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Abstract

Deep learning is proven to help with common
medical image processing procedures, namely seg-
mentation. Labeling data is a core requirement
for training a deep learning model; this is time-
consuming and expert annotators are in short sup-
ply. Strategies that lower data annotation re-
quirements are highly desirable. In this study, we
adapt cross-pseudo supervision (CPS) for 3D med-
ical segmentation, a state-of-art semi-supervised
deep-learning method where labeled and unlabeled
data are used in conjunction to further improve the
resulting model. Using the 2021 BraTS dataset, a
fully labeled publicly available brain tumor dataset,
we train CPS-based networks using a varying num-
ber of labeled and unlabeled samples and compare
the resulting models against the fully-supervised
baseline. The results show that CPS improves per-
formance scores across all combinations of dataset
sizes, with an increase in the Dice similarity coeffi-
cient (DSC) of 2.6-4.2% and a decrease in the 95th
percentile Hausdorff distance (95% HD) of 24-27%.

∗Corresponding Author: lidialuquef@gmail.com
†Shared first co-authorship

1 Introduction

Manual segmentation plays an important role in
the annotation of focal pathology or tissues of
interest. Annotation of medical images is a
time- and labor-intensive process done by time-
strained physicians. Developing automatic anno-
tative methods is thus of high relevance to reduce
clinician workloads.

Advances in deep learning have shown great ca-
pability in segmenting a variety of different organs
and pathology, such as the liver [11, 20, 1], tumor
masses [12, 22, 13] or abnormal cells [18, 14, 19, 2].
Still, large datasets labeled by experts are a pre-
requisite for achieving the segmentation accuracy
and robustness needed for clinical implementation.
The availability of clinical datasets and the exper-
tise needed to annotate them are often limited. On
the other hand, unlabeled data coming from simi-
lar distributions as the labeled data are often read-
ily available. Semi-supervised deep-learning models
offer the possibility of keeping labeling costs down
by making use of these large quantities of unlabeled
data.

Perhaps the most intuitive approach to semi-
supervised learning, pseudo-labeling [15] uses a su-
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pervised model to make predictions on an unla-
beled dataset and then refines the model by using
a selection of those predictions. The simplicity of
this method has made it widely used for segmenta-
tion of medical imaging, including cardiac MRI [4],
COVID-19 pneumonia lesions in CT scans [23, 9],
and brain tumors in MRI [21, 24] amongst others.
However, confirmation bias, where the model over-
fits to incorrect pseudo-labels, is a common pitfall.

Consistency regularization [3, 17] is another ap-
proach to semi-supervised learning that has be-
come increasingly popular in recent years. This
method is based on the assumption that applying
a small perturbation, be it to the input data or
the network, should not change the model’s pre-
diction. Thus, networks can be trained with stan-
dard supervised loss combined with a loss enforc-
ing consistency of the predictions from the same
sample. Chen et al. recently proposed a consis-
tency regularization technique with network per-
turbation referred to as cross pseudo supervision
(CPS) which achieved state-of-the-art accuracies
in semi-supervised segmentation on Cityscapes and
PASCAL VOC 2012 [6]. Two networks with the
same architecture but different initializations are
fed the same set of labeled and unlabeled images.
Each network is trained separately with the avail-
able ground truth labels in a standard supervised
manner. In addition, each network is also trained
with the other network’s prediction on a common
image, which does not need to be labeled.

In this study, we implement CPS on two different
architectures: a 3D UNet-Transformer (UNETR)
network and a regular 3D UNet, and apply it to a
glioma segmentation dataset. We perform exper-
iments to understand how the size of the labeled
and unlabeled datasets affects the model’s accuracy
and to which extent CPS can be used to reduce the
amount of labeled training data required.

