elaborated strategies
against standard strategies based on statistics.
This method consists of computing six statistics

(mean, standard deviation, minimum, maximum,
skewness, and kurtosis) from each subject’s draw-
ing and their time series (i.e. X, Y, and pressure).
This procedure returns 12 features for the non-
pressure version and 18 attributes when pressure
is added into the experimentation set-up.
In addition, the time required for completing the

task was included in the set, considering that this
feature may contain also relevant information for
the task to solve because it could influence the pre-

Task
Time
Series

Input features
to RF

Val.
F1

SST

X, Y
distribution of scores 90.67
mean of 32D-embs. 85.70
std of 32D-embs. 88.00

X, Y, P
distribution of scores 93.33
mean of 32D-embs. 93.33
std of 32D-embs. 93.33

DST

X, Y
distribution of scores 91.67
mean of 32D-embs. 87.33
std of 32D-embs. 90.15

X, Y, P
distribution of scores 92.97
mean of 32D-embs. 92.97
std of 32D-embs. 91.17

Table 1: LOSO-Average F1-score comparison for
the signal approach per task, time series and input
features to RF for PD detection.

cision of the drawing. After that, an RF classifier
was fed with this feature set.

2.6 Fusion approach

To combine information from different representa-
tions an early fusion strategy was tested

The features fed into the models in the early fu-
sion mechanism contained the distribution of the
scores obtained from the CNN trained in the signal
approach, the embeddings obtained from the pool-
ing layer of the ViT in the visual approach, and the
statistical features calculated from the X, Y and
pressure components per user in the hand-crafted
method. These attributes were concatenated and
provided to several RF models from the sklearn li-
brary, varying the value of the number of forests
parameter by 10, 20, 30, 50, 100, 150, and 200. Af-
ter testing all the parameters, the optimized value
was decided based on the F1 score obtained in the
validation set. This RF training procedure was also
employed in single-modality experiments with each
feature set to compare the differences in perfor-
mance when these features were combined.

3 Results and Discussion

Using the spectrum at signal approach is crucial be-
cause the tremor, which is one of the most preva-
lent PD symptoms, becomes more visible in the
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Approach Model Task
Time
Series

Test
F1-score

Signal

CNN +
Voting of
windows

SST
X, Y 88.83

X, Y, P 93.13

DST
X, Y 87.90

X, Y, P 89.86
CNN +
scores

distribution +
RF

SST
X, Y 89.18

X, Y, P 93.33

DST
X, Y 83.70

X, Y, P 91.44

Visual ViT + RF
SST

X, Y 90.79
X, Y, P 90.79

DST
X, Y 93.06

X, Y, P 90.28

Hand-crafted Features + RF
SST

X, Y 88.40
X, Y, P 84.36

DST
X, Y 91.44

X, Y, P 91.17

Early
Fusion

Features + RF
SST

X, Y 92.89
X, Y, P 93.13

DST
X, Y 91.44

X, Y, P 91.44

Table 2: LOSO-Average F1-score comparison per modality, task, and time series for PD detection. X
and Y represent the coordinates where subjects moved the pen and P the pressure applied while drawing.

frequency domain. For this reason, initially, we
trained a CNN model able to handle spectrum im-
ages. We used the learned information at differ-
ent levels of the network (scores distribution or
embeddings) to make the final decision. Table 1
compares the applied strategies per task (SST and
DST), time series (only X and Y coordinates or
adding pressure), and input features. Only 32D
embeddings were included in the table for simplic-
ity. As the Table displays, the top F1 score was
obtained for the strategy based on the distribution
of scores for the two tasks and feature combina-
tion options. Moreover, it seems that the standard
deviation could offer similar or higher performance
than computing the mean of the embeddings. Since
tremors could be noticeable in some parts of the
drawings, calculating the average of the temporal
series could be counterproductive to detect PD,
while the standard deviation could inform about
the peaks of tremors.

Apart from the signal, other transfer-learning ap-
proaches could be considered from the pre-trained
network. Regarding the comparison between dif-

ferent representations, Table 2 summarizes the top
F1 scores achieved by the RF trained with the ref-
erenced time series for each task, except for the
voting strategy of the signal approach, where no
RF was used.

In the signal approach, there is a performance
improvement when incorporating pressure for both
tasks, SST (4.30) and DST (1.96) when applying
the voting strategy. The same pattern can be ob-
served using as inputs the distribution of scores and
training an RF on SST (4.15) and DST (7.74) tasks.
In the case of using pressure, we observed that in-
cluding the distribution of the scores to the RF
could offer higher performance than directly using
the voting scheme.

