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Abstract

This paper considers cooperative Multi-Agent Re-
inforcement Learning, focusing on emergent com-
munication in settings where multiple pairs of in-
dependent learners interact at varying frequencies.
In this context, multiple distinct and incompatible
languages can emerge. When an agent encounters
a speaker of an alternative language, there is a re-
quirement for a period of adaptation before they
can efficiently converse. This adaptation results in
the emergence of a new language and the forget-
ting of the previous language. In principle, this is
an example of the Catastrophic Forgetting problem
which can be mitigated by enabling the agents to
learn and maintain multiple languages. We take
inspiration from the Continual Learning literature
and equip our agents with multi-headed neural net-
works which enable our agents to be multi-lingual.
Our method is empirically validated within a ref-
erential MNIST-based communication game and is
shown to be able to maintain multiple languages
where existing approaches cannot.

1 Introduction

Questions pertaining to communication naturally
arise when considering Multi-Agent systems. It is
natural as communication is such a vital part of
our societies, enabling for the dissemination of ideas
and large-scale coordination. By equipping agents
with capacity to communicate they will likely be
able to achieve greater levels of synergy with both
artificial and biological entities.
This paper focuses on emergent communica-

tion within multi-agent reinforcement learning
(MARL), specifically addressing settings where
agents can be considered as independent learners
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(IL)[1]. This restriction removes common method-
ologies which are utilised to improve training speed
and stability, such as centralised training decen-
tralised execution (CDTE) [2], parameter sharing
[1] and gradient propagation through other agents.
This is justified by the motivation of creating al-
gorithms that better approximate human learning,
where, for example, models of other agents are un-
likely to be available for gradient propagation. Re-
cent work has attempted to improve training effi-
ciency through a variety of methods. Jaques et al.
[3] proposes an intrinsic reward based on social in-
fluence to encourage communication of useful infor-
mation and Eccles et al. [4] proposes the introduc-
tion of biases to promote the emergence of commu-
nication.

In this more natural setting, experimentation
has generally been restricted to two independent
agents. However, realistic scenarios are likely to
involve larger numbers of independent agents in-
teracting at varying frequencies. As the agents do
not use parameter sharing, it is conceivable that
multiple unique languages may arise where these
languages are unlikely to be compatible. As result
of this, any interaction with a new agent mandates
the learning of a shared language. Without specific
modifications to the agent’s architecture, this new
language will overwrite the previous one as a con-
sequence of a known phenomena within machine
learning (ML) named catastrophic forgetting [5].
As the previous language has been lost, any interac-
tion with the associated conversational partner will
require re-training. Here, in order to address this
issue, architectural modifications inspired by the
Continual Learning literature are used to extend
the algorithm proposed by Eccles et al. [4]. Namely,
multi-headed neural networks are used where a dif-
ferent head is maintained for each language. This
paper formalises this concept and demonstrates it
within a novel environment called Communication
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Carousel which extends a referential game to facil-
itate study of this adaptation problem.

2 Related Work

The general challenge of inter-agent communication
has attracted much attention within the MARL
community. A variety of approaches have been re-
cently proposed. A few of the most relevant in-
clude RIAL [2], DIAL [2], CommNET [6], TarMAC
[7] or DGN [8]. Works in the area of inter-agent
communication can be loosely categorised into two
main types, namely those that allow gradients to
flow between agents and those that do not. Re-
cently, there has been interest in the latter domain,
whereby facilitation of centralised training and pa-
rameter sharing are removed and agents are only
allowed to train via the environment reward. This
is sometimes referred to as Independent Learners
[1].

Independent Learners in emergent commu-
nication. Despite the additional difficulty, it is
often argued that this is a more realistic setting as
it is closer to the methods by which humans learn.
State-of-the-art examples include Jaques et al. [3]
and Eccles et al. [4]. In Jaques et al. [3], an intrinsic
reward derived from causal influence is used to en-
courage the speaker to send messages that change
the listeners policy. Differently, Eccles et al. [4]
introduces biases into both the speaker and the lis-
tener. Here, the speaker is encouraged to maximise
mutual information between its observation and its
message while the listener is encouraged to modify
its policy in response to the reception of a message.
While both methods are related, following Lowe
et al. [9], we can summarise Eccles et al. [4] as en-
couraging positive signalling and positive listening
whereas Jaques et al. [3] only encourages positive
signalling. In this paper we use Eccles et al. [4] as
a baseline for our experimental work, as it can be
shown to outperform Jaques et al. [3] in our setting.