2 Methods

2.1 Dataset

The 2021 Brain Tumor Segmentation (BraTS)
dataset [5] consists of 1251 multimodal brain MRIs
from patients diagnosed with glioma across multi-
ple institutions. Each image-series consists of pre-
contrast T1-weighted, post-contrast T1-weighted,

T2-weighted, and fluid-attenuated inversion recov-
ery (FLAIR) scans. Expert annotators have delin-
eated the ground truth regions of the three main
tumor sub-components for all 1251 patients. The
three tumor sub-components are: enhancing tu-
mor, edema, and necrotic tumor core.

The dataset was split into three parts: a test
dataset with 176 samples, a validation dataset with
25 samples, and a training dataset with 1050. Note
that although the training dataset contains 1050
samples, the number used for supervised and semi-
supervised during training will vary.

2.2 Network and training

2.2.1 Network Architecture

In this study, the vision transformer and UNet-
based architecture UNETR [10] and a 3D UNet
[16, 8] were used as the segmentation networks.
The UNETR architecture consists of a vision
transformer-based [7] encoder which is connected
to a CNN decoder via skip connections. The in-
put 3D volumes are divided into fixed-sized, non-
overlapping 3D patches and embedded using a lin-
ear layer. Positional embeddings are added and
the resulting sequence of vectors is used as the in-
put to a standard transformer. Drawing inspira-
tion from U-Net [16], skip connections are used to
pass on both high- and low-level features to the
decoder. In the skip connections, the outputs of
the different layers of the transformer are reshaped
back to the 3D input space with convolutional lay-
ers and concatenated with the output of the up-
sampling deconvolution in the CNN decoder. The
MONAI framework UNETR and UNet implemen-
tations were used with standard pre-defined param-
eters.

2.2.2 Semi-Supervised Training

Given a set of two architecturally identical net-
works, the output predictions for an input X are
given by

P1 = f(X;θ1) and P2 = f(X;θ2), (1)

where P1 and P2 are the predicted outputs after
softmax normalization and θ1 and θ2 are the model
weights. Note that the input X is identical for
both networks. The pseudo-labels Ŷ1 and Ŷ2 are
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found from the class with the highest confidence
from the predicted confidence maps P1 and P2, re-
spectively.1

From these pseudo-labels and the ground-truth
labels, denoted as Y , two separate losses can be de-
fined: first, a supervised loss for both models; sec-
ond, a semi-supervised loss that utilizes the pseudo-
labels generated by a network to train the predicted
confidence map of the other network. The super-
vised loss, Lsup, is given by

Lsup =
1

|Dl|
∑

X∈Dl

Dice(P1,Y )+Dice(P2,Y ), (2)

where Dl is the labeled set of volumes in X and
Dice(P1(2),Y ) is the standard Dice loss between
the predicted confidence map and the correspond-
ing ground-truth label. The cross pseudo supervi-
sion loss Lcps is written as:

Lcps =
1

|Du|
∑

X∈Du

Dice(P1, Ŷ2) +Dice(P2, Ŷ1)

+
1

|Dl|
∑

X∈Dl

Dice(P1, Ŷ2) +Dice(P2, Ŷ1).

(3)

Note that while Lcps is defined on both the la-
beled and the unlabeled data, Dl and Du respec-
tively, Lcps is computed without using the ground-
truth labels.
The total loss is the sum of both losses with a

trade-off weight ϕ:

L = Lsup + ϕLcps. (4)

In this study, we enforced ϕ = 0.5 after some ini-
tial testing, however, there is room for further op-
timization.

2.3 Implementation details

From the entire training dataset of 1050 samples,
we define four labeled subsets with 12, 25, 50, and
100 samples. Note that the subsets have over-
lapping samples, e.g., 12 of the samples in the
25-sample subset correspond to the subset of 12
samples. Supervised models (UNETR and UNet)
were trained for each labeled dataset subset and for

1Also known as the argmax operation.

