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Abstract

The lack of large labeled medical imaging datasets,
along with significant interindividual variability
compared to clinically established disease classes,
poses significant challenges in exploiting medi-
cal imaging information in a precision medicine
paradigm, where in principle dense patient-specific
data can be employed to formulate individual pre-
dictions and/ or stratify patients into finer-grained
groups that may follow more homogeneous trajec-
tories and therefore empower clinical trials. In or-
der to efficiently explore the effective degrees of
freedom underlying variability in medical images in
an unsupervised manner, in this work, we propose
an unsupervised autoencoder which is augmented
with a contrastive loss to encourage high separa-
bility in the latent space. The model is validated
on (medical) benchmark datasets. As the cluster
labels are assigned to each example according to
the cluster assignments, we compare performance
with a supervised transfer learning baseline. Our
methods achieve performance similar to the super-
vised architecture, indicating that separation in the
latent space reproduces expert medical observer-
assigned labels. The proposed method could be
beneficial for patient stratification, exploring new
subdivision of larger classes or pathological con-
tinua, or, due to its sampling abilities in a varia-
tion setting, data augmentation in medical image
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processing.

1 Introduction

In current medical practice, the difficulties in
specifically targeting any disease process are rooted
in recent evidence showing that current diagnostic
categories do not actually represent a single dis-
ease, but rather heterogeneous clinical syndromes
underpinned by different pathogenic mechanisms.
Today, we still do not know how heterogeneity in
organ function and anatomy is linked to this clinical
variability and to the risk of following different ’tra-
jectories’. This represents a drawback in person-
alizing diagnosis and therapy, which is commonly
based on a ’one size fits all’ approach. This lack of
understanding of the basic mechanisms underlying
(multimorbid) syndromes is a major roadblock to
the development of the P41 medicine paradigm to-
day, as well as in designing cost- and discovery- ef-
ficient clinical trials. For these reasons, there is sig-
nificant interest in developing unsupervised meth-
ods that can discover clinical subtypes (or, more
generally, more fine-grained patient strata ) in pa-
tient populations based on patient data [11]. In this
paper, we propose an unsupervised framework for
image-based patient stratification based on an au-
toencoder network. We augment the reconstruction
loss of the autoencoder with a contrastive learning
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component inspired by [5, 6] to encourage better
separation of the latent space [14, 1, 3, 10]. In the
first stage of training (warmup), we focus on learn-
ing structured latent representations, while in the
second stage we fine-tune the decoder for recon-
struction. Using a simple function to map between
cluster labels and real labels, we are able to pro-
duce classification results close to a ResNet18 [12]
supervised baseline, and outperform a feature ex-
traction (last feature layer of ResNet18 combined
with KMeans clustering) baseline.
Other recent work addressed the use of con-

strastive learning on biomedical images for clus-
tering and patient stratification. For example, in
[4] the authors propose strategies for extending the
contrastive learning framework for the segmenta-
tion of volumetric medical images, such as mag-
netic resonance or computed tomography scans.
The proposed method uses domain-specific and
problem-specific cues to improve the performance
of the contrastive learning framework in a semisu-
pervised setting, where only a limited amount of
labeled data are available. One key contribution
is the use of domain-specific cues to improve the
contrastive learning process, leveraging the inher-
ent structure and similarity in the data to provide
more complex similarity cues than data augmen-
tation alone can provide. The method is evalu-
ated on three MRI datasets and yields substantial
improvements compared to other self-supervision
and semi-supervised learning techniques. Again
on segmentation, in [18] the authors propose two
federated self-supervised learning frameworks for
medical image segmentation with limited annota-
tions. The first framework is suitable for high-
performance servers, while the second is more suit-
able for mobile devices. Both frameworks use self-
supervised contrastive learning followed by fine-
tuning with limited annotations. Experiments
on a cardiac magnetic resonance data set show
that the proposed frameworks improve segmenta-
tion and generalization performance compared to
state-of-the-art techniques. In [17] the authors
propose a new method for content-based whole-
slide image (WSI) retrieval, called Retrieval with
Clustering-guided Contrastive Learning (RetCCL).
The RetCCL framework combines a self-supervised
feature learning method with a global ranking and
aggregation algorithm to improve the performance
of WSI-level image retrieval. The feature learning