Zero-shot coordination. A related area of
growing interest is zero-shot coordination (ZSC)
[10, 11, 12], where the objective is to derive poli-
cies for cooperative settings which allow for previ-
ously unseen partners. Hu et al. [10] consider issues
posed by the standard self-play methodology where

learnt policies are not compatible with novel part-
ners due to agents not being able to exploit poten-
tial known symmetries in coordination tasks. They
propose the Other-play algorithm (OP), which in-
volves techniques based on domain randomisation.
Treutlein et al. [11] build upon Hu et al. [10], for-
malising the setting as a label-free coordination
problem (LPCB). Finally, Bullard et al. [12] ex-
plicitly consider communication within ZSC. The
setting they study involves a costed communica-
tion channel with a non-uniform distribution over
messaging intents. Based on OP, they introduce
Quasi-Equivalence Discovery (QED).

Our work elaborates upon previous contributions
within the emergent communication literature. We
follow a deviation from the standard ZSC setting as
in Bullard et al. [12]. In our setting multiple pairs
of speakers and listeners are allowed to develop po-
tentially unique languages. We then address how
to both learn and maintain multiple languages and
the mitigation of the issues introduced by catas-
trophic forgetting.

3 Setting

The MARL approach defined within this pa-
per is applied to an N -player partially-observable
Stochastic game [13], G. Where G is defined by
the tuple G = (S,A1, ..., An,M1, ...,Mn, T,O, r).
The environment state is defined by s ∈ S. At
each time-step each agent makes a local observa-
tion of the environment state according to the ob-
servation function O : S → o. In addition to
an agent’s observation o, it also receives all mes-
sages from the previous time-step m (excluding
it’s own message). Using this information agents
select an action ai ∈ Ai according to πi,a and a
discrete message m ∈ Mi according to the policy,
πi,m. All agents actions make up the joint action
A = A1×...×An, which results in a state transition
according to T : S,A → S and all agents receive a
reward r : S,A → R. This work is constrained
to fully-cooperative games where communication
is provably advantageous. Agents are tasked with
finding action policies πi,a : (o,m) → Ai and a
message policy πi,m : (o,m) → Mi such that the
cumulative discounted reward is maximised.
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4 Method

4.1 Problem Statement

Let us consider the existence of two sets of agents,
where these are referred to as speakers Tx =
{πs,0, ...πs,n} and listeners Rx = {πl,0, ...πl,n}, re-
spectively1. All agents are parameterized by deep
neural networks (DNN) according to the method-
ology described by Eccles et al. [4], where this in-
cludes introduction of inductive biases to promote
the emergence of communication. For some pair-
ing of Tx to Rx, the agents capacity to effectively
convey information will be limited by their ability
to understand one another. Overtime, the agents
can adapt to each other and arrive at an emergent
protocol which maximises task reward.
The first question this work intends to delve into

is, what happens to their established emergent pro-
tocol when an agent (be that the speaker or the lis-
tener) interacts with a new partner? More formally,
when the mapping from Tx to Rx is randomised
and a period of training is allowed, how does this
impact the agent’s capacity for conversation with
its previous partner? This problem exists within
the continual learning setting, where Catastrophic
Forgetting is known to be an issue [5]. It should be
expected that as a pair of agents build up familiar-
ity with one another, their previous languages will
drift.
The fundamental issue with this mode of opera-

tion is that it always requires an agent to re-train
upon interacting with a different partner even if
they had previously arrived at an efficient proto-
col. Ideally, this should be avoided as this period
of adaptation is costly. Naturally, the second ques-
tion is simply, how can we mitigate this issue?