Unlike the signal approach, visual and hand-
crafted methods do not present such enhancement
when examining experiments using X, Y against X,
Y, P. Drawn spirals with coded pressure obtained
the same F1 score compared to using spirals with-
out pressure information for the SST task, and a
decrement of 2.78 in the DST task. These results
may suggest two explanations: first, pressure data
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is not correctly exploited by the models or not rele-
vant for solving the task when spirals are drawn; or
second, the pressure codification on gray-scale lev-
els was not appropriate for letting the models learn
from this information as it was done in the signal
approach.
In an attempt to combine different representa-

tions of the patients’ performance of spiral draw-
ing tasks, an early fusion was performed. Table 2
displays the results of the fusion after combining
features and applying an RF algorithm to them,
which obtained top F1 of 93.13 and 91.44 on SST
and DST tasks, respectively. Results show that
the fusion approaches proposed do not overpass the
performance of the models trained with a unique
modality, such as the signal approach on the SST
task (93.33) or the visual proposal on the DST task
(93.06). These results suggest that although differ-
ent modalities could carry complementary or dis-
tinct information, simple models such as an RF
could not be able to discover and employ these
differences to improve the final recognition perfor-
mance.

4 Conclusions

This paper was focused on detecting the alteration
in the kinematics of the handwriting of PD pa-
tients because it is one of the first symptoms of the
disease. Non-intrusive methods through analyzing
drawing motions via signal of visual approaches
could easily distinguish between PD patients and
healthy people.
Comparing performances by task and modality,

the signal approach based on spectrum revealed
better performance when the pressure information
is introduced as an additional channel into the
trained CNN. Especially relevant is the reached F1
score of 93.33 in the SST task when employing the
proposed method based on windows and the distri-
bution of scores as features to an RF.
In the DST task, results achieved by the RF on

features extracted from Visual Transformers pre-
trained on the ImageNet dataset reached a top
performance of 93.06 without including pressure
information. This outcome emphasizes the flexi-
bility of embeddings of transformers-type models
pre-trained on other domains to solve problems in
which the amount of data available is limited. ViT

captured successfully shape variations in images,
although more research should be done to encode
pressure information in inputs to let the model han-
dle it for increasing detection rates.

Regarding hand-crafted features, they reported
relatively high performance but not reaching the
results obtained by the CNN embeddings of the
signal proposal or the ViT features of the visual
approach. However, they still could be employed
in scenarios where real-time processing is required
or with low-computational resources due to their
simplicity.

In future work, it would be interesting to de-
velop a system that could classify the recordings
into different clusters based on the number of pa-
tients’ tremors, according to the disease severity.
In addition, tested approaches on this dataset will
be extended to other corpora to corroborate the
tendencies discovered in this article and obtain sig-
nificance ranges. Finally, new fusion designs will be
proposed and tested to combine information from
different modalities.
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A Samples of drawn spirals

Figure 4 includes samples of drawn spirals. The
first two rows of the figure contain samples of out-
puts of the test subset of the signal approach that
reached an F1-score of 93.33% on the SST task us-
ing X, Y, and P channels. In contrast, the third
and fourth rows contain samples of outputs of the
test subset of the visual approach that reached an
F1-score of 93.06% on the DST task using X and
Y channels. In this figure, it is possible to observe
that control subjects that are correctly classified
(4a and 4e) drew the spirals in a steady way, as the
PD patients that were incorrectly classified (4d and
4h). In the same way, PD patients that were cor-
rectly classified (4c and 4g) drew the spirals with
noticeable tremors. This effect could be observed
in some healthy patients incorrectly classified (4b
and 4f) in some parts of the drawing.

(a) SST-Right Control.
Label:1, Score: 0.97

(b) SST-Error Control.
Label:1, Score: 0

(c) SST-Right PD.
Label:0, Score: 0

(d) SST-Error PD.
Label:0, Score: 0.78

(e) DST-Right Control.
Label:1, Score: 0.98

(f) DST-Error Control.
Label:1, Score: 0.04

(g) DST-Right PD.
Label:0, Score: 0.0

(h) DST-Error PD.
Label:0, Score: 0.54

Figure 4: Error analysis of Parkinson detection tasks.
The first two rows contain 4 samples of outputs of
the test set of the signal approach that reached an
F1=93.33 on the SST task using X, Y, P. The third and
fourth rows contain 4 samples of outputs of the test set
of the visual approach that reached an F1=93.06 on the
DST task using X, Y.
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