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Abstract

The extensive use of machine learning inferences
in real-life earth observation and remote sensing
cases has grown over recent years. Network pruning
has been carefully studied in various applications
to speed up the machine learning workflow, but
mainstream pruning strategies often focus on spe-
cific connection significancy rather than the sam-
ple difficulty. U-Net++ as a well-versed and capa-
ble semantic segmentation deep convolutional neu-
ral network architecture, as well as its equivalents,
are all facing the challenge of overconfidence, which
will create barriers for a robust uncertainty-based
pruning strategy to be designed. In the following
study, we analyzed the efficiency of deep neural net-
works and semantic segmentation in satellite im-
agery analysis, and proposed a new tailored work-
flow of dynamic pruning for U-Net++ by combin-
ing the ideas of network calibration and uncertainty
and defining the inference complexity of network in-
put samples. We tested and illustrated the capabil-
ity of this new workflow and delivered a successful
comparative study on its effectiveness on the Deep-
Globe satellite imagery road extraction dataset and
how it can greatly reduce the computational cost
with little performance drop.

1 Introduction

The practice of ”neural network pruning,” which
comprises methodically eliminating parameters
from an existing network, as introduced by LeCun
et al. [9], is one of the more common strategies for
lowering these resource requirements at the time of
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testing. In most cases, the initial network is quite
comprehensive and precise, and the objective is to
develop a more compact network that maintains
the same level of precision. Even while pruning
has been around for a very long time [1], interest
in the practice has only recently exploded thanks
to the development of deep neural networks in the
previous ten years. Some suggest eradicating in-
significant connections or weights in order to prune
the neural network [7]. Other pruning techniques
do not always aim for the same locations to prune
[8].

Over the years, a great number of methodologies
have been published to study standards that should
be served as criteria for network pruning, such as
importance estimation [15], or Snip based on con-
nection sensitivity [10], some others seek clues from
GAN (generative adversarial learning) [11], and
some focuses on pruning pipeline organising [14].
Other works suggest applying artificial transforma-
tions and augmentations to latent feature maps
[6] can also be helpful in reducing network size.
Frankle and Carbin [3] state that modern complex
deep feed-forward neural networks contain one or
more compact and meaningful sub-networks and
further facilitate the theoretical credibility of net-
work pruning.

The definition of dynamic inference varies, there
is also a growing popularity in dynamic inference
which focuses on dynamic pruning metrics or dy-
namically re-initializing pruning strategies in an ac-
tive manner [12, 13, 20]. In this paper, we define
dynamic inference, and similarly dynamic pruning
as : given a standard or metric with which one
can evaluate the overall difficulty of the correct seg-
mentation of an image quantitatively, the inference
procedure can be built in a dynamic way that al-
lows networks to adapt to a resource-saving mode
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whenever an easier sample is served as input, which
can also be referred to as dynamic inference pro-
cedure. An illustration of such segmentation diffi-
culty is shown in Figure 1 and Figure 2, where some
image samples are much easier for, in this study,
U-Net++ to correctly segment roads out from the
backgrounds.

2 Methodology

2.1 Network Calibration with Tem-
perature Scaling

For classification tasks, applying a non-linear layer
to the neural network’s output yields a desig-
nated probability distribution across the output
space that can be used to evaluate confidence.
Niculescu-Mizil and Caruana [17], Gal and Ghahra-
mani [4], Naeini et al. [16] have demonstrated, how-
ever that current deep neural networks are badly
calibrated despite having higher generalization ac-
curacy. Researchers have associated this pattern
with a growth in model capacity and the general
over-fitting problem [5]. Miscalibration can lead to
catastrophic skewness of results when output con-
fidence of each layer in U-Net++ cascade serves as
an operand in calculations of entropy-based uncer-
tainty levels and even further used as a metric for
network optimization and pruning.
As demonstrated in studies using logistic scal-

ing [19], classifiers predicting posterior probability
often produce uncalibrated results instead of true
probabilities. Inspired by this work, Guo et al. [5]
showed that temperature scaling is a simple yet ef-
fective method to calibrate prediction results. The
strategy is simple, using a single scalar parameter
T , which represents a temperature to rescale the
logits provided by our network before they get fed
into the softmax function. Due to the fact that
the same temperature T is applied to all classes,
the relationship between classification output after
calibration and uncalibrated output is monotonic.
The following equation explains how temperature-
scaled logits can be softened and regularized in a
simple way and provide less confident probability
outputs:

P (ŷ) =
ez/T∑
j e

zj/T
.

