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Abstract

Tree species mapping of Norwegian production
forests is a time-consuming process as forest as-
sociations largely rely on manual interpretation of
earth observation data. Deep learning based im-
age segmentation techniques have the potential to
improve automated tree species classification, but a
major challenge is the limited quality and availabil-
ity of training data. Semi-supervised techniques
could alleviate the need for training label and weak
supervision enables handling coarse-grained and
noisy labels. In this study, we evaluated the added
value of semi-supervised deep learning methods in
a weakly supervised setting. Specifically, consis-
tency training and pseudo-labeling are applied for
tree species classification from aerial ortho imagery
in Norway. The techniques are generic and relevant
for the wider earth observation domain, especially
for other land cover segmentation tasks. The re-
sults show that consistency training gives a signifi-
cant performance increase. Pseudo-labeling on the
other hand does not, potentially this is due to vary-
ing convergence speeds for different classes causing
confirmation bias or a partial violation of the clus-
ter assumption.

1 Introduction

For forest management the availability of complete,
accurate and up-to-date forest inventories is essen-
tial. Typically, forest inventories store information
about forest stands, which are roughly uniform ar-
eas within the forest that are managed as a single
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unit. One of the most important parameters of
the forest stand is the volumetric tree species dis-
tribution. Within Norway, there are three main
tree species used for production: Norway spruce,
Scots pine and birch. Currently, the determina-
tion of the tree species distribution per stand is
performed by a forestry expert, by visual interpre-
tation of aerial imagery and in some cases LiDAR
data. Tree species mapping is therefore expensive,
error-prone and time-consuming, leading to forest
inventories that are incomplete and/or outdated.

Deep Learning (DL) is getting ubiquitous in
state-of-the-art land cover classification [4]. Pre-
vious approaches to tree species classification in
Norway either used classic machine learning ap-
proaches [2] or are drone-based and therefore have
limited scalability [6]. One of the main challenges
of successfully implementing a scalable deep learn-
ing approach for tree species mapping in Norway is
the limited availability and quality of labeled data.
Limited quantity and quality labeled data is a com-
mon challenge within Earth Observation (EO).

In various domains semi-supervised learning
techniques have proven to be successful. Two ma-
jor branches within deep semi-supervised learning
are consistency training and pseudo-labeling [7].
Consistency training is a method in which pre-
dictions for input samples are trained to be con-
sistent with their noisy counterparts. [9] show
that rather than adding noise, data augmentation
methods can be used for consistency training. The
augmentation methods that perform well in super-
vised learning are typically performing well in this
semi-supervised setting as well. Pseudo-labeling
is a method in which confident predictions are
used as ground truth labels in the training process.
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The available tree species training data are rough
volumetric distributions of tree species at forest
stand level. Weak supervision refers to techniques
that address handling noisy and coarse-grained la-
bels [10].

The main contribution of this study is the evalu-
ation of the effectiveness of semi-supervised deep
learning techniques for tree species detection in
Norway from aerial imagery. Specifically, consis-
tency training and pseudo-labeling will be evalu-
ated in a weakly supervised setting. Both tech-
niques are generic, and the results are therefore
relevant for the broader EO domain.

2 Methodology

2.1 Study area and data splits

The study area of the project consists of 7 mu-
nicipalities in the Trøndelag and Nordland regions,
see Figure 1. The areas were selected based on
the availability of forest inventory data. Within
each training municipality some areas are left out
for validation. One complete municipality is left
out and used for independent testing. This spa-
tial separation between train and test/validation is
important in order to avoid overfit, otherwise the
model could overfit on terrain features, e.g. valley
orientation, instead of learning the features of the
tree species. Table 1 gives an overview of the stand
data in the different sets. Figure 2 shows an ex-
ample of the 20cm resolution ortho imagery that is
used overlaid with tree species stand data.

The image data is available at the Norge i Bilder
website[1]. Label data is not directly accessible, it
is property of Allskog AS, but similar labels are
publicly available through the SR16 map[3].