1050 labeled samples. Semi-supervised CPS train-
ing was performed by defining a total dataset size
containing the labeled subset. For example, for a
total dataset size of 1050 samples, a model was
trained with 12 (25, 50, and 100) of those sam-
ples labeled, whilst the remaining were unlabeled.
In total, three total dataset sizes of 150, 600, and
1050 were used when training the different semi-
supervised CPS models. Lastly, four supervised
models were trained with CPS but without addi-
tional unlabeled data. In this case, Lsup and Lcps

are both calculated on the same -labeled- input
data, although Lcps still makes no use of the ground
truth labels. In summary, the following models
were trained: 10 (5 UNETR and 5 UNet) super-
vised models, 16 semi-supervised CPS models (12
UNETR and 4 UNet), and 4 supervised CPS mod-
els without unlabeled data. A visual overview of
all trained models is given in Table 1. The semi-
supervised training pipeline is illustrated in Figure
1.

Total dataset size
Data 12 25 50 100 150 600 1050

L
ab

el
ed

D
at
a 12 x∗ - - - x x x∗

25 - x∗ - - x x x∗

50 - - x∗ - x x x∗

100 - - - x∗ x x x∗

1050 - - - - - - x∗

Table 1: A summary of the different a semi-supervised
and a supervised models for UNETR (denoted by ”x”)
and UNet (starred cells ”*”) as a function of the total
amount of labeled data and the total dataset size.

All models were implemented in the PyTorch
framework and trained on an Nvidia A100 (40GB)
and an Nvidia V100 Volta (32GB) for 1000 epochs
where one epoch iterates through 250 randomly
drawn training examples. Standard data augmen-
tation techniques were used: scaling, rotation, flip-
ping, contrast adjustment, histogram shifting, in-
tensity shifting, and intensity scaling. Gradient de-
scent was performed with the Adam optimizer with
weight decay set to 2e−5. The initial learning rate
was initially set to 5e−4 and subsequently reduced
with the cosine annealing scheduler. Each sample is
randomly cropped to a patch size of 128×128×128
and a batch size of 4 is used, 2 samples of which
are unlabeled during semi-supervised training. We
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Figure 1: An illustration of the semi-supervised training pipeline. Given a total dataset, a subset is selected to
be used as labeled and unlabeled data. Data augmentation is performed on a batch that consists of both subsets.
The augmented batch is sent to the two networks, where the labeled data is used for supervised training. The
predicted labels from the labeled and unlabeled subset are used for semi-supervised training of the other model.

validate on n = 25 samples at each epoch and
pick the model with the lowest validation loss to
use for inference. Lastly, a ”wait period” of 15
epochs was used during semi-supervised training
where the semi-supervised models were trained in
a fully-supervised manner. This wait period helped
convergence. We note that these hyperparameters
worked well for both the UNETR and UNet archi-
tecture.

At test time, sliding window inference with over-
lapping patches was performed. When using a
semi-supervised model, the inference was done with
both networks and the final prediction was the
class with the highest confidence for the networks’
ensemble. Model performance was evaluated us-
ing the Dice similarity coefficient (DSC) and the
95th percentile Hausdorff distance (95% HD) be-
tween the prediction and ground truth excluding
the background.

3 Results

Figures 2 and 3 display the Dice similarity coeffi-
cient and the 95th percentile Hausdorff distance for
12, 25, 50, and 100 labeled samples for supervised
and semi-supervised training with a total dataset
size of 1050 samples for both UNETR and UNet.
Note that when using unlabeled data, the total
amount of labeled data can be halved without con-
siderably reducing the DSC nor the 95% HD. Both
supervised and CPS exhibit similar improvements
in the DSC and the 95% HD when increasing the
amount of labeled data for both UNETR and UNet
backbones.