Where T is the temperature value, z is the logit

vector, zj is the individual vector element at each
output node.

2.2 Entropy as Uncertainty Metric

Entropy may serve as the most suitable option for
determining the uncertainty level of classification
results in segmentation tasks. For most multi-class
segmentation tasks with possible occlusion or se-
mantic area overlaps, it is often not straightforward
enough to only define the uncertainty based on the
top two most likely predictions. We also have to
consider other labels since in most cases, especially
for the scenario of multiple-stage networks such as
U-Net++, the first few stages or even later ones
might not be able to fully distinguish pixels from
several class labels. The higher the entropy is, the
more ambiguous or average the system is, thus it
is an intuitive assumption that for our model to
make a confident prediction would be considered
as difficult. To calculate entropy scores we use the
following formula :

ϕ (x) = −
j∑

k=1

P (yk|x) log(P (yk|x)).

Entropy score is ϕ , P (yk|x) is conditional prob-
ability of layer output given input x.

2.3 Cascaded Pruning

The architecture of U-Net++ [21] is naturally or-
ganized from small to large subnetworks : shallow
to deep pattern and inference processes can be run
in a cascaded order where all four layers are semi-
detached (i.e. they are trained together, but can op-
erate separately). We propose “cascaded pruning”
which utilises the entropy score of the current sam-
ple to decide whether to proceed to the next layer
during the inference process. If such a score thresh-
old is reached, all downstream blocks are skipped
and the network performs an early exit instead of
investing a large amount of inference computation
budget into the network. Otherwise, the network
proceeds to the next layer.

3 Experiment and Evaluation

In our experiments, we use a four layer U-Net++
with deep supervision [21]. For our dataset we use
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Figure 1: A demonstration of easy road extraction cases according to lowest entropy scores from the
first U-Net++ layer

Figure 2: A demonstration of hard road extraction cases according to highest entropy scores from the
first U-Net++ layer

the satellite images from CVPR18-DeepGlobe road
extraction challenge [2] consisting of 6210 sample
images among which 1242 samples are reserved as
a test dataset. All images are compressed to a size
of 256 × 256 pixels in order to fit our hardware
specifications.
Multiply-accumulate operations (MAC) are used

as an indicator of the computational complexity of
the inference process [18]

FLOPs = [(Ci ∗K) + (Ci ∗K − 1)] ∗Ho ∗Wo ∗Co

Where C,K as channel and kernel numbers, H,W
as height and width.

MACs =
FLOPs

2
.

The total estimation of MACs number is used to
show the computational complexity and IoU per-
centage is used to show the accuracy level. We
take the inverse of the MACs number in GMACs to
align it with IoU. We also have to do identity nor-
malization to both numbers in advance. Weight
coefficients are added to those two factors in or-
der to customize the pruning strategy according to
case-wise needs :

PerformanceScore = σ1 ∗ IoU +
σ2

Cost

σ2 = 1− σ1.

σ1 and σ2 are the weighing factors of accuracy and
computational cost impact.

4 Results and Discussion

4.1 Results on Calibration

In the calibration phase, we used the validation set
to train the temperature in order to get an initial
value. Although the standard of choosing the best
temperature varies from case to case, in our exper-
iment, our goal is to mitigate the mis-calibration
behaviour of our network. The nature of our task,
the accuracy level of satellite image segmentation
calculated based off statistical collection of predic-
tion results is challenging, yet the outcome of tem-
perature scaling was as we expected and indeed re-
duced the negative effects caused by UNet++ mis-
calibration. Our primary metric of a successful re-
calibration is a relatively smaller ECE-score which
means an overall lower confidence-accuracy gap be-
tween all confidence ranges.

