
Nearest Unitary and Toeplitz matrix techniques for adaptation of

Deep Learning models in photonic FPGA

Georgios Agrafiotis∗, Eftychia Makri, Ilias Kalamaras, Antonios Lalas, Konstantinos
Votis, and Dimitrios Tzovaras

Centre for Research and Technology Hellas
6th km Xarilaou - Thermi, Thessaloniki, 57001, Greece

Abstract

Photonic circuits pave the way to extremely quick
computation and real-time inference in critical ap-
plications, such as imaging flow cytometry (IFC).
Nevertheless, current photonic FPGA implementa-
tions display intrinsic limitations that restrict the
complexity of Deep Learning (DL) models that
could be sustained. One of these restrictions im-
plies the weight matrices to be unitary. Thus,
machine learning mechanisms to transform weight
matrices to their nearest unitary one, are essen-
tial for the effective deployment of such demanding
tasks. Furthermore, DL models that perform con-
volutions, require special handling so as to fit in
the photonic system. In this work, several meth-
ods have been investigated for conversion of non-
unitary matrices to unitary ones, as well as, linear
algebra techniques for the transformation of Convo-
lutional Neural Networks (CNNs) to Feed-Forward
models, under the prism of discovery of the best
candidate for the photonic FPGA in terms of accu-
racy and restrictions. Experimental results proved
that post-training or iterative techniques to find the
nearest unitary weight matrix can be applied for
photonic chips with the minimum loss in accuracy,
while CNNs adapted well in a photonic configura-
tion employing a Toeplitz matrix implementation.
The proposed approach envisions efficient tackling
of DL models limitations for deployment in pho-
tonic FPGAs.

∗Corresponding Author: gagrafio@iti.gr
This work was founded by the European’s Union Horizon
2020 Research and Innovation Program through NEuromor-
phic Reconfigurable Integrated photonic Circuits as artificial
image processor (NEoteRIC) under Grant Agreement No.
871330.

1 Introduction

Recent advances in artificial neural networks
(ANNs) have shown enhanced performance in ma-
nipulation and recognition of images, videos, text,
and audio, at a variety of applications. Despite
the high accuracy and generalization ability of the
produced models, their complexity often results
in time-consuming inference, which prevents their
adoption in time-critical applications. An exam-
ple is imaging flow cytometry (IFC), where the
demanding image processing performed on each
cell passing through the flow channel is a signifi-
cant bottleneck preventing high-throughput appli-
cations (>100K cells/sec) [10]. Deep Learning (DL)
methods can provide advanced analysis per single
cell, but at the cost of lower throughput.

This fact has led to intense investigations and
implementation of hardware-based neuromorphic
computing architectures, i.e., hardware platforms
that can mimic human brain functions [7], [4].
Photonics can provide a proliferating platform for
the development of ANNs due to inherent mer-
its such as high wall-plug efficiency, parallel pro-
cessing through time-wavelength and space multi-
plexing along with unparalleled operational band-
width. Linear transformations can be performed in
the optical domain by propagating light through a
properly configured photonic structure, unlocking
negligible power consumption per ANN operation
[31]. On the other hand, photonic platforms are
still plagued by high footprints and lack of circuit
adaptability. With respect to the implementation
of ANN architectures, photonic circuits place re-
strictions on the morphology of the networks that
can be implemented [39].

https://doi.org/10.7557/18.6825

© The author(s). Licensee Septentrio Academic Publishing, Tromsø, Norway. This is an open access article distributed
under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

1

https://doi.org/10.7557/18.6825
http://creativecommons.org/licenses/by/4.0/

In this paper, different algorithms are applied
to DL models, namely Feed-Forward (FFNN) and
Convolutional Neural Networks (CNNs), regard-
ing the transformation of weight matrices to uni-
tary ones, as well as a Toeplitz matrix implemen-
tation, in order to adapt those models in the hard-
restricted photonic FPGA. A discussion of the find-
ings, their wider implications, and the potential for
this work’s extension and experimental realization
concludes our paper.

