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Abstract

Electrocardiography is one of the most frequently
used methods to evaluate cardiovascular diseases.
However, the last decade has shown that deep con-
volutional neural networks (CNN) can extract in-
formation from the electrocardiogram (ECG) that
goes beyond traditional diagnostics, such as pre-
dicting a persons age. In this study, we trained two
different 1-dimensional CNNs on open datasets to
predict age from a persons ECG.
The models were trained and validated using 10

seconds long 12-lead ECG records, resampled to
100Hz. 59355 ECGs were used for training and
cross-validation, while 21748 ECGs from a sepa-
rate cohort were used as the test set. We compared
the performance achieved on the cross-validation
with the performance on the test set. Further-
more, we used cardiologist annotated cardiovascu-
lar conditions to categorize the patients in the test
set in order to assess whether some cardiac condi-
tion leads to greater discrepancies between CNN-
predicted age and chronological age.
The best CNN model, using an Inception Time

architecture, showed a significant drop in perfor-
mance, in terms of mean absolute error (MAE),
from cross-validation on the training set (7.90±0.04
years) to the performance on the test set (8.3
years). On the other hand, the mean squared error
(MSE) improved from the training set (117.5± 2.7
years2) to the test set (111 years2). We also
observed that the cardiovascular condition that
showed the highest deviation between predicted
and biological age, in terms of MAE, was the pa-
tients with pacing rhythm (10.5 years), while the
patients with prolonged QT-interval had the small-
est deviation (7.4 years) in terms of MAE.
This work contributes to existing knowledge of

age prediction using deep CNNs on ECGs by show-
ing how a trained model performs on a test set from
a separate cohort to that used in the training set.
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1 Introduction

The electrocardiogram (ECG) was invented by
Willem Einthoven in 1901 and since then it has
been one of the most important and most fre-
quently used diagnostic tools for cardiovascular dis-
eases. In the 1950s it became possible to con-
vert analog ECG signals to digital ECG signals,
this enabled digital interpretation algorithms in the
1960s [1]. These algorithms have generally used
rule-based processing techniques to extract features
from the ECG in order to classify a large variety of
diseases. However, in the last decade, approaches
using deep neural networks (DNN) have shown
promising performance and present a paradigm
shift in how ECGs are being analyzed.

In addition to diagnostic classification, there
have been several examples of usage that goes be-
yond traditional ECG analysis, such as predicting
atrial fibrillation in asymptomatic patients [2], risk
of death [3], gender and age [4, 5, 6, 7].

In particular, [4] showed that age, predicted by
a deep convolutional neural network (CNN), might
correlate more with the persons physiological age
than the persons biological age. Meaning that, in
cases where the predicted age was much higher than
the persons biological age, may suggest an underly-
ing disease and might be a biomarker for increased
risk of mortality. Furthermore, Lima et al 2021
confirmed, on a separate data set, that the pre-
dicted age could be used as a biomarker of the
risk of death [5]. However, previous studies have
trained and validated the algorithms on ECG from
patients admitted to the same hospitals. This ap-
proach might overestimate the performance of the
model, and to mitigate this the model should be
tested on a separate data set from another hospi-
tal. In addition, current studies have either just
analyzed predictions from small subsets of patients
or looked at high-level risk factors when concluding
that CNN-predicted age can be used as a biomarker
for disease and mortality. This study, therefore, set
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out to train a CNN and validate it on ECGs from a
completely separate test set. Furthermore, we will
compare the predicted age with the biological age
for all ECGs in the test set and categorize the ECGs
based on cardiologist-annotated cardiovascular dis-
eases.

2 Methods

2.1 Data

12-lead ECG recordings from six different open ac-
cess data bases [8, 9, 10, 11, 12, 13] was used to train
the proposed model in this study. A seventh data
set, collected from another hospital, PTB-XL [14]
was used as an independent test set. Initially, the
training set contained 65900 ECGs and the test
set contained 21837 ECGs. After excluding ECGs
longer or shorter than 10 seconds and ECGs miss-
ing information regarding age or gender the train-
ing set contained 59355 ECGs and the test set con-
tained 21748 ECGs. Figure 2 illustrates the exclu-
sion process. The distributions of the patient’s age
in the training and test set, after the exclusions,
are shown in Figure 1.

Figure 1: Normalized age distribution of the pa-
tients in the training and test set.

In addition to the patient’s ECGs, the databases
used in this study also contain information about
the patient’s age, sex as well as cardiologist-
annotated cardiovascular conditions. The age was
used as the label to predict by the CNNs, and the
cardiovascular conditions were used to categorize
the predicted age versus the true age on the test

set. Table 1 summarizes the cardiovascular condi-
tions considered in this study and the prevalence of
each condition in the test set.