Table 1: Training, validation and test data splits.
Stands km2

Spruce Pine Birch
Train 30757 10474 4821 531.6
Val 3264 1009 471 44.6
Test 9817 1438 981 121.7

Figure 1: The study area consisting of 7 municipal-
ities, with train, validation and test sets shown in
blue, green and orange respectively.

Figure 2: Closeup of the aerial imagery overlain
with stand data colored by their dominant species:
spruce (green) pine (brown) and birch (light green).
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2.2 Deep learning approach

A five level deep U-Net [8] was used for predicting
tree species at the pixel level, the main network
and training settings are given in Table 2. Tree
species training data was only available as a dis-
tribution of tree species per forest stand and not
at pixel level. Therefore, a custom zonal loss was
used which optimizes for correct tree species distri-
butions on stand level rather than pixel level. It
does so by averaging the pixel predictions on stand
level for each class. This yields a distribution at
zone (stand) level (Eq. 1), which can be compared
to the ground truth label. The loss per zone (Lz)
was calculated by applying a Huber loss (H) on the
L1 vector norms of the zone level difference between
prediction (p) and label (l) (Eq. 2). The Huber loss
has a slope of 1 above δ and below quadratically
flattens out as x → 0 (Eq. 3). This was designed to
reduce overfit as a reasonable well trained network
should get diminishing returns for optimizing an al-
ready well converged stand prediction. Finally, the
zone level losses are weighted by zone size (Nz) and
inversely weighted with class frequencies ( 1

fz
). This

yields the final zonal Huber loss (Eq. 4).

pc =
1

Nz
·
∑
i

pc,i (1)

Lz(p, l) = H(||p− l||1) (2)

H(x) =

{
1
2δx

2 if x < δ

x− 1
2δ if x ≥ δ

(3)

Lzh(p, l) =

zones∑
z

Nz
1

fz
Lz(p, l) (4)

The zonal Huber loss can be considered a weakly-
supervised technique. The zone level label can be
a mix of different species, e.g. 70% spruce, 30%
pine and 0% birch. Every pixel can only belong to
one species, therefore the labels on pixel level are
unknown. As a result cross entropy and similar loss
functions cannot be applied, but the zonal Huber
loss can.
Similar to the loss, performance metrics are also

reported on stand level. The main performance

metric is the macro averaged F1-score for the dom-
inant tree species. For data augmentation hue,
saturation, brightness and contrast were randomly
changed up to a certain factor, see Table 2. The
transformation factors approximately reflect the
natural variation that was observed in the aerial
imagery. For example, brightness is more strongly
affected by atmospheric conditions and the time of
the day than hue.

Table 2: Main network and training settings.

parameter values
blocks 5
kernels 16, 32, 64, 128, 256

unet normalization instance
activation ReLU
input channels 3 (RGB)
output channels 4
learning rate 1e-4

train optimizer ADAM
zonal huber gamma 0.4
brightness 30%

augm- saturation 30%
ents contrast 20%

hue 10%

2.3 Semi-supervised losses

For consistency training we used a consistency loss
(Lc), which is defined as the pixel based distance
(D) between the prediction by the model (m) of
the original image (x) and its augmented counter-
part (A(x)) (Eq. 7). Both the L1 and L2 distance
were evaluated for the distance function (Eq. 5, 6).
For pseudo-labeling a pseudo loss (Lp) is defined,
which utilizes the focal loss (Lf ) [5] for comparing
the prediction with the pseudo-label at pixel level
(Eq. 8). The consistency and pseudo loss were only
applied on pixels where the prediction is above a
threshold value (th). The total loss is the weighted
sum of the supervised and semi-supervised losses
(Eq. 9).

D1 = ||pc − paugmented
c ||1) (5)

D2 = ||pc − paugmented
c ||2) (6)
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Lc = D(m(x),m(A(x)) | m(x) > th) (7)

Lp = Lf (m(x), argmax(m(x)) | m(x) > th) (8)

Ltotal = Lzh + wc · Lc + wp · Lp (9)

