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Abstract

Accurate brain tumor segmentation is clinically im-
portant for diagnosis and treatment planning. Con-
volutional neural networks (CNNs) have achieved
promising performance in various visual recogni-
tion tasks. Training such networks usually re-
quires large amount of labeled data, which is of-
ten challenging for medical applications. In this
work, we address the segmentation problem by ap-
plying transfer learning to downstream segmenta-
tion tasks. Specifically, we explore how knowledge
acquired from a large preoperative dataset can be
transferred to postoperative tumor segmentation
on a smaller dataset. To this end, we have de-
veloped a 3D CNN for brain tumor segmentation,
and fine-tuned the pretrained models on the target
domain data. To better exploit the inter-channel
and spatial information, triplet attention has been
incorporated and extended into existing segmen-
tation network. Extensive experiments on our
dataset demonstrate the effectiveness of transfer
learning and attention modules for improved post-
operative tumor segmentation performance when
only limited amount of annotated data is available.

1 Introduction

Glioblastoma is the most aggressive brain tu-
mor and is commonly treated with surgery and
chemoradiotherapy [5, 7, 19]. Accurate diagno-
sis and segmentation of glioblastoma is essential
for treatment planning and postoperative analysis.
Magnetic resonance imaging (MRI) provides high
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soft tissue contrast and is the modality of choice
for structural brain analysis [1, 4]. Manual tumor
segmentation is challenging and time-consuming
due to complex tumor structure and high inter-
rater variability [6, 7, 19, 20], making automatic
segmentation methods increasingly popular. Deep
neural networks such as Convolutional Neural net-
works (CNNs) have achieved state-of-the-art per-
formance in a range of vision recognition tasks,
showing great potential for improved brain tumor
segmentation performance. However, training such
neural networks usually requires large amount of la-
beled data, which limits its application in medical
imaging field.

Transfer learning leverages knowledge gained in
a source domain to improve learning in a target
domain without training the network from scratch.
Zoetmulder et al. [21] assessed the transfer learn-
ing performance on multiple medical segmentation
tasks by investigating various combinations of do-
mains and tasks. Wacker et al. [19] applied fully-
convolutional networks with pretrained encoders on
ImageNet dataset for the task of brain tumor seg-
mentation and achieved improved and more robust
segmentation results. Ghaffari et al. [6] devel-
oped a 3D densely-connected U-net and transfer
the knowledge acquired on preoperative brain tu-
mor dataset to a target postoperative dataset.

Recent advances in deep learning, notably at-
tention mechanism, have been shown to achieve
performance gain in a variety of tasks, due to its
capability of learning more discriminative repre-
sentations by leveraging the semantic correlations
among image regions. One of the most promising
method is squeeze-and-excite networks (SENet) [9].
Triplet attention [14], a successor of SENet, learns
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more robust representation by exploiting the inter-
dependencies among channels and spatial locations
and provides computationally affordable and effec-
tive performance gains.

In this paper, we develop a popular 3D U-net
variant architecture for brain tumor segmentation,
and perform extensive experiments on various fine-
tuning strategies on the target domain. Concretely,
the network is first trained a large public preopera-
tive dataset, the Brain Tumor Segmentation Chal-
lenge (BraTS) [13, 2, 3, 12], and then fine-tuned the
model using transfer learning on an in-house target
dataset of postoperative gliomas. Inspired by the
success of attention-based methods, we propose to
add the triplet attention module to the baseline
network, introducing an additional branch of at-
tention and adapting the attention module in the
ResNet [8] backbone to fit into our network.