Table 2 shows the breakdown of the DSCs for
each class and for all models trained in supervised
and semi-supervised manner with a total of 1050
samples. We obtain an average relative improve-
ment in the mean DSC of 4.2% and 2.6%, equiva-
lent to a mean absolute increase of 0.03 and 0.02 for
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nl En.Tumor % Edema % Necrosis % Mean %

UNETR
12 0.72/0.76 5.3% 0.69/0.68 -1.5% 0.52/0.57 9.7% 0.64/0.67 4.1%
25 0.74/0.77 4.1% 0.72/0.75 3.2% 0.56/0.60 7.2% 0.67/0.70 4.6%
50 0.78/0.80 1.9% 0.78/0.80 2.3% 0.61/0.68 10.9% 0.72/0.75 4.6%
100 0.80/0.82 2.2% 0.79/0.82 4.0% 0.68/0.71 4.0% 0.76/0.78 3.4%

UNet
12 0.78/0.79 1.2% 0.76/0.77 1.5% 0.63/0.67 5.0% 0.72/0.74 2.4%
25 0.79/0.81 2.4% 0.79/0.80 2.0% 0.67/0.69 2.0% 0.75/0.77 2.2%
50 0.81/0.83 2.3% 0.81/0.83 2.7% 0.69/0.72 5.0% 0.77/0.80 3.3%
100 0.83/0.84 1.3% 0.82/0.84 2.6% 0.71/0.74 4.1% 0.79/0.81 2.6%

Table 2: The test dice similarity coefficient (DSC) scores for supervised and semi-supervised models trained on a
total dataset size of 1050 samples. The supervised and semi-supervised DSC are seperated by the ”/” annotation
(supervised/semi-supervised). The relative difference in the DSC are given for each class, bold typefont is used
to emphasize an improvement in DSC after semi-supervised training. En.Tumor stands for enhancing tumor.
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Figure 2: The Dice similarity coef-
ficient for the supervised and semi-
supervised training regimes with 12,
25, 50, and 100 for UNet and
UNETR. A total of 1050 samples
were used when training the semi-
supervised models. Note, the two up-
permost lines correspond to a fully-
supervised UNet and UNETR model
with 1050 labeled samples.

UNETR and UNet, respectively. Across all three
classes, the necrotic tumor core shows the largest
average gains of 8.0% with UNETR and 4.0% with
UNet respective to the supervised baseline. The en-
hancing tumor shows an average increase in DSC
of 3.4% (UNETR) and 1.8% (UNet), and the aver-
age increase in the edema scores is 2.0% and 2.2%
with UNETR and UNet respectively. We note that
among all experiments and for all classes there were
only two occurrences of decreased DSC between the
supervised and the semi-supervised model: both
occurred for the edema class when training with
the UNETR architecture with nl = 12, one for a
total dataset size of 1050 and the other one for a
total dataset size of 600 (data now shown).

Table 3 show the mean 95% Hausdorff distance
between all classes and for all models trained in a
supervised and semi-supervised manner with a to-

tal of 1050 samples. We note an average improve-
ment (decrease) of 27% and 24% for UNETR and
UNet, respectively.

The training losses and the validation average
DSC for a semi-supervised and a supervised train-
ing are plotted in Figure 4 for the UNETR architec-
ture. The training is shown for a total dataset size
of 1050 of which 25 samples were labeled. Both the
supervised and the semi-supervised model’s valida-
tion scores quickly increase during the first epochs.
By epoch ∼ 50, the supervised validation scores
flatten out, remaining at the same level for the
rest of the training. On the other hand, the semi-
supervised validation scores continue increasing un-
til the end of the training, albeit at a much slower
pace.

Figure 5 depicts the DSC for the supervised
training scheme with 12, 25, 50, and 100 labeled
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Figure 3: The 95th percentile Haus-
dorff distance for the supervised
and semi-supervised training regimes
with 12, 25, 50, and 100 for UNet
and UNETR. A total of 1050 samples
were used when training the semi-
supervised models. Note, the two up-
permost lines correspond to a fully-
supervised UNet and UNETR model
with 1050 labeled samples.