3 Experiments

The number of experiments is limited, due to re-
source/time limitations. Training a single model
takes approximately 5 days on a GPU (nVidia
RTX 3090, 24GB GPU RAM, 10496 CUDA cores).
Hence, the following two stages of experiments
were designed. Firstly, a hyperparameter search
was performed to get sensible values for the semi-
supervised loss parameters. Secondly, a series of
experiments with the hyperparameters found in the
first stage and a varying percentage of labeled data
for supervision were performed. Both labeled and
unlabeled data was available for the unsupervised
learning.
For the first stage 10% of the labels was made

available for supervised training. The reason for
this relatively low share was to clearly see the ef-
fect of the semi-supervised methods. A super-
vised baseline model was trained using the 10% la-
beled data, not applying any of the semi-supervised
losses. In addition, several semi-supervised mod-
els were trained, exploiting the unlabeled data as
well by applying either the consistency- or pseudo
loss. The hyperparameters are all related to the
semi-supervised losses. For the consistency loss,
these are: the weight of the loss, strength of the
augmentations, the semi-supervision threshold and
whether to use L1 or L2 loss for comparing distri-
butions at pixel level. The augmentations we eval-
uated are brightness, contrast, saturation, hue and
Gaussian noise. For the pseudo loss, the hyperpa-
rameters are only the weight of the loss and the
semi-supervised threshold.
In the second stage 100%, 30%, 10%, 3%, 1%

of the data is used for supervision respectively.
For each of the data regimes a supervised baseline
model is trained and a semi-supervised model using
the parameters found in the first stage. The data
regime selection is roughly logarithmic, evaluating

the effect of iteratively dropping roughly 2/3 of the
labeled data.

4 Results

4.1 Hyperparameter search

Table 3 shows the results of the hyperparameter
search for the consistency and the pseudo loss. The
default values for the pseudo are a loss weight (w)
of 1 and a semi-supervised threshold (th) of 0.95.
Alterations to the default parameters are shown in
the table. Lowering the threshold and increasing
the weight reduce the performance, vice versa in-
creased threshold and lowered weight improve the
performance. Compared to the baseline the im-
provement is not significant, especially since the
models with the least contribution from the pseudo
loss perform best. Hence, the pseudo loss is left out
from the second stage of experiments. For the con-
sistency loss the additional default parameters are
the L1 loss, and for the augmentations 30% varia-
tion for brightness and saturation, 20% for contrast
and 10% for hue. In the table we see that especially
lowering the threshold and usage of L2 loss improve
the results and to a lesser degree strengthening the
augmentations and increasing the weight. The im-
provement compared to the baseline is significant.
For the second stage of experiments the consistency
training is further investigated. The eventual pa-
rameters selected for consistency training are L2
loss and a reduced threshold of 0.9. The weight
and augmentations strength are not increased as
performance could drop by applying all parameters
that strengthen the consistency at once.

4.2 Consistency training data
regimes

Figure 3 shows the results of the consistency ex-
periments compared to the baseline models for the
different data regimes. Overall we see an improve-
ment in the order of a couple of percent in F1-score
across the different data regimes. Note that even
with 100% of the labeled data consistency training
is beneficial, this is due to the sparse and zonal la-
bels. The labels are sparse as they do not cover
each window entirely, meaning some parts of the
window are used exclusively for consistency train-
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Table 3: Hyperparameter search results for pseudo-
labeling and consistency training using 10 percent
labeled data.

settings F1
Baseline 59.7

default 60.2
consistency th = 0.8 64.0
HP search D = L2 63.7

A = A · 2 61.8
wc = 10 61.8
default 59.6

pseudo wp = 10 50.1
HP search wp = 0.1 60.1

th = 0.8 53.9
th = 0.98 59.4

ing. Furthermore, the consistency loss acts on pixel
level instead of zone level, giving more direct feed-
back to the network. Figure 4 shows the average
offset between the ground truth and consistency
model trained on the full dataset. For example if
the ground truth label is 80% spruce, 10% pine and
10% birch, whilst the prediction is 100% spruce, the
average offset is 13.33%.