2 Method

2.1 Network Architecture

We use a 3D U-Net variant as our baseline net-
work, which follows an encoder-decoder architec-
ture with asymmetrically larger encoding pathways
[16, 15]. The encoder structure comprises four
stages of ResNet blocks. Each block consists of two
convolutions with Instance Normalization [17] and
Rectified Linear Unit (ReLU) activation, followed
by additive identity skip connection. The input
patches are progressively downsampled by convo-
lutions with stride of 2. Each decoder level con-
sists of a single ResNet block, and transpose con-
volutions with stride of 2 are used to double the
spatial dimension and reduce the number of fea-
tures. The endpoint of the decoder has the same
spatial dimension as the input image with its chan-
nel dimension reduced to three after a 1 × 1 × 1
convolution, followed by a sigmoid function. The
network architecture is shown in Figure 1.

2.1.1 Loss

The Dice Similarity Coefficient (DSC) is used to
measure the similarity between the predicted seg-
mentation P and ground truth G:

DSC =
2|P ∩G|
|P |+ |G|

(1)

The associated soft Dice loss can be expressed as:

Ldice = 1−
2
∑n

i pi ∗ gi∑n
i pi +

∑n
i gi

, (2)

where pi and qi are the predicted probability and
ground truth label of the i-th voxel, respectively.

2.2 Transfer learning

Training a deep neural network from scratch with
a small labeled dataset is challenging. The model
is often not able to learn meaningful information
when the training dataset is small, a problem called
overfitting. One popular strategy to cope with lim-
ited data size and reduce overfitting is to apply
transfer learning. The model is first trained on
a large dataset, which allows the model to learn
more general-purposed features. When directly ap-
ply the trained model on the local data, it might
not work very well as the model weights are op-
timized based on the large dataset. The trained
model is then tuned on the local data to adjust its
weights to better fit the new training data. The
fine-tuning step can stabilize the training process
and improve its predictive performance where the
model is less prone to overfit to the local data.

During transfer learning, we usually prevent cer-
tain part of the network from being trained so that
the learned weights can be reused, where the rest
of the network is trained as usual. The frozen
part typically corresponds to the first shallow lay-
ers of the neural network, which tend to capture
low-level features that are shared across domains,
while deeper layers can learn high-level features
that are more task-specific [18]. We only retrain
those deep layers, thus avoiding losing those shared
low-level information learned in the shallow lay-
ers. In other words, transfer learning adapts the
pretrained model to the target domain, retaining
shared information and fine-tuning domain-specific
knowledge. More specifically, we partially transfer
the pretrained model weights to the target domain
by freezing the weights of initial shallow layers and
fine-tuning the remaining layers.

2.3 Triplet attention

The triplet attention module was initially applied
to ResNet backbone networks for classification and
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Figure 1: Schematic visualization of the baseline network architecture.

object detection [14]. We adapt the attention mod-
ule to our 3D segmentation network by adding one
additional branch capturing cross-dimensional in-
teraction between channel and depth dimensions,
as illustrated in Figure 2. We also replace the batch
normalization with instance normalization in accor-
dance with the baseline network.

The input feature x is passed to four branches,
where three of them are responsible for comput-
ing attention weights across channel C and spa-
tial dimensions H, W and D, and the last one
captures spatial dependencies (H, W and D). In
each channel-spatial branch, the feature is passed
through a rotation operation followed by a residual
transformation block, which consists of a Z-pool
layer shrinking the depth dimension and a convo-
lution layer, and the feature is rotated back after-
wards to retain the same shape as input x. The
last branch performs similar residual transforma-
tion, where rotation is not involved. The resulting
outputs of all branches are averaged to generate
the refined output of the attention module x̃. The
process can be represented as follows:

x̃ =
1

4
(x̂1ω1 + x̂2ω2 + x̂3ω3 + xω4), (3)

where ω1, ω2, ω3 and ω4 are the cross-dimensional
attention weights, x̂1, x̂2 and x̂3 are the rotated
and Z-pooled features.

Following the original paper, the triplet atten-
tion module was appended to the bottleneck of the

encoder-decoder network.