UNETR UNet

nl Mean % Mean %
12 28.9/21.7 28.4 20.8/15.0 26.6
25 21.0/15.3 31.5 11.8/9.9 17.4
50 13.8/12.4 10.6 10.0/7.7 25.2
100 12.9/8.8 37.6 9.8/7.6 25.2

Table 3: The test 95th percentile Hausdorff dis-
tance [mm] for supervised and semi-supervised models
trained on a total dataset size of 1050 samples. The su-
pervised and semi-supervised distances are separated
by the ”/” annotation (supervised/semi-supervised).
The relative difference in the distances are also given,
with bold typefont indicating an improvement (de-
crease) in the 95th percentile Hausdorff distance after
semi-supervised training.

samples and the corresponding semi-supervised
training scheme as a function of the total number of
samples used during the training process (150, 600,
and 1050). The first data point for each number
of labeled samples shows the DSC for the super-
vised CPS training without unlabeled data. This
was done to isolate the importance of the training
method (CPS vs fully-supervised) from the contri-
butions of unlabeled data. We observe that only us-
ing cross-pseudo supervision without adding unla-
beled samples does not improve the model, with the
resulting average DSCs being about equal or lower
than the DSCs from the fully-supervised baseline.
We can further observe that the unlabeled sample
size does not have a substantial impact on the per-
formance, and a total dataset size of 150 samples
is enough to saturate further gains in accuracy.

0 200 400 600 800 1000

Epochs

0.0

0.2

0.4

0.6

0.8
D

ic
e

L
o
ss

D
ic

e
S
im

il
a
ri

ty
C

o
effi

ci
en

t
Sup Loss

Sup Avg Dice

Semi Loss

Sup Avg Dice

Figure 4: The training losses for the semi-supervised
and the supervised training with the corresponding dice
similarity coefficient on the validation set.

4 Discussion

We demonstrate that semi-supervised CPS can
achieve average relative gains in the DSC of 4.2%
using UNETR and 2.6% using UNet compared to
fully-supervised training. CPS also leads to a rel-
ative reduction in the 95% HD of 24% when us-
ing UNet and 27% when using UNETR. We thus
consider CPS to be a suitable option for semi-
supervised glioma segmentation. Moreover, the
fact that the original CPS model showed similar im-
provements on non-medical 2D images [6] makes it
likely that CPS will prove useful in a range of med-
ical applications beyond segmenting brain tumors.
Other segmentation tasks are clear candidates, but
classification problems could also be well-suited for
semi-supervised training with CPS.

Models trained on multi-class datasets often have
substantial differences in accuracy between the
classes. High variability within a class or imbal-

6



101 102 103

Total Number of Samples

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

D
ic

e
S
im

il
a
ri

ty
C

o
effi

ci
en

t

12 Annotated

25 Annotated

50 Annotated

100 Annotated

Semi-Supervised

Supervised

Figure 5: The Dice similarity
coefficient (DSC) for the semi-
supervised models with 12, 25, 50
and 100 labeled training samples
as a function of the total num-
ber of samples used during the
training process (150, 600, and
1050). The first data point refers
to the model trained in a semi-
supervised manner but without
unlabeled samples. The starred
datapoints show the DSC for the
corresponding supervised mod-
els.

anced datasets can lead to low relative accuracies
for a particular class. In our case, the necrotic tu-
mor core is the class with the lowest DSC, and it
is also the class where we see the largest improve-
ments by using CPS, both in relative and abso-
lute values (8.0% and 0.05 respectively for UNETR,
4.0% and 0.03 for UNet). This is important be-
cause, when faced with unacceptably low accuracy
for a specific class, using CPS can help boost its
score enough that further labeling is not needed.

We demonstrate that semi-supervised training
with CPS is robust; CPS improves scores across
all tested combinations of labeled and total dataset
size. For example, adding only 50 unlabeled sam-
ples to an already large labeled dataset of 100 la-
beled samples still increases the average test DSC
by ∼ 3%. We show that models trained on just
half as many labeled samples as the fully-supervised
model only perform 1.2% worse on average as mea-
sured by the DSC.