5 Discussion

5.1 Limitations

As stated in 3 training times are long, hence only
a limited number of experiments can be run. The
reason for this is likely the weakly supervised zonal
labels. The feedback the model receives from the
zonal loss is only on stand level, whilst the classi-
fication itself is on pixel level. If pixel level labels
would be available the feedback would be more di-
rect and convergence speed would increase. Addi-
tionally, the tree species stand labels at hand are
relatively noisy, further slowing down convergence
speed. It should be taken into account that the re-
ported performance is based on single runs from a
single seed only. Some random chance can therefore
be expected when looking at the results for specific
settings. The overall trend is however that consis-
tency training outperforms the baseline model in
all 10 conducted experiments. The trained models
are regional, such that they can only be reliably

Figure 3: Macro averaged F1 score for dominant
species for 1%, 3%, 10%, 30% and 100% labeled
stand data. Baseline training is compared to con-
sistency training. Top figure depicts the perfor-
mance of the fully trained model on the validation
set, and bottom figure shows the performance on
the independent test set.

Figure 4: Tree species distribution average off-
set between ground truth and consistency model
trained on the full dataset.
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applied to Trøndelag and Nordland regions. Al-
though the main tree species in Norwegian produc-
tion forests are the same throughout the country,
there are large variations in the geographic setting.

5.2 Pseudo-labeling

One of the main underlying assumptions vital for
pseudo-labeling is the cluster assumption [7]. The
input feature space should consist of clusters, if
points are in the same cluster they are likely to
be of the same class. Furthermore, the decision
boundary should be in low density regions in order
to clearly separate the clusters. For tree species
classification from EO data it might be that such
low density regions are not really present making
it difficult to separate between the clusters. The
forest can be an arbitrary mix of species, with the
canopy showing patterns of different species simul-
taneously. Furthermore, it is observed during train-
ing that some classes converge before others. As
pseudo-labeling happens dynamically during train-
ing an extreme imbalance occurs in the generated
pseudo-labels, which is currently poorly addressed
with initially set static class weights.

5.3 Consistency training

The consistency training enforces invariance be-
tween samples and their augmented counterparts.
By doing so, it reduces the risk of over-fitting on the
wrong patterns. The difference in performance be-
tween the validation and test set for the low data
regimes could be explained by the fact that, the
validation set is more similar to the training set
than the test set. The validation set is composed
of tiles left out in the training municipalities, whilst
the test set is composed of a completely different
municipality 1. Therefore, it is as expected that
especially the 1% and 3% baseline models that are
heavily over-fitted on the training set give better re-
sults on the validation than on the test set. A very
promising result is that the 3% consistency model
outperforms the 10% baseline model, looking at the
test set. This shows the added value consistency
training could have when little ground truth labels
are available, whilst imagery is available.

6 Future work

The future aim is to develop a country-wide model,
one of the main challenges in doing so is that train-
ing data is hard to get and often has restricted
usage policies. Therefore, we believe that semi-
supervised techniques are important to reach this
goal. As discussed convergence speed is low, trans-
fer learning could potentially speed up training
cycles and in addition improve the performance.
Out of the box pre-trained models are typically
trained on standard (non-EO) imagery, which po-
tentially does not translate well to EO imagery.
Therefore, it would likely be beneficial to use spe-
cific EO and in particular land cover related pre-
training tasks. The pseudo-labeling could be fur-
ther investigated using dynamic class weighting for
the pseudo loss, to avoid self-reinforcing class im-
balance. Instead of dynamic weighting, iterative
student-teacher setup with adjusted class balances
is also a potential strategy. The consistency train-
ing could be improved by more extensive hyper-
parameter tuning and introducing domain specific
augmentations. Such augmentations could for ex-
ample simulate atmospheric conditions or seasonal
variation in the forest.

7 Conclusion

Consistency training has shown to be effective for
tree species classification from aerial imagery, sig-
nificantly improving performance and by such al-
leviating the need for a large amount of training
labels. Improvement is on the order of 1-5% for
the macro averaged F1-score, corresponding to a
reduction in required training labels of up to a fac-
tor of 3. Pseudo-labeling on the other hand did not
yield significantly enhanced performance. The sus-
pected reasons for this is the class imbalance in the
pseudo-label loss and nature of the problem with
gradual transitions between tree species classes due
to mixed forest. In general results are expected to
be similar for other land cover classification tasks,
which are often characterized by large natural vari-
ation within classes and gradual changes between
them.
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