3 Experiments

3.1 Datasets

3.1.1 Source Dataset

The publicly available BraTS dataset provides 3D
multimodal MRI data with ground truth segmen-
tation annotated by domain experts. The BraTS
2020 dataset comprises multi-parametric MRI (mp-
MRI) scans with 369 cases for training and 125
cases for validation. The MRI scans were collected
with different clinical protocols and from multiple
institutions. Each MRI scan contains four modal-
ities: native T1-weighted (T1), post-contrast T1-
weighted (T1ce), T2-weighted (T2), and T2 Fluid
Attenuated Inversion Recovery (FLAIR). Each 3D
volume is skull-stripped, rigidly co-registered, and
resampled to 1 mm3 isotropic voxel resolution.
Three tumor sub-regions were manually annotated
by one to four raters: the Gd-enhancing tu-
mor, peritumoral edema, and necrotic and non-
enhancing tumor core. The annotations were com-
bined into overlapping sub-regions for evaluation:
enhancing tumor (ET), tumor core (TC), and
whole tumor (WT).
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Figure 2: Illustration of the triplet attention module. The first three branches compute the attention
weights between the channel dimension C and each of the three spatial dimensions (H, W, and D). The
last branch captures the spatial dependencies (H, W and D). The output is obtained by averaging the
computed weights from each branch. The attention module is added to the bottleneck of the encoder-
encoder network.

3.1.2 Target Dataset

The target dataset is a subset of a glioblatoma
study ongoing at our institution and consists of
postoperative longitudinal brain MRI from 13
glioblastoma patients, with one to three time points
per patient (see Table 1). The dataset was prepro-
cessed similar to [12], including converting DICOM
images to NIfTI format, skull-stripping using [10],
and resampling to 1mm×1mm×1mm voxel resolu-
tion, rendering an image size of 256×256×190. The
same segmentation labels as in BraTS were gener-
ated. Here, an initial automated segmentation al-
gorithm was applied to a larger dataset whereby
a subset of this (n = 13 patients) was selected
based on the review and segmentation quality of
enhancing tumor and edema rating by a radiolo-
gist. Necrotic tumor was not specifically qualified
by radiologist.

Table 1: Statistics of the target postoperative
dataset.

Time-points per patient Number of patients
One time-point scan 5
Two time-point scans 4
Three time-point scans 4
Total number of patients 13

3.2 Experimental Settings

All experiments were implemented in PyTorch, and
the network was trained on NVIDIA A100 GPUs.
We used five-fold cross-validation (CV) on 80% of
the whole data and the remaining 20% as test set.
All partitions were performed randomly at patient-
level. In each experiment, there were roughly 8
patients in the training set, 2 in the validation set,
and 3 in the test set.

3.2.1 Preprocessing

For both pretraining and fine-tuning, we used the
same preprocessing steps. We randomly cropped
the MRI images to a fixed size of 192×192×144 and
concatenated the four MRI modalities of each pa-
tient into a four-channel input. We independently
normalized each channel by subtracting the mean
intensity and dividing by the standard deviation of
intensities within the brain region. Data augmen-
tation techniques have shown to effectively reduce
overfitting. We randomly flipped each spatial axis
with a probability of 0.5 and applied a random in-
tensity shift within [−0.1, 0.1] of the standard devi-
ation of each input channel, followed by a random
intensity scaling in the range of [0.9, 1.1].

3.2.2 Training

In both training cases, the Adam optimizer and a
polynomial learning rate decay schedule, L2 regu-
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larization with a decay rate of 1e−5 were used. A
batch size of 1 was used to compromise the large
crop size, and the maximal number of epochs was
set to 300. The learning rate were individually set
to 1e−4 and 1e−5 for pretraining and fine-tuning.
The model with best performance on the valida-
tion set was chosen. In our experiments, we found
that freezing the first layer (level) achieved the best
performance, which was discussed in the Appendix.

3.2.3 Evaluation and Comparisons

All experiments were evaluated as the average Dice
score from the 5-fold cross validation results. To
evaluate the segmentation performance using trans-
fer learning, we trained the baseline network on
the BraTS 2020 dataset, and tested its fine-tuned
model on the target postoperative dataset. We
then compared the performance of the baseline
model trained on the target set from scratch with
the fine-tuning approach on the pretrained model.