We note that CPS is easy to implement, mak-
ing use of off-the-shelf networks and requiring
only an adaptation of the training loss function.
There are, however, two major disadvantages with
CPS: first, the total training time was almost dou-
bled compared to fully-supervised training due to
the additional model being trained; second, mem-
ory consumption was more than doubled, going
from 12.4GB to 27.4 GB for supervised and semi-
supervised training, respectively, on the UNETR
model. Parallelizing the model so that each net-
work is trained on one GPU would reduce training
time and allow for a smaller memory footprint on
each GPU. If only one GPU is available, alternating
between training each of the networks (saving their

predictions to memory) could also be an option to
reduce memory usage, but would considerably in-
crease training time. We have, however, not tested
either of these options.

Even with the disadvantages of additional mem-
ory consumption and training time, we believe that
training with CPS should be strongly considered
whenever unlabeled samples and the needed hard-
ware are available.

5 Conclusion

We show that semi-supervised cross pseudo-
supervision generalizes to 3D medical imaging seg-
mentation. For brain tumor segmentation using
the 2021 BraTS dataset, CPS increases accuracy
by between 2.6% (UNet) and 4.2% (UNETR) on
average across different amounts of labeled and un-
labeled dataset sizes. CPS makes it possible to
significantly decrease the annotators’ burden and
should be strongly considered when unlabeled data
are easy to obtain.
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Çiçek, A. Abdulkadir, Y. Marrakchi,
A. Böhm, J. Deubner, Z. Jäckel, K. Sei-
wald, A. Dovzhenko, O. Tietz, C. D. Bosco,
S. Walsh, D. Saltukoglu, T. L. Tay, M. Prinz,
K. Palme, M. Simons, I. Diester, T. Brox,
and O. Ronneberger. U-net: deep learning for
cell counting, detection, and morphometry.
Nature Methods, 16:67–70, 12 2018. ISSN
1548-7105. doi: 10.1038/S41592-018-0261-2.

[9] D. P. Fan, T. Zhou, G. P. Ji, Y. Zhou, G. Chen,
H. Fu, J. Shen, and L. Shao. Inf-net: Au-
tomatic covid-19 lung infection segmentation
from ct images. IEEE Transactions on Med-
ical Imaging, 39:2626–2637, 8 2020. ISSN
1558254X. doi: 10.1109/TMI.2020.2996645.

[10] A. Hatamizadeh, Y. Tang, V. Nath, D. Yang,
A. Myronenko, B. Landman, H. R. Roth, and
D. Xu. Unetr: Transformers for 3d medi-
cal image segmentation. Proceedings - 2022
IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, WACV 2022, pages
1748–1758, 3 2021. doi: 10.48550/arxiv.2103.
10504.

8



[11] P. Hu, F. Wu, J. Peng, P. Liang, and D. Kong.
Automatic 3d liver segmentation based on
deep learning and globally optimized surface
evolution. Physics in Medicine Biology, 61:
8676, 11 2016. ISSN 0031-9155. doi: 10.1088/
1361-6560/61/24/8676.

[12] F. Isensee, P. F. Jaeger, S. A. Kohl, J. Pe-
tersen, and K. H. Maier-Hein. nnu-net: a self-
configuring method for deep learning-based
biomedical image segmentation. Nature Meth-
ods 2020 18:2, 18:203–211, 12 2020. ISSN
1548-7105. doi: 10.1038/S41592-020-01008-Z.

[13] J. Jiang, Y. C. Hu, C. J. Liu, D. Halpenny,
M. D. Hellmann, J. O. Deasy, G. Mageras,
and H. Veeraraghavan. Multiple resolution
residually connected feature streams for auto-
matic lung tumor segmentation from ct im-
ages. IEEE Transactions on Medical Imag-
ing, 38:134–144, 1 2019. ISSN 1558254X. doi:
10.1109/TMI.2018.2857800.

[14] Kurnianingsih, K. H. S. Allehaibi, L. E. Nu-
groho, Widyawan, L. Lazuardi, A. S. Prabu-
wono, and T. Mantoro. Segmentation and
classification of cervical cells using deep learn-
ing. IEEE Access, 7:116925–116941, 2019.
ISSN 21693536. doi: 10.1109/ACCESS.2019.
2936017.