4.2 Multi-headed agents

As mentioned above, this primary issue in our sce-
nario is Catastrophic Forgetting [5]. Following the
naming convention from Delange et al. [14], our
approach considers a simple parameter isolation
method, where each speaker and listener maintains
a separate output head for each possible partner.
This idea is based on Donahue et al. [15]. It is as-

1To avoid clashes with standard RL notation, the speak-
ers and listeners have symbols consistent with transmitter
and receiver.

sumed that the identity of each potential partner
is observable and therefore the correct head can be
chosen.

Figure 1: Speaker and listener DNN architecture
shown on the left and right, respectively. The net-
works maintain a separate head for each partner,
where the label indicates the conversational part-
ner that it refers to. The white and blue colouring
is representative of how gradients are allowed to
propagate through the network. In both cases the
CNN and first head are trained together, whereas
the alternative heads are trained separately.

The architecture is presented in Fig. 1, where
the CNN for both the speaker and listener are only
trained with the first partner. This decision is jus-
tified by the assumption that, in most cases, lan-
guages consider mappings from a similar set of con-
cepts to different words or phrases and, as such,
the features learned by the CNN for one language
should be transferable. An additional variant upon
this model is proposed in which the weights of the
non-primary heads are pre-initialised with those of
the primary head upon establishment of the first
language. This can be demonstrated to improve
sample efficiency when compared to random ini-
tialisations.

5 Experiments

5.1 Implementation

All code is implemented in Pytorch [16] according
to the methodology described in Section 42. As
previously introduced, the implementation of the

2Code available at https://github.com/Jon17591/

multi-lingual-agents
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speaker and listener follows the methodology de-
scribed by Eccles et al. [4], where we train agents
independently utilising REINFORCE and utilise
the same hyperparameters. As we were unable to
achieve convergence with the defined architecture
we made one modification. We introduced an ex-
tra layer into the DNN which alleviated this issue.
This minor modification to the method proposed by
Eccles et al. [4] without the multi-headed output is
utilised as a baseline within our experimentation.

5.2 Communication Carousel

This work intends to investigate the agents’ capac-
ity to maintain emergent languages after interact-
ing with new partners. To achieve this, N -parallel
referential games are instantiated and speakers and
listeners are afforded E episodes with their initially
assigned partner. After the initial E episodes, the
agents are rotated and allowed the same number of
episodes to interact with their new partner. We
name this environment Communication Carousel
and an illustration is provided in Figure 2. After
a number of partner changes, ω, the speakers and
listeners are returned to their initial partner and
afforded a further E episodes to reconverge. All
experimental parameters are introduced in Table
1. This environment formulation provides a sim-
ple and interpretable test-bed for studying agent
adaptation where the complexity can be easily con-
trolled through appropriate selection of the referen-
tial game.

The referential game maintains broadly the same
structure as Eccles et al. [4] which is a simple
MNIST based game. It comprises of two agents,
a speaker and a listener who are both observe os
and ol which are images sampled from the MNIST
dataset [17]. The speaker’s input is an image from
the dataset and it’s output is a discrete discrete
message mt which gets passed to the listener. The
listener observes it’s own image and the speaker’s
message and is tasked with adding the two together,
where it’s answer is represented by it’s action at. If
the action is equal to the summation of the digits
both agents receive a reward of 1, otherwise the
reward is −1. By design, this game can only be
successfully completed if an effective language is
derived.

𝑚 𝑎

𝑜! 𝑜"

Speaker Listener
𝑟 = #1	𝑖𝑓	𝑜! + 𝑜" = 𝑎	

−1	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
	

Figure 2: Communication Carousel, N -parallel ref-
erential games. After E episodes, the carousel ro-
tates and all agents interact with a different part-
ner. This continues for the desired number of rota-
tions after which all agents are returned to their
original partner for assessment of emergent lan-
guage maintenance.

Table 1: Parameters used in carousel environment

Symbol Meaning Value

N Number parallel environments 4
E Episodes per interaction 75k
ω Number of rotations 1

6 Results and Discussion

The results obtained support the hypothesis that
the Multi-headed methods defined within Section
4.2 results in better maintenance of multiple emer-
gent languages.