2 Related Work

Several implementations of ANNs on photonic cir-
cuits have been recently proposed, in order to ex-
ploit the high speed and inherent parallelism of
optics [31]. It is important to note that optical
deep neural networks and very fast processing pho-
tonic engines have both been proven in the con-
text of reservoir computing [33]. Additionally, in-
tegrated weighting banks have recently been imple-
mented using photonic integrated circuits (PICs),
enabling the development of completely integrated
photonic neural networks that use sinusoidal acti-
vation components [32]. Although neuromorphic
technology can significantly enhance speed or en-
ergy consumption, it always has extra limits and
constraints compared to ANNs that are installed
on general-purpose hardware in the form of simu-
lations [36]. Another constraint of photonic-based
neuromorphic architectures is the ability to directly
implement the activation functions that are usually
employed in deep learning, e.g., ReLU [13], [17],
[22]. To provide the functionality of non-linear acti-
vation functions, often a Mach-Zehnder Modulator
(MZM) or Interferometer (MZI) [27] is employed
to properly adjust an optical signal depending on a
neuron’s output.

CNNs are a powerful category of ANNs and have
been widely used in photonic implementations. In
[3], a photonic integrated circuit architecture of a
three layer CNN network was presented, capable of
performing a million inferences per second while a
similar idea is employed for realizing 11 tera op-
eration per second (TOPS) photonic convolutional
accelerator for optical neural network [35]. An en-
ergy efficient approach was proposed in [38], where
deeply pipelined multi-FPGA architecture is pre-
sented along with an algorithm, in order to map the

CNN layers to multiple FPGA boards, achieving
better througput and latency than single-FPGA
implementations. The goal for fully optical neuro-
morphic computing has been also examined in [9],
where a novel photonics-based backpropagation ac-
celerator for high performance deep learning train-
ing was implemented. This work, attempts to over-
come the hardware restrictions imposed by a pho-
tonic FPGA, by transforming the weight matrices
of neural netwroks to unitary weight matrices, with
respect to the non-linearity idea of an MZI or MZM,
while, moreover, attempting to adapt the convolu-
tion execution in a photonic platform by employing
Toeplitz matrix implementations.

Our approach, in contrast to existing unitary
learning techniques [2],[18] that incorporate other
NN designs and demand calculations in the com-
plex domain, exploits the advantages of FFNN or
CNN while and in the same time transforms those
models in quantum computing [21] algorithms form
with both nearest unitary matrices techniques and
Toeplitz matrix implementations. Our method has
the benefit of being less computationally complex
and achieving minimum loss in accuracy. It should
be mentioned that our iterative training scheme is
a variation of projected gradient descent [34].Last
but not least, this method could be expanded to
a great variety of hardware morphology photonic
chips, because of its generalization in terms of
weight matrices form.

3 Fitting DL in Photonics

PICs aim at configuring arbitrary designs by em-
ploying a large-scale set of programmable inte-
grated beam splitters and phase actuators. Ad-
justable circuits with high complexity in terms
of programming, demand the integration of many
Tunable Basic Units (TBUs) and the optimization
of their performance that can be affected by a se-
ries of factors namely minimum number of param-
eters, optical loss and power consumption.As men-
tioned by Lopez et al.in [19], a simple approach for
a TBU is using a “balanced MZI with an indepen-
dent phase actuator on each arm”.

The minimal matrix multiplication may be im-
plemented using MZI, a fundamental minimum ma-
trix operation unit that can be built on a silicon
substrate. Without experiencing any significant

2

loss, the photonic matrix network created by MZIs
may be expanded to accommodate any matrix mul-
tiplication, although regarding the Quantum Com-
puting nature of the photonic FPGAs, those ma-
trices must be unitary [26].
The triangular decomposition algorithm was a

generic approach initially suggested in [28], as a
practical realization of any n x n unitary matrix. In
this scenario, a structure made up of mirrors, phase
shifters, and beam splitters, placed in a precise or-
der can produce unitary matrix transformations [8].
Since basic optical devices like multimode interfer-
ometers (MMIs) and phase shifters (PSs) necessar-
ily encourage analog unitary transformations in the
electromagnetic waves, provided that the insertion
loss of such devices is negligible [20], the different
ways to modify weight matrices to be unitary are
of great significance.
Furthermore, when considering the adaptation