Figure 1: A diagram of the proposed training scheme based
for our architecture. The first column, is related to the
warmup phase and information flow from top to bottom,
so data, augmentation, encoding, projection and decoding.
Projected and decoded representation are used in the loss for
the warmup phase and all the components are updated. The
central column shows the loss function for the first warmup
phase (yellow box) and the loss for the last phase of the
training (green box). The right column report the same
scheme as the left one, but with frozen encoder. This lat-
ter configuration is used in the last phase of training, where
only the decoder is updated and the loss function is only the
reconstruction term.

method uses large-scale unlabeled histopathological
image data to learn universal features that can be
used directly for WSI retrieval tasks without addi-
tional fine-tuning. Finally, in [21] the authors pro-
pose ConVIRT, an unsupervised strategy for learn-
ing visual representations of medical images using
paired descriptive text. ConVIRT uses a bidirec-
tional contrastive objective to pretrain medical im-
age encoders without requiring additional expert
input. The authors evaluated ConVIRT on four
medical image classification tasks and two zero-
shot retrieval tasks, showing that it outperforms
strong baselines in most settings and demonstrates
superior data efficiency. While contrastive learn-
ing can be successfully used to solve many medical
problems, from segmentation to patient statifica-
tion. To solve this latter task, we propose a simple
method based on a constastive loss in a two-step
learning process.

2 Material and Methods

Our architecture has the dual objective of recon-
structing images while generating a latent space
whose structure separation is driven by the con-
trastive loss. The encoder e (a convolutional net-
work with 3 2D layers, kernel size=4, stride=2, fol-
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lowed by GELU activations and an average pool-
ing layer (kernel size= 2) and a linear layer that
maps the features into a latent space of dimension
128) maps images x to the latent space h = e(x),
while the projector p ( a multilayer perceptron with
3 layers) projects the images into another space
(z = p(h) ) where the similarity function sim(·, ·)
is computed as in [5]). The encoded representa-
tions are then passed to a decoder that learns how
to reconstruct the images driven by the reconstruc-
tion loss. Parameter values were chosen to halve
the image dimensions three times while increasing
the receptive field, in order to create filters that
process at the entire image feature map before the
linear layers. During the ‘warmup’ (first) phase of
training, the contrastive loss term was applied.

Lcontrastive = − log(
e

sim(zi,zj)

τ∑
negatives e

sim(zi,zk)

τ

) (1)

and a standard mean squared error loss;

L = Lcontrastive + αLrecon (2)

are combined into the total loss , where α = 0.1 is
a fixed scalar term that encourages learning those
features which are potentially also useful for recon-
struction. All network weights are updated with
the LARS optimizer [20]. Then, the encoder is
frozen and a search for optimal number of clus-
ters is run using KMeans combined with the elbow
method. [15, 2]. This optimizer has shown superior
performances in training models with large batch
sizes, so we choose it instead of a standard Stocastic
Gradient Descent or Adam. Cluster centroids are
then stored in a matrix whose columns represent
cluster prototypes. In the second phase, the decoder
is turned into a conditional decoder d(·) by adding
layers that process information from a soft label as-
signment computed in the latent space. The images
are then encoded and their representation are com-
pared to each of the prototypes using cosine dis-
tance as similarity metric. The temperature-scaled
softmax of the vector of similarities produces a soft
label assignment passed to the decoder that will
learn how to decode images including this informa-
tion. The architecture of d(·) is symmetrical with
respect to e(·).
After obtaining proof-of-concept results on the