Initial data
Training: 65900 ECGs
Testing: 21837 ECGs

Excluded
ECG ̸= 10 seconds

Training: 6410 ECGs
Testing: 0

Excluded
missing gender or age
Training: 135 ECGs

Testing: 89

Remaining data
Training: 59355 ECGs

Testing: 21748

Figure 2: Patients with an ECG recording shorter
or longer than 10 seconds or had missing informa-
tion about gender or age were excluded from the
training data.

2.2 Preprocessing

The ECGs were recorded with different electro-
cardiographs using different sampling frequencies
ranging from 256 Hz to 1000 Hz. In this study, we
resampled all ECGs to 100 Hz.

2.3 Model

Attia et al 2019 proposed a 1-dimensional CNN to
predict age from ECGs[4]. In this study, we com-
pared the Attia model with a model using an In-
ception Time architecture [15].

2.4 Validation and testing

The models were first evaluated on the training set
using 3-fold stratified cross-validation. The strat-
ification was done based on the patient’s age and
gender. Finally, the models were trained on the
entire training set and then applied to the test set.

2



Diagnoses Prevalence Diagnoses Prevalence
Pacing Rhythm 390 Premature Atrial Contraction 396
Prolonged QT Interval 119 Left Axis Deviation 5216
Atrial Fibrillation 1682 Sinus Bradycardia 696
Atrial Flutter 88 Sinus Rhythm 19640
Left Bundle Branch Block 542 Sinus Tachycardia 1073
Q Wave Abnormal 540 Sinus Arrhythmia 1004
T Wave Abnormal 2427 Left Anterior Fascicular Block 2037
Prolonged PR Interval 329 Right Axis Deviation 416
Low QRS Voltage 185 T Wave Inversion 385
1st Degree AV block 801 Supraventricular Premature Beats 209

Table 1: The prevalence of the 20 cardiologist annotated cardiovascular conditions in the test set after
exclusions.

The models were trained using Google Colab
with 12 GB GPU and a CPU with 25GB RAM.

2.5 Hyperparameters

The initial hyperparameters were set equal to the
best hyperparameters found in [16]. Furthermore,
we evaluated the performance during development
by testing batch sizes in the range from 16 to 64
and found 16 to be optimal. As in [16] we used
0.001 as the initial learning rate and in addition,
we designed a learning rate scheduler using auto-
matic learning rate reduction during development
which reduced the learning rate with a factor of 10
each time. We found the automatic learning rate
reduction to happen most frequently at the 10th

and 15th epoch. For the final training before ap-
plying the model on the test set we then developed
a learning rate scheduler with a fixed learning rate
reduction at the 10th and the 15th epoch. To de-
termine the total number of epochs to use for the
final training we used the training curves from the
development. 20 epochs were selected for the fi-
nal training because we observed, from the training
curves during development shown in Figure 4, that
there was no decrease in loss on the validation data
after 20 epochs.

Figure 3: The box and whisker plots represent the mean squared error and the mean absolute error
achieved by the Attia model and the Inception Time model using 3-fold cross-validation on the training
set. The stars represent the scores obtained on the test set.
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Figure 4: Loss curves showing the models perfor-
mance on the training and validation folds during
3-fold cross-validation on the training set

3 Results

To compare the difference between the Attia model
and the Inception Time model we present the dif-
ference, in terms of mean absolute error (MAE) and
mean squared error (MSE), on the training and test
set in Figure 3. The results achieved, using 3-fold
cross-validation on the training set, are represented
as box and whisker plots, while the performance
on the test set is represented with a single point (a
star). The Attia model achieved a cross-validated
MAE of 8.46 ± 0.09 years and a MSE of 127 ± 2.9
year2 on the training set and a MAE of 8.78 years
and a MSE of 122.2 year2. The Inception model
achieved a cross-validated MAE of 7.90±0.04 years
and a MSE of 117.5± 2.7 year2 on the training set
and a MAE of 8.3 years and a MSE of 111 year2.
Figure 5 provides the relationship between the bi-

ological and DNN-predicted age for all of the 21748
patient ECGs in the test set. True versus predicted
age by the Attia model are shown in Figure 5a and
Inception Time model in Figure 5b. The red line in
both figures represents the optimal age prediction,
while the green line shows the optimal linear fit be-
tween predicted age and true biological age using
linear regression.
Figure 6 show the CNN predicted age versus

the true biological age on the test set, categorized
based on the 20 cardiologist-annotated cardiovas-
cular conditions. As in Figure 5 the red lines rep-
resent the optimal age prediction, while the green
lines show the optimal linear fit between predicted

age and true biological age using linear regression.
In addition, the MAE for each category is given in
the header of each subplot in Figure 6.