4 Results and Discussion

Table 2 presents the results of the baseline network
trained and evaluated on BraTS 2020 (validation)
dataset, showing performance close to the state-of-
the-art in the BraTS challenge. The competitive
results for the related preoperative brain tumor seg-
mentation task convinced us that our baseline net-
work is a good choice for the evaluation of the post-
operative segmentation task. Table 3 compares the
average Dice scores between the baseline and trans-
fer learning, where fine-tuning achieves the highest
value of 0.8018, with an absolute improvement of
0.04 from the baseline. It is observed that the Dices
scores of tumor core increase most, compared to
whole tumor and enhancing tumor, which It also
shows that the Dices scores of the whole tumor in-
crease most, which can be explained by the fact
that the task of segmenting whole tumor is fairly
easy in both domains and therefore the adaptation
of the pretrained model weights to the target do-
main is more straightforward.

By incorporating the triplet attention into the
baseline network, further performance gain is ob-
tained. An example case of the segmentation result
is provided in Figure 3.

5 Conclusion

Accurate segmentation of the different pathological
components in postoperative glioblastomas from
MRI is clinically important yet technically chal-
lenging. Starting with a network that achieves close
to state-of-the-art performance in the preoperative
brain tumor segmentation challenge, we here show
that with limited labeled data transfer learning
from pretrained model can be applied to improve
segmentation performance in postoperative MRIs.

We add an attention module, triplet attention,
to a 3D segmentation network. Triplet attention
captures more descriminative features across chan-
nel and spatial dimensions, thus can enhance the
model accuracy.

To note that transfer learning and triplet atten-
tion were independently experimented. For future
work, we plan to integrate the two techniques and
evaluate how attention mechanisms and transfer
learning could potentially benefit each other.
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6 Appendix

We experimented on the number of shallow layers
to be frozen. As illustrated in Figure 4, fine-tuning
with freezing the first layer achieved the highest
Dice score on the target dataset. Also to note that
the performance were very close when freezing 0, 1,
and 2 layers.
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Table 2: The baseline network evaluated on BraTS 2020 validation set, in comparison with the state-of-
the-art results, as well as the ensemble of best performing variant models. All results were provided by
the BraTS evaluation platform.

Method WT TC ET Mean
nnU-Net [11] 0.9124 0.8506 0.7989 0.854
Single baseline model (ours) 0.9051 0.8255 0.7821 0.8376
Ensemble of best baseline variants (ours) 0.9068 0.8425 0.7944 0.8479

Table 3: Quantitative results of the different methods on the target dataset. Pretrained model is trained
on BraTS data. Baseline is trained from scratch on the target dataset. Transfer Learning (TL) fine-tunes
the pretrained network with its first layer being frozen. Triplet attention (TA) is trained with added
triplet attention to existing network. Note that TL and TA are experimented independently.

Model WT TC ET Mean
Pretrained 0.7136 ± 0.1146 0.7737 ± 0.107 0.6232 ± 0.1461 0.744 ± 0.0992
Baseline 0.8162 ± 0.079 0.7877 ± 0.085 0.7874 ± 0.080 0.7971 ± 0.079
TL 0.8301 ± 0.081 0.8321 ± 0.059 0.8244 ± 0.055 0.8289 ± 0.063
TA 0.8282 ± 0.0812 0.8060 ± 0.0693 0.8041 ± 0.0654 0.8042 ± 0.0695

Figure 3: Visualization of the segmentation results of two sample cases. From left to right: FLAIR, T1,
T1ce, ground truth overlaid on T1ce, predicted segmentation overlaid on T1ce.

6



Figure 4: Average Dice scores corresponding to
freezing different number of layers. In total, there
are seven levels of convolutional layers in additional
to the output endpoint.
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