of deep learing models in photonic FPGAs, CNNs
are the first option when it comes to image clas-
sification tasks. CNNs could be implemented on
photonic chips, with a back-propagation algorithm,
as already mentioned in Section 2. Regarding the
complexity and resources of a back-propagation al-
gorithm, as shown in [11], our goal is to develop a
CNN model that could be transformed to a FFNN
model, a form which is more wieldy for a photonic
configuration, because of its simple linear algebra
executions, that take part in the Fully-Connected
(FC) layer, executions that could be implemented
on photonic chip [19].
As a result, each application’s requirements must

be carefully taken into account while designing the
training algorithms ensuring that a) the trained
network behaves correctly and stays within the im-
posed hardware limits (e.g. unitary weight matri-
ces) and b) the transfer functions of the various
components are appropriately modeled [24].

4 Proposed Methods

The deployment of a neural network directly on
PIC introduces some constraints as explained in
[19]. Fundamentally, only linear transformations
can be applied. Moreover, the bias term found in a
conventional fully connected neural network cannot
be used (Y = Wx+ b), [14]. Additionally, the non-
linear activation function should be consistent with

a photonic structure and the weight matrix (W)
must be unitary. The function |x|2, which emulates
the output of a photonic diode can be selected, as
described in [33]. Finally, since the linear opera-
tions involve unitary matrices, only square matri-
ces can be used with dimensions being enforced by
the input data.

Consequently, each photonic neural network
structure must resemble a fully connected neural
network with bias terms set to zero, unitary weight
matrices, and a non-linear activation function that
is specific to the hardware. We aim to emulate a
photonic ANN by using open source machine learn-
ing tools such as Tensorflow [1] and Pytorch [25] to
create neural network models based on the afore-
mentioned hardware limitations that may then be
directly implemented on FPGAs.

4.1 Nearest Unitary Learning

Finding the closest unitary weight matrix is an ad
hoc way to implement neural network designs on
the PIC. The matrix U that develops in the de-
composition of M into the product of an orthogonal
matrix and a positive definite matrix is the nearest
orthogonal matrix to a specific nonsingular matrix
M, as explained in [15].

U = M(MTM)−1/2 (1)

Since the weight matrices of a neural network only
include real values, the nearest orthogonal is com-
puted as opposed to the nearest unitary.

While there is an error introduced by this
method, the computational resources are signifi-
cantly reduced· only one matrix is used per net-
work layer, as opposed to three. Details about the
three matrix implementation by performing Singu-
lar Value Decomposition (SVD) can be found in
[31]. The SVD approach requires the implementa-
tion of two unitary matrices through FPGAs and
a diagonal matrix using an optical amplifier or at-
tenuator. It should be noted that the SVD method
introduces no error in contrast with the Nearest
Unitary method.

4.1.1 Post-training Method

A straightforward method to derive orthogonal
weight matrices in a multilayer perceptron is to
first train the network and then apply the nearest

3

orthogonal approach to each matrix. The disad-
vantage of this approach is that the inaccuracy re-
sulting from each weight matrix stated in Section
4 is amplified by passing through the rest of the
network, notably the non-linearities. An approach
to lessen the error’s amplitude is described below.
Assuming we have a N-layer perceptron, we will

train the network N times, applying the closest or-
thogonal approach at the end of each training phase
to the corresponding layer, which denotes that the
training phase and the layer number should coin-
cide. The weights of each layer that the closest
orthogonal approach is applied to are frozen at ev-
ery subsequent training session. It is possible to
reduce the impact of each layer’s error by training
the network in this staggered fashion.

4.1.2 Iterative Method

An additional approach of achieving a better fit for
the closest orthogonal weight matrices, is to ap-
ply the Nearest Orthogonal formula discussed in
Section 4.1 iteratively. An N-layer perceptron is
considered undergoing the default train session. At
the end of each epoch, after the backpropagation is
employed to the network weights, the closest uni-
tary approach will be applied at each weight ma-
trix. Since there should always be an optimal or-
thogonal solution, by maintaining a low learning
rate, this strategy is driving the network towards
this direction as training progresses. By using this
method, we expect the weight matrices to converge
to an orthogonal solution that is close to a local
optimal.
Weight initialization has been shown to enhance