[15] D.-H. Lee. Pseudo-label: The simple
and efficient semi-supervised learning method
for deep neural networks. International
Conference on Machine Learning Workshops
(ICMLW), 2013.

[16] O. Ronneberger, P. Fischer, and T. Brox.
U-net: Convolutional networks for biomed-
ical image segmentation. Lecture Notes in
Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), 9351:234–241,
2015. ISSN 16113349. doi: 10.1007/
978-3-319-24574-4 28.

[17] M. Sajjadi, M. Javanmardi, and T. Tas-
dizen. Regularization with stochastic trans-
formations and perturbations for deep semi-
supervised learning. Advances in Neural Infor-
mation Processing Systems, pages 1171–1179,

6 2016. ISSN 10495258. doi: 10.48550/arxiv.
1606.04586.

[18] K. Sirinukunwattana, S. E. Raza, Y. W.
Tsang, D. R. Snead, I. A. Cree, and N. M.
Rajpoot. Locality sensitive deep learning for
detection and classification of nuclei in routine
colon cancer histology images. IEEE Trans-
actions on Medical Imaging, 35:1196–1206, 5
2016. ISSN 1558254X. doi: 10.1109/TMI.
2016.2525803.

[19] Y. Song, E. L. Tan, X. Jiang, J. Z. Cheng,
D. Ni, S. Chen, B. Lei, and T. Wang. Ac-
curate cervical cell segmentation from over-
lapping clumps in pap smear images. IEEE
Transactions on Medical Imaging, 36:288–300,
1 2017. ISSN 1558254X. doi: 10.1109/TMI.
2016.2606380.

[20] X. Tang, E. J. Rangraz, W. Coudyzer, J. Ber-
tels, D. Robben, G. Schramm, W. Deckers,
G. Maleux, K. Baete, C. Verslype, M. J. Good-
ing, C. M. Deroose, and J. Nuyts. Whole liver
segmentation based on deep learning and man-
ual adjustment for clinical use in sirt. Euro-
pean Journal of Nuclear Medicine and Molec-
ular Imaging, 47:2742–2752, 11 2020. ISSN
16197089. doi: 10.1007/S00259-020-04800-3.

[21] B. H. Thompson, G. D. Caterina, and J. P.
Voisey. Pseudo-label refinement using super-
pixels for semi-supervised brain tumour seg-
mentation. Proceedings - International Sym-
posium on Biomedical Imaging, 2022-March,
10 2021. ISSN 19458452. doi: 10.1109/
ISBI52829.2022.9761681.

[22] A. Vakanski, M. Xian, and P. E. Freer.
Attention-enriched deep learning model for
breast tumor segmentation in ultrasound im-
ages. Ultrasound in Medicine Biology, 46:
2819–2833, 10 2020. ISSN 0301-5629. doi:
10.1016/J.ULTRASMEDBIO.2020.06.015.

[23] X. Wang, Y. Yuan, D. Guo, X. Huang, Y. Cui,
M. Xia, Z. Wang, C. Bai, and S. Chen. Ssa-
net: Spatial self-attention network for covid-19
pneumonia infection segmentation with semi-
supervised few-shot learning. Medical Image
Analysis, 79:102459, 7 2022. ISSN 1361-8415.
doi: 10.1016/J.MEDIA.2022.102459.

9



[24] Z. Zheng, X. Wang, X. Zhang, Y. Zhong,
X. Yao, Y. Zhang, and Y. Wang. Semi-
supervised segmentation with self-training
based on quality estimation and refinement.
Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics),
12436 LNCS:30–39, 2020. ISSN 16113349. doi:
10.1007/978-3-030-59861-7 4.

10


	Introduction
	Methods
	Dataset
	Network and training
	Network Architecture
	Semi-Supervised Training

	Implementation details

	Results
	Discussion
	Conclusion