The reliability diagrams revealed the satisfactory
results of the re-calibration of UNet++ which can
be seen from Figure 3 and Figure 4. Both the ex-
pected average accuracy error value (ECE) and the
maximum absolute error value (MCE) were largely
reduced, it is expected to be better if we can in-
clude more samples with variations. The optimal
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Figure 3: A collection of network reliability di-
agrams of L1 (TopLeft), L2 (TR), L3 (BL) and
L4 (BR) pre-calibration, X-axis represents confi-
dence bins, Y-axis represents accuracy levels

temperature set we retrieved from the training is
[1.74, 1.67, 1.71, 1.70]. Though the model is
not perfectly aligned with the diagonal accuracy-
confidence line, it is calibrated with the best tem-
perature in order to get the lowest ECE value. We
can see that the depth of the U-Net network still
plays an important role and causes overconfidence
in deep layers like L3 and L4.

In general, the ECE and MCE improvements
are significant and successful with the trained tem-
perature, as can be seen from Table 1. Pre-
calibration results in Figure 3 shows that the net-
work accuracy-confidence correspondence is highly
skewed and will make it hard to distinguish the
difficulty level of different samples at a finer scale,
as compared with post-calibration results shown
in Figure 4 re-calibration categorizes samples into
a more evenly distributed set and helps with the
downstream entropy-based thresholding.

4.2 Results on Uncertainties

We calculated the difficulties (uncertainty entropy
scores) for each sample during inference. The diffi-
culty of segmentation increases which is represented
by hot colors while in other areas where network is

Figure 4: A collection of network reliability dia-
grams of L1 (TopLeft), L2 (TR), L3 (BL) and L4
(BR) post-calibration, X-axis represents confi-
dence bins, Y-axis represents accuracy levels

Architectures ECE(pre-calibration) ECE(post-calibration)
U-Net-L1 2.46% 1.03%
U-Net-L2 1.92% 0.88%
U-Net-L3 1.81% 0.74%
U-Net-L4 1.85% 0.80%

Architectures MCE(pre-calibration) MCE(post-calibration)
U-Net-L1 33.84% 22.58%
U-Net-L2 32.39% 21.51%
U-Net-L3 32.69% 21.42%
U-Net-L4 34.79% 23.48%

Table 1: ECE and MCE comparison before and
after calibration

very certain on its predictions, we get cold colors as
indicated in Figure 6 (c) and (d). These heatmaps
gave us very illustrative expression of which lo-
cations in the image our network feels uncertain
about its prediction results. In Figure 6, those re-
gions mainly lie on locations such as the edge of the
roads and road-like objects (dirt path for example).
These regions, if observed by human eyes, are also
hard to be identified, thus entropy results indeed
give us a good representation on how difficult spe-
cific pixels are and thanks to the temperature scal-
ing and network calibration, we can lay our trust
on the calculation of the entropy.

We also listed out the layer-wise output of post-
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calibration network in Figure 5, if we observe, for
example, the binary output of first layer, we can
clearly see that some areas of farmlands are also
mistakened as roads (the white mist-like areas),
but in the fourth layer’s output these are eradi-
cated by our network, this is due to the fact that
the deeper we run into U-Net++ for inference the
larger feature extraction block is thus finer features
are learnt.

Architectures Parameter Numbers Computation Complexity (GMACs)
U-Net-L1 103.04k 4.03
U-Net-L2 519.11k 10.41
U-Net-L3 2.24M 20.42
U-Net-L4 9.16M 34.66

Table 2: Parameter numbers and computation
complexity of all 4 stages of U-Net++

However, if we look closely into the output of
layer 2, the binary mask that we get is already very
similar to the actual best output that we got from
layer 4. If we go even further into layer 3, we can
observe almost no difference between layer 3 & layer
4, but the computational budget, as listed in Ta-
ble 2, is very different in that layer 4 needs 4 times
the number of parameter of layer 3, and 1.5 times
the computational cost.
This is an indication that it would be optimal to

stop the inference process at layer 3 and make an
early exit. The experimental IoU also tells us the
same story that the IoU (intersection over union)
results we get (in particular for this sample we have
shown as an example) from layer 3 is 0.72 and
the IoU of layer 4 is 0.73, which is a very minor
improvement, while the computation resources in-
vested is much more than this minimal accuracy
improvement.
It is also worth noting that when we compare the

post-calibration outputs with pre-calibration out-
puts, due to the overconfident nature of deep neu-
ral networks and it’s early presence in all layers,
oftentimes the calculated uncertainty score is not
representative of the actual difficulty of the sam-
ple. See Figure 6 for the output of layer 1 from both
calibrated and uncalibrated networks. Clearly, the
uncalibrated network is more certain of what it pro-
duces even if it is in the very early stage of infer-
ence. This can lead to a very difficult threshold-
ing strategy for difficulty binning, since there isn’t
enough margin between uncertainty score ranges to
determine the difficulty of a sample. To be specific,