the network training process, [16] and [23]. We
suggest a weight initialization strategy that may
improve our proposed method. In more detail, the
network will go through N training iterations, and
only the associated layer will be changed during
each training phase. At each training step the cor-
responding layer weights will be updated by apply-
ing nearest orthogonal approach at every epoch as
described above and by the end of each training ses-
sion the associated weight matrix will have orthog-
onal properties. All previous layers will be frozen
during a particular training cycle to keep their or-
thogonal characteristics. The weight matrices will
all be orthogonal at the conclusion of all training
sessions, serving as weight initialization before the

network is retrained using the method outlined at
the beginning of this section.

Figure 1: Schematic process of CNN to FC with
Toeplitz implementation

4.2 Handling CNN

A common architecture in classical neural networks
is the convolutional network, as already mentioned.
CNNs are particularly well-suited for computer im-
age recognition problems, because they illustrate a
straightforward but significant observation: since
detecting an object is a mainly separate task of
where the object appears in an image, the network
should be equivariant to translations [37]. Con-
sequently, the linear transformation in a CNN is
not fully-connected, while, according to [19] and
the aforementioned photonic restrictions in an MZI
implementation, convolution could be achieved, if
transformed to matrix multiplication followed by
the non-linear activation function. Thus, instead of
using for-loops to perform 2D convolution on im-
ages we can convert the filter to a Toeplitz matrix
and an image to a vector and do the convolution
just by one matrix multiplication.

In order to implement the aforementioned pro-
cess, we were based on the repository of Ali Salehi
[29] combined with the proper modifications on the
padding parameter to achieve ”same” padding. By
applying ”same” as padding method to the CNN
model, we are forcing the Toeplitz matrix to be
square. This is a necessary contribution because
a) as mentioned in Section 4, quantum comput-
ing (e.g. photonic FPGAs) is only able in handling
square matrices and b) the methods referred in Sec-
tion 4.1 are only applicable in square matrix forms,

4

(a) (b)

Figure 2: (a) Representative images of G1 and G2
phase, (b) MNIST handwritten digits example

since unitary matrices are by definition square.

It is worth noted, that the Toeplitz nature of the
N × N matrix P gives us only N degrees of free-
dom, as opposed to N2 degrees of freedom encoded
in the weights of a fully-connected deep neural net-
work, as mentioned in [6]. Nevertheless, Toeplitz
implementation, allows photonic FPGAs to handle
CNNs, with the less possible complexity, without
exploiting back-propagation algorithms.

5 Applications

5.1 Cell image dataset

Aiming to test the efficiency of the models in a cy-
tometry relevant scenario, a single-cell image clas-
sification application was put into practice. The
dataset [12] consists of raw IFC images of 7.362
asynchronously growing immortalized human T-
lymphocyte cells (Jurkat cells) which can be clas-
sified into two different stages of cell cycle, as de-
picted in Figure 2: the G1 phase, where the cell
grows physically and increases the volume of both
protein and organelles, and the G2 phase, which in-
volves further cell growth and organization of cellu-
lar contents. Being able to distinguish between the
“small” G1 cells and the “big” G2 cells is impor-
tant as it can be extended to distinguishing between
normal or cancerous cells, since cancerous cells tend
to be larger. The size-based classification strategy
was based on the work of B. Shashni et al. in [30].

5.2 Single-cell image identification

For the identification of the single-cell images, a
comparison to known benchmarks is required. One
popular dataset used for this purpose is the MNIST
collection of handwritten numbers [5]. For the
classification processes, two experiments were con-
ducted, concerning the methods mentioned in Sec-
tion 4. In every experiment, a |x|2 mathematic
relation was employed as an activation function,
in order to satisfy the photodiode necessity as dis-
cussed in Section 4. The deep learning models ap-
plied to the datasets were the following: (i) A single
2025x2025-neurons Fully Connected (FC) layer re-
garding the Jurkat and a single 784x784-neurons
FC for the MNIST dataset, (ii) A two layer FC,
consisting of 2025x2025-neurons each for the Jurkat
and a two layer FC, consisting of 784x784-neurons
for the MNIST, and (iii) A CNN. The cross entropy
loss, together with the softmax activation function,
is used for training the networks.