MNIST [8] digit images, we validate our approach

Algorithm 1 Contrastive Learning

1: for epoch in warmup epochs do
2: for x, y in dataloader do
3: x1, x2 =augment(x)
4: h1, h2 =encode(x1,x2)
5: z1, z2 = project(h1,h2)
6: y1, y2=decode(h1,h2)
7: Lsim=Contrastive(z1,z2)
8: Lrecon=MSE(x1,y1)+MSE(x2,y2)
9: L = Lsim + αLrecon

10: update(e,p,d)
11: end for
12: end for
13: for epoch in(warmup epoch,total epochs) do
14: for x, y in dataloader do
15: x1, x2=augment(x)
16: h1, h2=encode(x1,x2)
17: c1, c2=clusters labels(h1, h2)
18: y1, y2=decode(h1, h2, c1, c2)
19:

20: L=MSE(x1, y1)+MSE(x2, y2)
21: update(d)
22: end for
23: end for

on the pneumoniaMNISTdataset (2D chest X-Ray
images labelled as healthy or affected by pneu-
monia), part of MedMNIST (https://medmnist.
com/) [19]. We generate positive pairs through aug-
mentation, that is, we randomly apply (with proba-
bility p = 0.5), rotations of up to 30 degrees, Gaus-
sian blur, Gaussian noise, horizontal flips, and ran-
domly rescaled crops. For all images in the training
set, we compute the encoded latent representations
and their cluster labels. We then map each cluster
into the mode of the real labels of items belonging
to that specific cluster to generate a map between
the cluster labels and the real labels. The latter
map is used to predict the labels for the validation
and the test set and compute the performance in a
way that is comparable to what is done in a super-
vised model. An outline of the algorithm is shown
below.

We also trained a supervised baseline by per-
forming transfer learning from a ResNet-18 archi-
tecture pre-trained on ImageNet [7] while chang-
ing the number of units in the last fully connected
layer to two. This model was trained while freez-
ing all parameters before the avgpool layer (number
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Figure 2: Examples of data instances from the PneumoniaMNIST dataset

Figure 3: Results on MNIST test dataset.A: real labels, B: cluster labels, C: cluster labels mapped on real labels

of epochs: 100, Adam optimizer, learning rate=1e-
4). Additionally, to explore whether embedding the
separation in the training results in performance
increases compared to simply clustering the latent
space, we extracted features from the last layer of
ResNet18 and performed a KMeans search for the
optimal number of clusters, followed by a mapping
between cluster labels and real labels. The last two
experiments served as baselines for comparison for
the architecture proposed in this paper. We choose
ResNet18 as the benchmark architecture because
it is used in the original [19] publications and the
benchmark data are already available and compa-
rable. All experiments were run using Pytorch, 50
warm-up epochs, and 100 total epochs. The LARS
optimizer was used with a StepLR scheduler that
linearly increases the learning rate from lr=0.01 to
0.25 (first 10 epochs), after which a cosine anneal-
ing scheduler reduces the learning rate to 0.05 in
90 epochs.

3 Evaluation

For visual evaluation, plot a 2D representation of
the latent space clustered using the t-SNE algo-
rithm [16]. Successively, after training the model
in an self-supervised manner, the evaluation phase
employs part of the available labels that are used
for performance evaluation in three different ap-
proaches, all based on the downstream classifica-
tion task: a) a statistical mapping approach be-
tween the cluster labels and the real labels, b) the
kNN algorithm (k-Nearest Neighbors) [9], and c)
the training of a simple linear layer with categori-
cal cross-entropy as a loss function.

In the statistical approach (a), samples drawn
from a subportion of the training set are associated
with a cluster label which is calculated as the index
of the closest prototype based on the distance be-
tween cosines. Then, the distribution of real labels
across each cluster label is computed, and each clus-
ter label is associated with the most frequent real
label that occurs in the samples associated with the
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Figure 4: Results on test (PT) and validation (PV) sets of the PneumoniaMNIST dataset. A: real labels, B: cluster
labels, C: cluster labels mapped on real labels

prototype currently in use. This results in associ-
ating each prototype to the mode of the real labels
which are most similar to itself and can be seen as a
way to measure how well each prototype captures
the key elements that intrinsically define a class.
In the inference phase, each sample of the test set
is associated to one cluster and a predicted label
is generated using this pre-computed map between
clusters and real labels.
In the second approach (b), a subset of the train-

ing set is used to compute the ”memory bank” for
the kNN algorithm. In the inference phase, each
sample of the test set is compared with every el-
ement stored in the memory bank, computing the
pairwise distance for every pair. The predicted la-
bel is then defined as the mode of the labels of the
k closest samples (in our case k = 5).