Figure 3 demonstrates the average reward which
agents receive with their current conversational
partner for the baseline, Multi-headed method and
the Multi-headed method with pre-intialisatation
of the non-primary heads. The most notable obser-
vation to draw from this Figure is that the reward
for the baseline method reduces substantially when
it returns to the initial conversational partner at
150k episodes, this reduction is not present in ei-
ther of the Multi-headed method. This would sug-
gest that Catastrophic Forgetting has been avoided.
This claim is further supported by Figure 4a, 4b
and 4c. These figures show the average reward ob-
tained by all pairings of speakers and listeners in
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Figure 3: Average reward obtained by all 4-agents
with their current partner. Partner is changed to
a new partner at 75000 episodes and then to the
original partner at 150000 episodes.

the form of a heatmap. The steps refer to the be-
ginning of training, after every partner switch and
at the end of training where this corresponds to
episodes 0, 75k, 150k and 225k in Figure 3. Note
that the baseline method experiences a significant
reduction in reward acquisition once it has trained
with a new partner whereas this is not present in
either of the Multi-headed methods.
A drawback of the standard Multi-headed

method appears to be the reduction in sample effi-
ciency present when switching to the second part-
ner (75k episodes) in Figure 3. The Multi-headed
method seems to take longer to acquire the sec-
ond language. This is as the additional heads
are untrained and comprise of randomly initialised
weights. The baseline method represent a policy
that has converged to a solution. The entropy of
both sets of speaker policies (shown in Figure 5)
gives an indication as to why this occurs. It is clear
that the Multi-headed method begins with signifi-
cantly higher entropy. The introduction of this ex-
tra stochasticity may make the arrival at a common
protocol more time intensive as there is less deter-
minism to the respective messages and, as such, it
is more difficult to achieve synchronisation between
the agents. This can be overcome by pre-initialising
the weights of each head with the solution of the
primary head, thereby achieving comparable con-
vergence speeds to the baseline.

7 Future Work

A current limitation of our method which we hope
to address is that all derived languages are unique.
The resulting multi-agent system has a quadratic

(a) Baseline

(b) Multi-headed method

(c) Multi-headed method with pre-initialisations

Figure 4: Heatmap for all method evaluated for all
pairings at episodes=0, 75000, 150000 and 225000.
Scale represents the average reward which is ob-
tained over 100 episodes.

relationship between the number of languages and
the number of speakers/listeners. This is not the
case in natural systems with the number of distinct
languages being somewhat restricted. An interest-
ing avenue to explore could consider methodologies
which restrict the number of languages that may
emerge thereby aiming to improve zero-shot per-
formance.

Furthermore, although we focus on emergent
communication in this work, we believe the re-
sults presented apply more generally to coopera-
tive games. The idiosyncratic conventions which
cooperative agents’ can develop are equivalent to
the languages which arise in referential games. In
future work, we intend to expand our analysis to
consider a broad set of cooperative problems where
periodic interactions may arise. We believe this
mode of operation and methodology may be appli-
cable in a range of human-centric tasks where the
personalisation of policies may be desirable.
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Figure 5: Entropy of speaker from 75k to 150k
episodes.

8 Conclusion

We consider the development of agents which can
maintain multiple languages without falling victim
to catastrophic forgetting. This work builds upon
that by Eccles et al. [4] and introduces a parameter
isolation method into their neural network in order
to mitigate the aforementioned issues. The mod-
ification involves the utilisation of a multi-headed
output network, where each head is utilised for a
specific language. This approach was validated em-
pirically within a novel referential game formula-
tion which facilitated evaluation of language main-
tenance through interactions with multiple unique
agents and will serve as a simple test-bed for fu-
ture work. The results demonstrate that the pro-
posed method effectively avoids catastrophic for-
getting when compared to the standard implemen-
tation of Eccles et al. [4]. Future work intends to
consider this methodology within more complex do-
mains and zero-shot scenarios.
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