6 Results

The models mentioned in Section 5.2 were used in
three studies, which all targeted the MNIST and
Jurkat datasets. The performance of the single-
layered network is assessed in two scenarios in the
first experiment. In the first situation, the post-
training approach described in Section 4.1.1 is used,
while in the second, the iterative method described
in Section 4.1.2 is employed. The experiment’s find-
ings are collected in Table 1.

Subsequently, the second experiment tests the
two-layered network in four scenarios. The post
training strategy suggested in Section 4.1.1 is used
in the first case immediately following the comple-
tion of a training iteration, and the second scenario
uses the same method by completing two train-
ing phases while freezing the first layer in the sec-
ond phase as indicated. Moreover, the two remain-
ing scenarios are utilizing the iterative method dis-
cussed in Section 4.1.2. Specifically, the first situa-
tion updates both weight matrices concurrently as
described. Finally, the last training scenario uti-
lizes the weight initialization strategy described in
Section 4.1.2. The results of the experiment are
presented in Table 2.

The last experiment involves conventional train-

5

ing of the CNN described in Section 5.2 followed
by its transformation into a matrix multiplica-
tion followed by a non-linear activation function
as discussed in Section 4.2. Furthermore, since
the CNN contains five filters, five Toepliz matri-
ces will be generated and the output will be con-
cnatenated right before softmax layer. The per-
formance of the network is then compared before
and after using the post-training nearest orthogo-
nal technique. It should be emphasized that since
retraining the network would behave as a fully con-
nected implementation rather than a convolutional
approach, the iterative method cannot be combined
with the Toepliz transformation. The experiment’s
outcomes are shown in Table 3.

Table 1 demonstrates that there is some accu-
racy loss when using the post-training method in
comparison to the initial model and the iterative
approach produces superior outcomes. The post
training approach also has a flaw that was discov-
ered via experimentation: weight initialization has
a significant impact on the model’s output. This is
a natural conclusion given that each weight initial-
ization may produce distinct weight matrices, each
of which has a large closest orthogonal distance and
a large inaccuracy. The iterative method, on the
other hand, is unaffected by this issue, since it com-
pels the weight matrices to continually be close to a
unitary, by using a low learning rate in conjunction
with the updating strategy already explained.

Table 2 illustrates that due to the large inaccu-
racy indicated in Section 4.1.1, the post-training
cannot be implemented in a network with more
than one layer without employing the freezing ap-
proach. Additionally, the iterative technique once
more outperforms post-training. Moreover, the
weight initialization discussed in Section 4.1.2 can
improve network performance.

Table 3 depicts that, as anticipated, the CNN im-
plementation performs better than the Fully Con-
nected. Additionally, employing the post-training
Nearest Unitary technique on the CNN produces
better results than employing it on a Fully Con-
nected network, suggesting that certain CNN prop-
erties may still exist. Finally, Toepliz transfor-
mation can be combined with the SVD technique
stated in Section 4.1 if the desired property is model
accuracy, though this will require more processing
power as explained.

Table 1: Image classification results for single-
layer FFNN with different nearest unitary tech-
niques

MNIST Jurkat
Method Accuracy Precision Accuracy Precision

Initial Model 0.982 0.982 0.947 0.922
Post-training 0.88 0.86 0.939 0.903

Iterative 0.976 0.976 0.941 0.911

Table 2: Image classification results for multi-layer
FFNN with different nearest unitary techniques

MNIST Jurkat
Method Accuracy Precision Accuracy Precision

Initial Model 0.984 0.984 0.95 0.941
Post− training/No Freeze 0.801 0.789 0.769 0.732
Post− training/Freeze 0.904 0.899 0.9397 0.901

Iterative 0.979 0.979 0.942 0.911
Iterative-weights init. 0.981 0.981 0.949 0.942

7 Conclusion

When deploying DL models, photonic hardware has
the potential to significantly outperform and use
less energy than traditional hardware. Addition-
ally, the operations of PICs are limited to linear
operations employing unitary matrices. In order
to create fully connected neural networks that are
in compliance with the aforementioned criteria, we
provide a number of ways of utilizing the closest
unitary approach. The recommended techniques
produce excellent results while using 66% less hard-
ware than other suggested implementations. Addi-
tionally, we offer a technique for realizing CNN on
PIC by converting the convolution process to ma-
trix multiplication exhibiting high performance.