In the third approach (c), a linear layer maps
from z to the number of possible classes. This lin-
ear layer is trained for 200 epochs using the Adam
[13] optimizer with a learning rate of 3 ∗ 10−4 over
a subportion (20% of the training set, chosen to
mimic a semi-supervised approach in a situation
where the number of available labels is low). of the
training set, with categorical cross-entropy as loss
function.

4 Results

Results are summarized in Table I. Since the valida-
tion data sets were not used for training or model
selection, we tested our framework on the valida-
tion and test data sets provided, which have dif-
ferent proportions of classes and produce differ-

ent results. Our approach systematically outper-
forms feature extraction + KMeans in both the
test set and the validation set. Importantly, it
also performs close to the supervised baseline, even
though it is optimized for reconstructing images
in an unsupervised manner. When combined with
kNN or a linear classifier, our approach generates
features, which result in even higher performance
compared to the above performance evaluation ap-
proach. Figure 3 shows a 2D representation of the
latent space after encoding for both real and clus-
ter labels. In the latter case, the prototypes are
also superimposed over the image to demonstrate
the reconstruction of mean representatives of each
cluster.

5 Conclusions

This proof of concept study demonstrates the po-
tential of using contrastive learning to encourage
latent space separability in autoencoders and pos-
sibly other generative frameworks. In benchmark
datasets, including medical imaging, our unsuper-
vised stratification method delivers nearly equal re-
sults (in terms of performance) to supervised base-
lines and outperforms the alternative strategy of
clustering features extracted from the penultimate
layer of the supervised baseline. The autoencoder
framework allows for simultaneous image recon-
struction and sampling from a specific cluster if
used in a variational setting. The method is also
apt to refine/redefine existing classes or to com-
pletely re-stratify a disease continuum. Current
limitations include the need of choosing the num-
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Model Dataset Accuracy Precision Recall
Resnet18 Pneumonia Test 0.74 0.77 0.74
Feature+KM Pneumonia Test 0.69 0.74 0.69
Our Model (stat) Pneumonia Test 0.73 0.73 0.73
Our Model (kNN) Pneumonia Test 0.84 0.85 0.83
Our Model (lin) Pneumonia Test 0.84 0.80 0.88
Resnet18 Pneumonia Val 0.86 0.86 0.86
Feature+KM Pneumonia Val 0.78 0.77 0.78
Our Model (stat) Pneumonia Val 0.80 0.79 0.80
Our Model (kNN) Pneumonia Val 0.84 0.86 0.81
Our Model (lin) Pneumonia Val 0.84 0.80 0.87
Resnet18 MNIST 0.995 0.995 0.995
Feature+KM MNIST 0.69 0.68 0.69
Our Model (stat) MNIST 0.90 0.91 0.90
Our Model (kNN) MNIST 0.98 0.98 0.97
Our Model (lin) MNIST 0.98 0.97 0.98

Table 1: Results of baseline models and of approach. We evaluated our architecture using three different methods:
Statistical (stat), where labels are associated to clusters based on the most frequent label present in a cluster, Nearest
Neighbor (kNN), where the class is chosen by majority voting amongst the 5 nearest neighbors in the latent space, and a
Linear classifier (lin), where a linear layer was trained on top of the latent features. PT: PneumoniaMNIST test set, PV:
PneumoniaMNIST validation set, MNIST MNIST test set

ber of clusters with KMeans (which could be sub-
stituted with, e.g. a neural network with learnable
weights and a clustering loss) and the need for large
batch sizes, which could be foregone through e.g.
sampling approaches.
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