(a) L1 output mask (b) L2 output mask

(c) L3 output mask (d) L4 output mask

Figure 5: The binary output masks of four cascaded
layers. As we can see, one can hardly distinguish
the result of L4 from L3.

a wider distribution of sample difficulties helps us
to better distinguish the degree of difficulty of sam-
ples instead of trying to pick out narrow ranges
from a rather squashed spectrum. Histograms of
the general distribution of entropy-based uncer-
tainty scores before and after calibration are illus-
trated in Figure 7 and Figure 8 :

4.3 Impact on Network Performance

The method we used to measure how a threshold
set can make an impact on the inference result
is rather straightforward, by running an iterative
threshold test on all possible threshold value based
on our dataset, the values of three thresholds can
be directly related to accuracy drop and speed gain.
We found that the first layer early exit makes most
impact on network accuracy, the deeper inference
goes into the network, less impact was made on seg-
mentation results as seen in Table 3. Our goal is
to find a sweet spot of choices of three threshold
values where computation complexity can be min-
imized while relatively high accuracy rate is pre-
served, which is ”high accuracy-low complexity”.
The performance of the network can be efficiently
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(a) pre-calibration out-
put of L1

(b) post-calibration
output of L1

(c) pre-calibration en-
tropy of L1

(d) post-calibration en-
tropy of L1

Figure 6: Outputs comparison with and without
calibration. Note the mist-like uncertain regions in
post-calibration output on the right, which is non-
existent in pre-calibration output. It is also visible
in corresponding entropy heat maps that the post-
calibration network has less certain predictions.

adjusted by adopting our method, it is for user to
define the most suitable threshold combination for
each different application case.

5 Conclusions

In this work, we have considered the problem of
dynamic inference in the context of remote sens-
ing. We have demonstrated an effective strategy for
dynamic pruning in U-Net++ models that uses un-
certainty scores to determine when early-exiting is
sound. The resulting method significantly reduces
inference time at negligible difference in segmenta-
tion performance. It is worth noting that, though
our work shows a intuitive and simple approach
to making satellite image segmentation tasks less
computationally consuming, cohesive research on
the relations between network calibration and en-
tropy thresholding still needs to be done. Quantita-
tive metric studies regarding the impact of thresh-

Table 3: Some examples of speed increase (Exit at
Ln represents the number of input samples of which
the classification results are generated at each stage
where the inference procedure of that specific sam-
ple is eventually ceased)

Exit at
L1

Exit at
L2

Exit at
L3

IoU
loss

MACs
gain
(%)

0 2 0 0 0.11
0 2 116 0.04 3.95
0 0 1243 0.36 41.09
0 105 22 0.59 6.64
0 105 1138 0.91 43.52
7 0 111 0.1 4.17
208 0 1035 3.39 49.01
208 723 312 6.44 65.8

old combinations and other methods of calibration
could possibly provide better comparisons. Apart
from satellite imagery and remote sensing applica-
tions, the cascaded uncertainty pruning is also able
to be applied to other use cases, such as medical
imaging.
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(a) uncertainty distribution of L1 (b) uncertainty distribution of L2

(c) uncertainty distribution of L3 (d) uncertainty distribution of L4

Figure 7: Pre-calibration uncertainty score distribution of four layers, X-axis is within range of {0,0.27}

(a) uncertainty distribution of L1 (b) uncertainty distribution of L2

(c) uncertainty distribution of L3 (d) uncertainty distribution of L4

Figure 8: Post-calibration uncertainty score distribution of four layers, X-axis is within range of {0,0.27}
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