Fruitful directions for future work include further
investigation on DL models implementation on FP-
GAs such as Recurrent Neural Network and Trans-
formers, as well as optimization techniques for
hardware requirements. The proposed approaches
are deemed promising for accelerating the employ-
ment of neuromorphic computing via the extensive
utilisation of DL-based PICs in various applica-
tions.

Table 3: Image classification results for CNN with
post-training nearest unitary technique

MNIST Jurkat
Method Accuracy Precision Accuracy Precision

Initial Model 0.984 0.984 0.958 0.948
Post− Training 0.901 0.897 0.944 0.908

6

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Good-
fellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on hetero-
geneous systems, 2015. URL https://www.

tensorflow.org/. Software available from
tensorflow.org.

[2] M. Arjovsky, A. Shah, and Y. Bengio. Uni-
tary evolution recurrent neural networks. In
International conference on machine learning,
pages 1120–1128. PMLR, 2016. doi: 10.48550/
arXiv.1511.06464.

[3] H. Bagherian, S. Skirlo, Y. Shen, H. Meng,
V. Ceperic, and M. Soljacic. On-chip optical
convolutional neural networks. arXiv preprint
arXiv:1808.03303, 2018. doi: 10.48550/arXiv.
1808.03303.

[4] B. Bai, H. Shu, X. Wang, and W. Zou. To-
wards silicon photonic neural networks for ar-
tificial intelligence. Science China Informa-
tion Sciences, 63(6):1–14, 2020. doi: 10.1007/
s11432-020-2872-3.

[5] A. Baldominos, Y. Saez, and P. Isasi. A sur-
vey of handwritten character recognition with
mnist and emnist. Applied Sciences, 9(15):
3169, 2019. doi: 10.3390/app9153169.

[6] J. R. Basani, M. Heuck, D. R. Englund, and
S. Krastanov. All-photonic artificial neural
network processor via non-linear optics. arXiv
preprint arXiv:2205.08608, 2022. doi: doi.org/
10.48550/arXiv.2205.08608.

[7] D. Brunner, B. Penkovsky, B. A. Marquez,
M. Jacquot, I. Fischer, and L. Larger. Tuto-
rial: Photonic neural networks in delay sys-
tems. Journal of Applied Physics, 124(15):
152004, 2018. doi: 10.1063/1.5042342.

[8] J. Cheng, H. Zhou, and J. Dong. Photonic
matrix computing: from fundamentals to ap-
plications. Nanomaterials, 11(7):1683, 2021.
doi: 10.3390/nano11071683.

[9] D. Dang, S. V. R. Chittamuru, S. Pasricha,
R. N. Mahapatra, and D. Sahoo. Bplight-cnn:
A photonics-based backpropagation accelera-
tor for deep learning. CoRR, abs/2102.10140,
2021. doi: 10.1145/3446212. URL https:

//arxiv.org/abs/2102.10140.

[10] M. Doan, I. Vorobjev, P. Rees, A. Filby,
O. Wolkenhauer, A. E. Goldfeld, J. Lieber-
man, N. Barteneva, A. E. Carpenter, and
H. Hennig. Diagnostic potential of imaging
flow cytometry. Trends in biotechnology, 36
(7):649–652, 2018. doi: 10.1016/2017.12.008.

[11] S. K. Esser, R. Appuswamy, P. Merolla, J. V.
Arthur, and D. S. Modha. Backpropagation
for energy-efficient neuromorphic computing.
Advances in neural information processing sys-
tems, 28, 2015.

[12] P. Eulenberg, N. Köhler, T. Blasi, A. Filby,
A. E. Carpenter, P. Rees, F. J. Theis, and
F. A. Wolf. Reconstructing cell cycle and
disease progression using deep learning. Na-
ture communications, 8(1):1–6, 2017. doi:
10.1038/s41467-017-00623-3.