4 Discussion

The findings in this study broadly support the work
of other studies in this area, linking ECG with age
prediction. In the current study, we trained two
CNNs, one proposed by Attia et al 2019 with a
second model called Inception Time, to predict age
from a persons ECG. Furthermore, we compared
the predicted age with the true biological age across
all patients in the test set and we also compared
them categorized based on cardiologist-annotated
cardiovascular diagnoses.

Figure 3 shows that the Inception Time model
performed significantly better than the Attia model
both on the training and the test set. However,
from Figure 3 we also see that both models had a
significant drop in performance in terms of MAE
from training to test set, but it is somewhat sur-
prising that both models also improved the MSE
significantly on the test set compared to the train-
ing set. The drop in MAE was probably caused
by the fact that the models were tested on a data
set with patients admitted to a completely different
hospital and with a slightly different age distribu-
tion, as seen from Figure 1. To understand the im-
provement in performance in terms of MSE from
training to the test set we have to keep in mind
that MSE first and foremost punishes large predic-
tion errors. Thus, a possible explanation might be
understood by looking at the comparison of true
and predicted age in Figure 5 and the age distri-
bution in the train and test set shown in Figure 1.
From Figure 5 we see that the biggest discrepancies
between true and predicted age are located at each
end of the age scale, which is consistent with the re-
ported results in [4], and by looking at Figure 1 we
see that, in contrast to the training set, there are
almost no patients < 20 years in the test set, and
this might reduce the number of prominent outliers
in the test set predictions.

From a clinical point of view, large outliers and
high MSE on the test set could be caused by hav-
ing patients with more serious CVDs or healthier
persons than what was present in the training set.
Therefore, evaluating such a model based on MSE
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(a) Attia

(b) Inception Time

Figure 5: The figures show the relationship between the deep neural network-predicted age and the true
(biological) age. The red line shows the best fit for an optimal model, while the green line shows the
best linear fit for the current DNN models.
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Figure 6: Predicted age from the Inception Time model versus true (biological) age of the patient in
the test set. The comparison of predicted and true age are categorized into 20 groups of different
cardiovascular conditions. The groups are sorted, from the upper left corner to the lower right corner,
based on the mean absolute error (MAE) between the predicted and the true age.
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should be done with caution. MAE on the other
hand will weigh each prediction error equally and
would therefore be less affected by a few outliers.

In Figure 6 we have categorized the pa-
tients based on cardiologist-annotated cardiovascu-
lar conditions, and within each category, we com-
pare the true and predicted age. Contrary to
our expectations, the group with the highest MAE
(prolonged QT-interval (LQT) MAE= 7.36) was
not so different from the group with the lowest
MAE (Pacing rhythm MAE= 10.47). In addi-
tion, we hypothesized that there would be a lin-
ear relationship between the severity of the diagno-
sis and the degree of misinterpretation in terms of
MAE. However, LQT and left bundle branch block
(LBBB) are located on each side of the MAE scale,
both associated with an increased risk of mortality
in contrast to sinus rhythm, for instance, which is
considered to be the healthy class in these datasets,
but has a MAE less than LBBB and greater than
LQT.

A limitation of this study is that the datasets
used, both in training and testing, only contain
ECGs from patients admitted to the hospital. Even
though the ECGs in the training and test set are
recorded from different hospitals, from different
countries and in some cases with different electro-
cardiographs, it should still be kept in mind that a
large portion of the patients has some sort of dis-
ease, since they are admitted to the hospital. In fu-
ture work, it would be interesting to train a model
on a hospital cohort and test it on an independent
healthy cohort or vice versa to see how this affects
the performance.

5 Conclusion

The main goal of the current study was to investi-
gate the performance of a CNN-based age predic-
tor, when tested on a test set from a separate co-
hort, and compare it to the performance using CV
on the training set. The results of this investigation
showed that both CNN models tested had a rela-
tively small but significant drop in performance in
terms of MAE. This study, therefore, confirms the
findings by [4], who showed that CNNs could be
used to predict a persons age, but also emphasizes
the importance of testing such models on separate
test sets in order to keep control of possible biases

acquired by the model and we therefore strongly
suggest that future studies in this field report re-
sults on independent test sets in addition to the
performance on the training set using some kind of
resampling method.

6 Code Availability

The code that was used to implement
the model and produce the results pre-
sented in this paper is hosted on GitHub:
https://github.com/Bsingstad/ECG-age
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