[13] X. Glorot, A. Bordes, and Y. Bengio. Deep
sparse rectifier neural networks. In Proceedings
of the fourteenth international conference on
artificial intelligence and statistics, pages 315–
323. JMLR Workshop and Conference Pro-
ceedings, 2011.

[14] I. Goodfellow, Y. Bengio, and A. Courville.
Deep learning. MIT press, 2016.

[15] B. K. Horn, H. M. Hilden, and S. Negah-
daripour. Closed-form solution of absolute ori-
entation using orthonormal matrices. JOSA A,
5(7):1127–1135, 1988. doi: 10.1364/JOSAA.5.
001127.

[16] S. K. Kumar. On weight initialization
in deep neural networks. arXiv preprint
arXiv:1704.08863, 2017. doi: 10.48550/arXiv.
1704.08863.

7

https://www.tensorflow.org/
https://www.tensorflow.org/
https://arxiv.org/abs/2102.10140
https://arxiv.org/abs/2102.10140

[17] H. Li, B. Wu, W. Tong, J. Dong, and
X. Zhang. All-optical nonlinear activation
function based on germanium silicon hybrid
asymmetric coupler. IEEE Journal of Selected
Topics in Quantum Electronics, 2022. doi:
10.1109/JSTQE.2022.3166510.

[18] S. Lloyd and R. Maity. Efficient implementa-
tion of unitary transformations. arXiv preprint
arXiv:1901.03431, 2019. doi: 10.48550/arXiv.
1901.03431.

[19] D. P. López. Programmable integrated sili-
con photonics waveguide meshes: optimized
designs and control algorithms. IEEE Jour-
nal of Selected Topics in Quantum Electronics,
26(2):1–12, 2019. doi: 10.1109/JSTQE.2019.
2948048.

[20] A. Macho-Ortiz, D. Pérez-López, and J. Cap-
many. Optical implementation of 2× 2 univer-
sal unitary matrix transformations. Laser &
Photonics Reviews, 15(7):2000473, 2021. doi:
10.1002/lpor.202000473.

[21] L. S. Madsen, F. Laudenbach, M. F. Askarani,
F. Rortais, T. Vincent, J. F. Bulmer, F. M.
Miatto, L. Neuhaus, L. G. Helt, M. J. Collins,
et al. Quantum computational advantage
with a programmable photonic processor. Na-
ture, 606(7912):75–81, 2022. doi: 10.1038/
s41586-022-04725-x.

[22] M. Miscuglio, A. Mehrabian, Z. Hu, S. I. Az-
zam, J. George, A. V. Kildishev, M. Pelton,
and V. J. Sorger. All-optical nonlinear acti-
vation function for photonic neural networks.
Optical Materials Express, 8(12):3851–3863,
2018. doi: 10.1364/OME.8.003851.

[23] M. V. Narkhede, P. P. Bartakke, and M. S.
Sutaone. A review on weight initialization
strategies for neural networks. Artificial in-
telligence review, 55(1):291–322, 2022. doi:
10.1007/s10462-021-10033-z.

[24] N. Passalis, G. Mourgias-Alexandris,
A. Tsakyridis, N. Pleros, and A. Tefas.
Training deep photonic convolutional neural
networks with sinusoidal activations. IEEE
Transactions on Emerging Topics in Compu-
tational Intelligence, 5(3):384–393, 2019. doi:
10.1109/TETCI.2019.2923001.

[25] A. Paszke, S. Gross, F. Massa, A. Lerer,
J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Rai-
son, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. Pytorch:
An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural In-
formation Processing Systems 32, pages 8024–
8035. Curran Associates, Inc., 2019. doi:
10.48550/arXiv.1912.01703.

[26] F. Pavosevic and J. Flick. Polaritonic uni-
tary coupled cluster for quantum computa-
tions. The Journal of Physical Chemistry Let-
ters, 12(37):9100–9107, 2021. doi: 10.1021/
acs.jpclett.1c02659.

[27] S. Pitris, C. Mitsolidou, T. Alexoudi, D. Pérez-
Galacho, L. Vivien, C. Baudot, P. De Heyn,
J. Van Campenhout, D. Marris-Morini, and
N. Pleros. O-band energy-efficient broadcast-
friendly interconnection scheme with sipho
mach-zehnder modulator (mzm) & arrayed
waveguide grating router (awgr). In 2018 Opti-
cal Fiber Communications Conference and Ex-
position (OFC), pages 1–3. IEEE, 2018.

[28] M. Reck, A. Zeilinger, H. J. Bernstein,
and P. Bertani. Experimental realization of
any discrete unitary operator. Physical re-
view letters, 73(1):58, 1994. doi: 10.1103/
PhysRevLett.73.58.

[29] A. Salehi. My Research Software.
2022. doi: 10.5281/zenodo.1234. URL
https://github.com/alisaaalehi/

convolution_as_multiplication.

[30] B. Shashni, S. Ariyasu, R. Takeda, T. Suzuki,
S. Shiina, K. Akimoto, T. Maeda, N. Aikawa,
R. Abe, T. Osaki, et al. Size-based differenti-
ation of cancer and normal cells by a particle
size analyzer assisted by a cell-recognition pc
software. Biological and Pharmaceutical Bul-
letin, 41(4):487–503, 2018. doi: 10.1248/bpb.
b17-00776.

[31] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu,
T. Baehr-Jones, M. Hochberg, X. Sun,

8

https://github.com/alisaaalehi/convolution_as_multiplication
https://github.com/alisaaalehi/convolution_as_multiplication

S. Zhao, H. Larochelle, D. Englund, et al. Deep
learning with coherent nanophotonic circuits.
Nature Photonics, 11(7):441–446, 2017. doi:
10.1038/nphoton.2017.93.

[32] A. N. Tait, T. F. De Lima, E. Zhou, A. X. Wu,
M. A. Nahmias, B. J. Shastri, and P. R. Pruc-
nal. Neuromorphic photonic networks using
silicon photonic weight banks. Scientific re-
ports, 7(1):1–10, 2017. doi: doi.org/10.1038/
s41598-017-07754-z.

[33] K. Vandoorne, P. Mechet, T. Van Vaeren-
bergh, M. Fiers, G. Morthier, D. Verstraeten,
B. Schrauwen, J. Dambre, and P. Bienst-
man. Experimental demonstration of reser-
voir computing on a silicon photonics chip.
Nature communications, 5(1):1–6, 2014. doi:
10.1038/ncomms4541.

[34] K. Wood, G. Bianchin, and E. Dall’Anese.
Online projected gradient descent for stochas-
tic optimization with decision-dependent dis-
tributions. IEEE Control Systems Letters, 6:
1646–1651, 2021. doi: 10.1109/LCSYS.2021.
3124187.

[35] X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes,
T. G. Nguyen, S. T. Chu, B. E. Little, D. G.
Hicks, R. Morandotti, et al. 11 tops pho-
tonic convolutional accelerator for optical neu-
ral networks. Nature, 589(7840):44–51, 2021.
doi: 10.1038/s41586-020-03063-0.

[36] C. Yakopcic, R. Hasan, and T. M. Taha. Mem-
ristor based neuromorphic circuit for ex-situ
training of multi-layer neural network algo-
rithms. In 2015 International Joint Confer-
ence on Neural Networks (IJCNN), pages 1–
7. IEEE, 2015. doi: 10.1109/IJCNN.2015.
7280813.

[37] G.-Y. Yang, X.-L. Li, R. R. Martin, and S.-M.
Hu. Sampling equivariant self-attention net-
works for object detection in aerial images.
arXiv preprint arXiv:2111.03420, 2021. doi:
10.48550/arXiv.2111.03420.

[38] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and
J. Cong. Energy-efficient cnn implementation
on a deeply pipelined fpga cluster:. pages 326–
331, 08 2016. doi: 10.1145/2934583.2934644.

[39] J. Zhu and P. Sutton. Fpga implementations
of neural networks–a survey of a decade of
progress. In International conference on field
programmable logic and applications, pages
1062–1066. Springer, 2003. doi: 10.1007/
978-3-540-45234-8 120.

9

	Introduction
	Related Work
	Fitting DL in Photonics
	Proposed Methods
	Nearest Unitary Learning
	Post-training Method
	Iterative Method

	Handling CNN

	Applications
	Cell image dataset
	Single-cell image identification

	Results
	Conclusion

